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How This All Started
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Algorithmic Exclusion
When Algorithms err because data is missing due to
differences in privilege
• Sparsity
• Fragmentation



In equation form (this may be lunchtime but this
is MIT):

Y = Xβ + ϵ
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Sparse Data



More general point that a broad digital footprint is a
matter of privilege

• Computer Work
• Mobile Data
• Internet of Things



The idea of data deserts is neglected
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Fragmented Data

• Algorithmic data is not usually from single source
• Datasets have to be matched a
• How do you match? Cell phones..Email
addresses...Names
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Based on Algorithms of Data Brokers



What Kind of Predictions are bought by data broker
clients (Lotme)

• Age (76%)
• Gender (61%)
• Income (50%)
• Education (40%)
• Children (32%)



But how do Data Brokers Know Age and Gender?



Simple prediction task

• Data on Browsing behavior
• May tell us whether someone is a female (if I
browse sanitary products)

• May tell us age (if I browse retirement homes)



We asked how good data brokers are at this



What we did

• We identified cookies from ‘pureprofile’ panel
survey.

• We asked data brokers to tell whether they were
male or (25-34)



Results

Data Broker Number of Cookies Gender Accuracy
A 1396 27.5
B 408 25.7
C 1777 35.2
D 495 56.4
E 527 48.8
F 480 47.9
G 562 46.8
H 1016 33.2
I 2336 33.6
J 14342 42.4
K 346 30.6
L 547 51.9
M 456 49.1
N 5099 62.7



We went out and got new data on the people who
were profiled
• We wanted to know if this was related to income
inequality



What We Found
• Richer, more educated, home-owning
people are more likely to be profiled
accurately

• In particular, they are more likely to have
accurate demographic information



And Race..



But should we care if people are poorly profiled by
algorithms as they have missing data?



Summary

• Data is often sparse
• Data is often fragmented
• This leads to algorithmic exclusion where
algorithms work poorly

• Interaction with inequality appears important
outside of advertising
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Provocative Conclusion: 1

• Privacy is a ‘rich’ person’s concern
• Perhaps for low-income people data
inaccuracy is a bigger concern

• Do we have the current privacy debate the
right way around?



Provocative Conclusion 2
• Algorithmic transparency or auditing
doesn’t address this

• Instead we need to also think about data
deserts in the way we think about food
deserts



Thank you!

cetucker@mit.edu
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