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Abstract

In this paper, we present an efficient and robust method for solving unit commitment

problem using a unit decommitment method.

1 Introduction

A problem that must be frequently solved by a power utility is to economically
determine a schedule of what units will be used to meet the forecast demand, and
operating constraints such as spinning reserve requirements, over a short time horizon.
This problem is commonly referred to as the unit commitment (UC) problem. The
UC problem is a mixed integer programming problem, and is in the class of NP-hard
problems [11]. Many optimization methods have been proposed to solve the UC problem
(e.g. [4]). Among them, the Lagrangian relaxation (LR) methods (1, 4, 5] are the most
widely used approaches for solving such a problem.

The LR approaches, though popular, are known to require many heuristics which
strongly influence their performance [4, 13]. In this paper, we present an alternative
method for solving the UC problem, which can be regarded as an approximate imple-
mentation of the LR approach. The basic idea is to employ the unit decommitment (UD)

method proposed in {10, 7]. This method starts with a solution having all available units
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on-line at all hours in the planning horizon and determines an optimal strategy for de-
committing units, one at a time. We show that the number of iterations required by the
method is bounded by the number of units. Empirical tests suggest that the proposed
method is more efficient and robust than the LR approach.

This paper is organized as follows. In Section 2, the UC problem is formulated.
Section 3 generalizes some important properties of economic dispatch. We generalize
the UD method in Section 4. Section 5 presents the algorithm for solving UC using
the UD method. The relation between the proposed method and the LR approach is
discussed in Section 6. Finally we generate random instances of the UC problems and
solve them by the proposed method. The numerical testing result and conclusion are

given in Section 7.

2 Problem formulation

In this paper the following standard notation will be used. Additional symbols will
be introduced when necessary.

i : index for the number of units (i = 1,---, 1)
t: index for time (¢t =0,---,T)
uit : zero-one decision variable indicating whether unit 4 is up or down in time period ¢

T : state variable indicating the length of time that unit 7 has been up or down in time

period t

t27 (¢97) : the minimum number of periods unit i must remain on (off) after it has been

turned on (off)
Pit © state variable indicating the amount of power unit 7 is generating in time period ¢
pP® (pPaX) : minimum (maximum) rated capacity of unit
% : maximum reserve for unit i
Ti(pit) : reserve available from unit 7 in time period ¢ (= min(r[ax, pmax _ Dit))
Ci(pit) : fuel cost for operating unit ¢ at output level p;; in time period ¢

Si(Ti,t—1,Uit, uiz—1) : startup cost associated with turning on unit i at the beginning of

time period ¢
Dy : forecast demand in time period ¢

R; : spinning reserve requirement in time period ¢



The unit commitment problem is formulated as the following mixed-integer program-

ming problem: (the underlined variables denote vectors, e.g u=(up, -,

min
LB ¢

T I
zzc(pzt Juie + Si(Ti -1, Uit, Ui p—1)]

subject to the demand constraints,

I
zpituit=Dta t=11"'7T1

i=]1

and the spinning reserve constraints,

I
zri(pit)uit >R, t=1,---,T.

=1

There are other unit constraints such as unit capacity constraints,
P;ninspit Sp:naxa $=1,,I, t=1""’Ta
the state transition equation fori =1,---,1,

max(z;¢—1,0) +1, ifu;=1,
Ty =
" min(.r,-,t_l, 0) - l, if Uit = 0,

the minimum up/down time constraints for i =1,---, I,

1, ifl1< Tit—1 < t?n,
Ui = 0, if —1> Tit—1 > —t?ﬁ,

Oor1, otherwise,

and the initial conditions on z;; at t = 0 for Vi.

2.1 Model of cost functions

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

The generating cost of a thermal unit includes fuel costs and the startup costs. In

this paper, the fuel cost C; of a unit, say %, is assumed to be a smooth and strictly convex

function of the power output(MWh) of the unit. The startup costs S;(z;¢—1,uit, Ui t—1)

vary with the temperature of the boiler and therefore depend on the length of time

that the unit has been off. The longer a unit remains off, the greater will be the cost to

re-start that unit. To further simplify the notation, we let S;(u,t) =

Si(Ti g1, Wit, Ui g1 ).



3 Reserve-constrained economic dispatch

Given a known commitment & = {4} satisfying (2.5) and (2.6), economic dispatch
(ED) is a problem of allocating system demand among all on-line generating units while
satisfying (2.2), (2.3) and (2.4) at any time over the planning horizon, i.e. to determine
the corresponding 5 = {fit}. (In this paper, variables denoted with a tilde hat denote a
fixed realization of the corresponding variables.) If the spinning reserve constraints (2.3)
are not considered, the ED problem is a conventional resource allocation (RA) problem
(e.g. [6]), which has the form:

min{) _ Ci(p:)| Y _pi = D; p™™ < p; < p™<}. (3.7)
1 1

Optimality of such a RA-type ED problem requires that all generators operate at a
marginal cost that either equals same fixed value Lambda (Lagrange multiplier) or equals
the marginal cost corresponding to the upper or lower bound of a generator’s output
level, whichever is closer to Lambda. This property is commonly referred to as the
‘equal-Lambda’ rule (e.g. [12]). We use the term ‘an equal-Lambda method’ to refer
to a method which solves the RA-type ED problem and presents the solution as well as
the Lambda. An equal-Lambda method can be implemented very efficiently such that it
obtains the optimal solution within strongly polynomial time if C; are quadratic convex
functions [2].

With the presence of the reserve constraints (2.3), the problem becomes a reserve-
constrained economic dispatch (RCED). Methods for obtaining approximate solutions
for RCED has been proposed, e.g. [8, 9]. In this section, we shall present an efficient
algorithm for obtaining the optimal solution for RCED. Note that the RCED problem
is separable in time, it can be solved sequentially by hour ¢. Define the index set of
on-line units at time ¢ with respect to this feasible commitment J(t;4) = {i|4; = 1}.
For simplicity, J; = J (t; ). The RCED problem in time ¢ is denoted by

reed(J,t) = min {z Ci(pit)| Z pit = Dy; Z rit(pit) > Re}, Vt. (3.8)

mingp,, <pmax < <
PSP SPy i€, i€Jy i€Jy

Also assume p = {p;;} solves rced(J;, t), if the solution exists.

Proposition 1 The solution of rced(.ft,t) exists, if and only if, the following con-
ditions hold.

Y PPt <D, <y pre, (3.9a)
icd, HIA



Y >R, (3.9b)
iedy
and
> " p"* > D, + Ry. (3.9¢)
i€y

Proof. The if part is obvious. To show the only if part, note that (3.9b) implies
that there exists {7;} such that Zieig Ti = R, 0 < 7 < e v € Ji. Since
Zieit pPn < D, < ZieJ} P — Ry = Ziejt(p?‘a" — 7), there exists {$;;} such that
Ziejz ﬁit = Dt, and p;mn S ﬁit S p;'na.x - Fi, Vi € Jt. (Note: Zieic Ti(ﬁit) 2 Rt) a

Proposition 2 Assume {py;1;} is an optimal solution of RCED. Then there ex-
ist two mutually exclusive subsets of jt, flt and ./~\t, ie. U A = jt, and {4 N A = 0,
and (Lagrange multipliers) ), & and fet=1,---,T, such that

"(Pit) = &, for pMmaX _ pmax o~ 5~ pmax -
Gulpu) =, for ™ =1 < <P | g, (3.10)
Cz{(pit) < e, for Dit =p:na.x’
Cl(Bit) = A, for piM™ < 5y < pmax — rinax
Ci(Pi) < M, for Py = pmax — pmax , Vi€ A, (3.11)
Ci(Pit) > i, for py = ppin
Be(D min(pP™ — By, 7Y — Ry) = 0 (3.12)
iEj:
fie = A — & (3.13)
A >0; 8 >0; i, > 0. (3.14)
for Vt. (]

The proof of Proposition 2 is straightforward and is omitted here. An intuitive way
to interpret the optimality condition is to divide the units into two categories: ), is the
set of units with ‘cheap’ reserve but ‘expensive generation’, and A, is the counterpart.
Inspired by the proof of Proposition 1 and the optimality conditions above, we state
the following algorithm for obtaining the optimal solution for RCED in time t, and its

associated multipliers \; and it as defined in Proposition 2.



Algorithm for solving RCED

Step 1: Apply an equal-Lambda method to solve the reserve-unconstrained case:

min > icd, Ci(pit)
s.t. > icj, Pit = Dy

Pt < py < pMRX Vi € .

Assume {p;; } is the solution and the Lambda is denoted by As. If 2ic, Ti(Pit) >
R:, then & =, stop and {Pit} is also an optimal solution of RCED. Otherwise
discard {p;;} and go to Step 2.

Step 2: Apply an equal-Lambda method to solve the following RA problem:

min 2iej, Cilpie)
s.t. ey, (PP — put) = R

PP — rPX < py < pX, Vi € .
Assume {p;} is the solution, and the Lambda is denoted by &;. Let ) =
{i|pfpax — rMmax < 5,41 and A: = jt\flt.

Step 3: Apply an equal-Lambda method to solve the following RA problem:

min Sie, Cilpa)
s.t. Ziei\g pit = Dy — Zieﬁt Pit

PP < pie < P — reX v A,
Assume the solution is Py, ¢ € A¢, and the Lambda is denoted by Xe.
Step 4: Let p;; «— Py, i € A. {Pit} is the solution of RCED. [ ]

It can be verified that the {f;} as well as ); and ji; satisfy the optimality condition

stated in Proposition 2.

4 A unit decommitment method

A UD method was proposed in (10, 11] as a post-processing method to improve solu-
tion quality of existing UC algorithms. Given a feasible schedule (&, p), the UD method
determines an optimal strategy, based on dynamic programming, for decommitting over-
committed units. To start the UD method, a feasible solution has to be given. While
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in theory obtaining a feasible solution of the UC problem is an NP-hard problem (11],
it is a relatively easy task in real world instances of that problem. Methods based on
priority lists to sequentially commit units (e.g. [3]) can be used to construct an initial
feasible solution. Since the purpose of this paper is to develop a UC algorithm, and
the UD method plays a central part of the algorithm to be proposed, we shall defer the
discussion of how to obtain an initial feasible solution to a later section. In this section,
we have only included results which are either new, provide insight, or are simpler than
previously published in [10].

Given a feasible schedule (i, p) (assumed economically dispatched), consider the
problem (PJ’-") of optimally decommitting a unit, say unit j, with other units’ com-

mitments fixed. The formulation is as follows.

(F7) | min S [Ci(Biehuse + S, t)] + Ty ST [Ci(pie)hie + Si(dir )]

Dit,izj ,Ujt
s.t. 2 it Pitlhie + Djguje = Dy, Vit (4.15a)
izs Ti(Pit) it + 75 (Pje)uje > Ry, Vt (4.15b)
ujt = 0if 45 = 0, (4.15¢)

and minimum up/down time constraints (2.6) and initial conditions for unit j.

Note that the variables in (P]*) are uj; for Vt and p;; for Vi # j, Vt as well, since
decommitting unit j in hour ¢ would result in a redistribution of its generated power
Pjt to other on-line units in hour ¢ in order to satisfy (2.2) and (2.3). In this paper, the
solution of (P}) will be called a tentative commitment of unit j. To solve (P}), we observe
that if uj = 1, the optimal p; for Vi # j can be determined by the economic dispatch
rced(jt,t); if uj: = 0 is feasible, the resultant objective value will be the economic
dispatch over all units but j, i.e., rced(J;\{3},t). The startup cost of unit j is imposed
whenever applicable. Based on this observation, (PJ*) can be transformed to the following

0-1 integer programming problem:

min i[(rced(jt, t) + Sj(w, t))uje + reed(J\ {5}, t)(1 — uje)] + z XT: Si(@,t) (4.16)
u;e€{0,1} 7= i#j t=1
subject to the same constraints except that (4.15a) now can be removed.

Since the last term in (4.16) is a constant, it can be removed from the objective
function without altering the solution. Furthermore, adding the same term, C;(P;¢ )¢ —
rced(J;,t), to both (mutually exclusive) choices, uj; and (1 — uj:) would not alter the
optimal decision. Thus, hereafter we will consider the following equivalent problem (P;)

to improve the commitment of unit j.



ey 2 Z[ i(Bit) + S5, t))use + AC (@, 5, £)(1 — uj)] (4.17)
uﬂ
subject to
AC;(i, p,t) = rced(J\{j}, t) + C;(Bj¢)iij; — reed(J;, t). (4.18)
0 if 'fl.jt = O,
uje =< 1 if @, = 1, and the removal of 5 from J; would (4.19)

result in violation of (3.9a) to (3.9¢c).

and the minimum uptime, downtime constraints and the initial conditions for unit J-
(P;) is an integer programming problem and can be solved using dynamic program-
ming. ACj(g,p,t) in (4.18) denotes the increased fuel cost of all on-line units other than
unit j due to its decommitment in hour ¢. Obtaining ACj(&, p,t) involves solving two
single-hour RCED’s, rced(J;, t) and rced(J:\{;}, ).
Assume that solving rced(J;\{s},t) yields generation level Dit + APy for unit 7 €
jt\{ Jj} such that Zie A Api; = pj:. Based the fact that all the fuel cost functions C;

are smooth and convex, and also from Proposition 2, we have

ACi(@p,t) = Y. Ci(ie + Apir) — Ci(Par)
ieJe\{J}

> CilBi)Api
ieJ\{j}
A > Afi+ (O — i) > Apu

ich\{j} ief\ {5}
= Mfj — i > Apa

€ \{5}

~ Aebjt — fufje. (4.20)

Q

Q

(Note that in (4.20) we use the fact that the loss of reserve originally provided by unit
J, can only be made up by the units in Qt\{ i})

In the sequel, we will approximate AC;(%, p,t) by ACj = ;\tﬁjt — [T, and will
only focus on the case where AC;(g, P, t) is replaced by its ‘first order approximation’,
AeBjt — fufis.

In the following algorithm, superscript k denotes the k-th iteration of the algorithm.
Let ©F, i = 1,---,I be the total generating cost (fuel cost and startup cost) of unit
i of the feasible schedule (@k,zjk); and ©F, i = 1,-.., I, the optimal objective value of

(PF) solved with respect to feasible solution (@, ;_")k) We now state the decommitment

algorithm.



The UD algorithm

Data: Feasible solution (&P, 1_30) and the corresponding (:)?, t=1,---,I are given.
Step 0: k0.

Step 1: Solve (PF) with respect to (_11'“,1_3'“) and obtain ©F foralli=1,---,1.

1

Step 2: Select a unit m such that (8%, — ©k) > 0. If there is no such a unit, stop;
otherwise update the commitment of unit m in @* by the tentative commitment

obtained in (PY). The resultant unit commitment is assigned to be @**1.
Step 3: Perform the RCED on %*t! to obtain B'k"'l and evaluate (:)f"'l, the total gener-
ating cost of unit ¢, =1,---,1.
Step 4: k — k+ 1, go to Step 1. ]
The algorithm chooses the tentative commitment which can yield savings to replace the
original commitment. The rule for selecting a unit to be improved in Step 2 (corre-

sponding to choosing a descent direction in continuous optimization) is not unique. In

our implementation, we considered two selection rules.
1. m = argmax; {©F — ©F} — select the unit which can yield the most savings.

2. m = argmax;{(OF — ©%)/ YL, |ak — @5™1|} — select the unit which can yield the

most savings per decommitted power.

Generally, we found that the second selection rule outperforms the first one.

Suppose unit j is selected at iteration k', and its tentative commitment {&;;} will be

Y
the same as {@5, "'}, so

T
Z[(Cj(ﬁ_l;t) + S; (&, 1)) + ACJ’% (I—1dy)] <
t=1

T
> UCi(#5) + Sj(@, 1))z + ACK - (1 — )], (4.21)
t=1
for any {i;} satisfying (4.19). Let [ = {t|&;; # @j,t = 1,---, T}, (4.21) is reduced to
T
> Ci(ah) + Q_(S;(@ vy — (@, tyise) <Y ACK. (4.22)
teT t=1 tel

It can be shown that for some on-line unit j in time ¢ that before it is decommitted,
both {C(5%,)} and {ACk} = {S\fﬁ’;t - ﬁff;‘t} are nondecreasing in k. Furthermore, it

can be shown that {C(p%,)} increases faster than it first approximation {ACE} because

9



of convexity. This implies that (4.22) should continue to hold for all & > k. That is,
unit j should not be selected again in Step 2 at any subsequent iteration of iteration
k'. We conclude that with AC;(g, P,t) approximated by :\zﬁjc — [it7;¢, the UD algorithm

terminates within I iterations, where I is the number of the units.

5 Solving UC Using UD

A natural question is whether it is possible to use a UD approach as a direct primal
solution technique for solving the unit commitment problem. An intuitive approach is
to initially turn on as many units as possible in all hours without violating the mini-
mum up/down time constraints. A schematic algorithm for implementing the outlined

procedure is given below.

The UC algorithm
Step 0: ;9 and ;o are given for Vi; ¢ « 1; ¢ «— 1.
Step 1: If ¢ > I, stop and 4 is the initial commitment. Go to Step 4.

Step 2: If t > T, then ¢ «— i + 1 and go to Step 1. Otherwise,

1 if &5, > —toff
iy = F el = T (5.23)
0 otherwise
Fi01,0) + 1, if iy = 1,
B = max(Z;;-1,0) + 1, if s (5.24)
min(&;,_1,0) =1, if @ = 0.
Step 3: t — t+1, go to Step 2.
Step 4: Apply the RCED with respect to & to obtain .
Step 5: Apply the UD algorithm with respect to (i, D). n

Solving UC by means of UD requires finding first an initial feasible solution (@, p).
Initially when all units are committed, such a commitment tend to violate (3.9a), i.e. the
so called minimum load conditions. In other words, the loop between Step 1 and Step 3
does not necessarily result in an initial feasible schedule as required by the UD algorithm,
i.e., the RCED phase in Step 4 may not be feasible. Since the RCED is a subroutine
required at each iteration of the UD algorithm stated in Step 5 of the above algorithm,
we need to extend the RCED subroutine to also handle cases where the minimum load

conditions are not satisfied. A possible modification is to dispatch the on-line generators

10



so as to equalize the marginal costs to the extent possible, even if the minimum load

conditions are not satisfied. That is, when

> oM > Dy, (5.25)
ied,

all on-line units are dispatched to their minimum capacities respectively,
P — P, Vi, (5.26)

and the corresponding Lambda is the minimum of the marginal costs of the corresponding
dispatches in (5.26),

At = fit — min C'(p™"); &, «— 0. (5.27)
i€Jy

Such a modification of the RCED phase above is based on the expectation that as the
decommitment procedure proceeds, the commitment obtained will eventually satisfy the
minimum load conditions, thus producing a feasible schedule. From a theoretical per-
spective, determining a feasible solution of the UC problems is NP-hard as mentioned.
However, in extensive numerical tests, we have found that the above approach worked
satisfactorily. In all observed cases, the UD method performed well as a UC algorithm

and obtained feasible solutions. Furthermore, we have the following theorem.

Theorem 1 With the modification in (5.27) of the RCED phase, the UC algorithm
terminates within I iterations, where I is the number of units.

Proof. One only needs to verify that the modification in (5.27) does not change the fact
that both {C ~§c)} and {ACJ’-‘t} = {;\fﬁﬁ - ﬁff;‘t} are nondecreasing in k, and {C ~;?t)}
increases faster than {AC%}. |

6 UD is a LR-like method

In this section, we present an intuitive discussion hoping to shed some light on the
relationship between the UD method and the LR method for solving the UC problem.
Let A; and p; (t = 1,---,T) be the corresponding nonnegative Lagrange multipliers to
(2.2) and (2.3). Conventional LR approaches solve the following dual problem (D):

(D) B d(}, p), (6.28)

where

I T
d(d,pe) = min 3> [Cilpi)uir + Silw,t)
¢ 1

== t=

11



+ Ae(De — sztuu + pe(Re — ZTI(Pn uit )]

i=1
I T
D di(Ae, ) + > (MDy + peRe), (6.29)
i=1 t=1
and

di(A¢, ) = min Z[C (Pit)uie + Si(w,t) — Mepirwie — pers (i) ). (6.30)

Uit,Pit

The minimization problem (6.30) is subject to (2.4) to (2.6) and the initial conditions.
It is straightforward to show that each decommitment problem (P;) and the dual
subproblem with i = j, d;()s, ji¢), are equivalent in the sense that given {X\;}, {i} and
{Bje; dje}, if {ii;e} solves (P;), then (Bj:, ;) also solves d;(Ai, fir). Therefore, the UD
method is a LR-like method. The differences are that the multipliers A; and y; are taken
from RCED phase rather than updated by the subgradient iteration, and that UD is a

primal method which maintains primal feasibility once achieved.

7 Numerical results and conclusions

We conduct numerical tests to compare the performance of UD and LR. All algo-
rithms are implemented in FORTRAN on a HP 700 workstation. Four cases of systems
with combinations of 10, 30 units, and 24, 168 hours of planning horizon are tested.
For each case, we randomly generate 100 instances of the UC problem. (Detailed con-
figuration of the random instances are available upon request to the authors.) Each
instance is solved by LR and UD of selection rules 1 and 2, under the columns of LR,
UD1 and UD2, respectively. The column under D.G. records the duality gap of the LR
approach in terms of the percentage of the dual value. Since the comparison are made
with regard to the value of the LR approach, the columns under LR are all “ones”. Also
the two numbers in a parenthesis define a range of the sample points. The mean of the
sample points is recorded on the top of the corresponding parentheses. The test results
including solution qualities and CPU times required for both methods are summarized
in Table 1.

From Table 1, the error between LR and UD is within 0.2%, and the UD methods
takes much less (save at least 50%) CPU time than the LR approach. Besides, the
only heuristic in UD is the unit selection rule, which is analogous to choosing a descent

direction in continuous optimization. We test for two selection rules, and both are equally
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good. To sum up, the numerical testing results show that UD serves as a reliable, efficient

and robust approximate method of the LR approaches for solving UC.

Table 1: Comparison of UD and LR

Case Solution Quality CPU Time
LR UD1 UD2 D.G. (%) | LR UD1 UD2
10x24 | 1 1.0010 1.0007 0.9 1 0.2185 0.1784
(0.9933-1.0105) | (0.9933-1.0086) | (0.09-2.85) (0.1028-0.4773) | (0.1056-0.3636)
10x168 | 1 1.0008 1.0004 0.9 1 0.1500 0.0978
(0.9976-1.0054) | (0.9973-1.0053) | (0.38-2.04) (0.0978-0.3446) | (0.0661-0.2953)
30x24 | 1 1.0013 1.0007 0.28 1 0.5214 0.4183
(0.9981-1.0090) | (0.9986-1.0048) | (0.06-0.81) (0.3344-0.8608) | (0.2762-0.7371)
30x168 | 1 1.0017 1.0007 0.35 1 0.2745 0.3215
(0.9997-1.0058) | (0.9994-1.0025) | (0.15-1.78) (0.1513-0.4152) | (0.1597-0.4886)
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