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Algorithms in high-stakes decisions
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Algorithms in high-stakes decisions

Algorithms diagnose diseases Algorithms set bail Algorithms hire employees

Literature on defining fairness, diagnosing bias, fairness/accuracy trade-offs. But...
2



Algorithms assisting in high-stakes decisions

Doctors diagnose diseases Judges set bail Managers hire employees

Not just a design decision, often a legal requirement
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Main idea

Commonly analyze algorithms through lens of direct implementation (automation)

training data
machine−→ decision

But often algorithm provides assistance to decision-maker who retains authority

training data
machine−→ prediction

human−→ decision

This project: How does design of algorithm affect decision accuracy and fairness
when algorithm assists a possibly biased decision-maker rather than automates?

1 Thought experiment 2 Online lab experiment

Automation
Accuracy vs fairness trade-off when

including/excluding sensitive covariates

Assistance
Exclusion may hurt rather than help,

for accuracy and fairness
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Related work Empirical evidence

Algorithmic fairness: Kleinberg et al. (2016); Chouldechova (2016); Lakkaraju et al.
(2017); Jiang and Nachum (2020); Liang et al. (2021)

Regulation: Bent (2019); Huq (2020); Gillis (2022); Enarsson et al. (2022); Kim (2022)

Statistical communication, delegation: Kamenica and Gentzkow (2011); Spiess
(2018); Athey et al. (2020); Andrews and Shapiro (2020); Ibrahim et al. (2021)

Sources of bias: Bordalo et al. (2019); Bohren et al. (2019a,b); Coffman et al. (2021)

Empirical analysis of human–machine interaction: Dietvorst et al. (2018); Green and
Chen (2019); Stevenson and Doleac (2019); Imai et al. (2020); De-Arteaga et al. (2020);
Lai et al. (2021); Ludwig and Mullainathan (2021); Bastani et al. (2021); Fogliato et al.
(2022); Snyder et al. (2022); Donahue et al. (2022)

Algorithmic risk assessments in felony sentencing

1 changes sentencing

2 does not lower prison populations, risk to public safety

3 does not seem to improve racial disparities in sentencing
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4. Summary and conclusion



Human–machine interaction as a game between principal and agent

(Y ,X ,G ,H) ∼ P X ∈ X discrete G ∈ G={M,F}

Principal: designs algorithm

Algorithm maps training data to predictions f̂ (x , g); here, consider:

1 Group-blind average given X=x only: f̂−(x) = Ê[Y |X=x ] =
∑

Xi=x Yi∑
Xi=x 1

2 Group-aware average given X=x ,G=g : f̂+(x , g) = Ê[Y |X=x ,G=g ]

Agent: takes decision

Observes an instance (X ,G ,H) and algorithmic prediction Ŷ = f̂ (X ,G )

Takes a decision D̂ = h(X ,G ,H, Ŷ )

Has a subjective model/belief of the world (prior P∗ over distribution P)
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Preferences and decisions

data (Yi ,Xi ,Gi )
machine−→ prediction Ŷ = f̂ (X ,G )

human−→ decision D̂ = h(X ,G ,H, Ŷ )

Principal: trades off accuracy and fairness

Accuracy (risk)
r(h) = E[(Y − D̂)2]

Fairness (conditional disparity)
∆(h,X ∗) = E[D̂|G=M,X ∗]− E[D̂|G=F ,X ∗]

Agent: maximizes accuracy

Minimize risk r(h) = E[(Y − D̂)2], averaged over P∗

Optimal decision: D̂ = E∗[Y |X ,G ,H, Ŷ ]
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Illustration in a (very) simple example

data (Yi ,Xi ,Gi )
machine−→ prediction Ŷ = f̂ (X ,G )

human−→ decision D̂ = E∗[Y |X ,G ,H, Ŷ ]

Actual data

Y

Data Y |G=g ∼ N
(
µ(g), σ2

)
with µ(g) unknown

P(G=F ) = 1/2 = P(G=M) n(M) = n/2 = n(F )

Prior belief

Y

Prior µ(g) ∼ N
(
π(g), τ2

)
independent across g
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Assistance Lab Experiment

data (Yi ,Gi )
machine−→ prediction Ŷ = f̂ (G )

human−→ decision D̂ = E∗[Y |Ŷ ,G ]

f̂−

h−(F ) h−(M)
Y

∆(f̂−) = 0

∆(h−) = ∆∗

prior disparity

= E∗[Y |G=M]− E∗[Y |G=F ]

f̂+(F ) f̂+(M)

h+(F ) h+(M)
Y

∆(f̂+) =

true disparity

∆Y= E[Y |G=M]− E[Y |G=F ]

∆(h+) =
2σ2

n τ 2+2σ2

weight w → 0

∆∗ +
n τ 2

n τ 2+2σ2

weight 1−w → 1

∆Y
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Assistance Lab Experiment

data (Yi ,Gi )
machine−→ prediction Ŷ = f̂ (G )

human−→ decision D̂ = E∗[Y |Ŷ ,G ]

f̂−

h−(F ) h−(M)
Y

∆(f̂−) = 0

∆(h−) = ∆∗

prior disparity

= E∗[Y |G=M]− E∗[Y |G=F ]

f̂+(F ) f̂+(M)

h+(F ) h+(M)
Y

∆(f̂+) =

true disparity

∆Y= E[Y |G=M]− E[Y |G=F ]

∆(h+) =
2σ2

n τ 2+2σ2

weight w → 0

∆∗ +
n τ 2

n τ 2+2σ2

weight 1−w → 1

∆Y

This prediction does not include
info about gender differences,

so I’ll use my belief

This prediction includes
gender-specific info; I’ll update
my belief about differences
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Take-aways from the Normal illustration General results

data (Yi ,Gi )
machine−→ prediction Ŷ = f̂ (G )

human−→ decision D̂ = E∗[Y |Ŷ ,G ]

• Biased decision-maker: ∆∗

prior
disparity

> ∆Y

true
disparity

• True differences in large sample: ∆Y ̸= 0, n → ∞

Group-blind predictions Ŷ = f̂−

Automation: Ŷ has less disparity
and is less accurate

Assistance: D̂ has more disparity
and is less accurate

Group-aware predictions Ŷ = f̂+(G )

Automation: Ŷ has more disparity
and is more accurate

Assistance: D̂ has less disparity
and is more accurate
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Experiment setup and baseline data

Our experiment: 1250 online study subjects predict performance of female, male
test-takers on math test

Baseline data: Math scores (six questions) of test takers from Cecilia Ridgeway
and Tamar Kricheli-Katz, “Behavioral responses to the changing world of gender”

Obs Mean SD

Male 207 2.20 1.46
Female 189 2.58 1.56
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Treatment and decisions

Average conditional on age

Average conditional on age and gender
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Take-aways from the empirical results Details Generalizations Summary

Weighted for test-taker population distribution by age bracket, education, gender;
standard error estimates clustered at subject level

No evidence for strong explicit bias

Implicit bias by failing to adjust for differences in ability–education relationship

Exclusion has unintended consequences
13
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Summary and conclusion Generalizations

We model the relationship between design of algorithm and resulting fairness
properties of machine-assisted human decisions with biased beliefs

We illustrate that common trade-offs between fairness and accuracy may revert

We provide evidence for reversal in lab study

Narrowly, adds another reason to be skeptical about input restrictions

More broadly, a need for modeling context, beliefs, preferences, and frictions when
analyzing human-machine decisions

Thank you!
jspiess@stanford.edu
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Some suggestive empirical evidence Related work

When algorithms assist human decision-makers with decision authority, they often
affect human decisions, but do not necessarily improve decisions

Stevenson and Doleac (2019): Algorithmic risk assessments in felony sentencing

1 changes sentencing
2 does not lower prison populations, risk to public safety
3 does not seem to improve racial disparities in sentencing

Ludwig and Mullainathan (2021): Pre-trial release decisions in NYC
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General result for conditional disparity ∆D̂(x) = E[D̂|X=x ,G=M]− E[D̂|X=x ,G=F ]
Simple case

Definition (δ-disparate beliefs). The decision-maker’s belief P∗ about means at
X=x assumes disparity of at least δ > 0 between groups G = M and G = F
with all else known, E∗[Y |X=x ,G=M, µ̄(x)]−E∗[Y |X=x ,G=F , µ̄(x)] ≥ δ for µ̄(x) =
n(x ,M) E[Y |X=x ,G=M]+n(x ,F ) E[Y |X=x ,G=F ]

n(x ,M)+n(x ,F ) .

Theorem (Trade-off reversal). Assume that the decision-maker has δ-disparate
beliefs, that the regularity conditions hold, and that 0 < ∆µ(x) < δ. Then π-
almost surely for every η > 0 and ζ ∈

(
0, 12

]
there exists some M such that with

probability (over draws of the training data) at least 1−η we have that ∆D̂+
(x) <

∆D̂−
(x) and E[ℓ(Y , D̂+)|X=x ] < E[ℓ(Y , D̂−)|X=x ] while ∆Ŷ+

(x) > ∆Ŷ−
(x) and

E[ℓ(Y , Ŷ+)|X=x ] < E[ℓ(Y , Ŷ−)|X=x ] whenever ζ ≤ n(x ,F )
n(x ,F )+n(x ,M) ,

n(x ,M)
n(x ,F )+n(x ,M) ≤

1− ζ and n(x ,F ) + n(x ,M) ≥ M.
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Main result By group Main results Summary

Weighted for test-taker population distribution by age bracket, education, gender;
standard error estimates clustered at subject level

On average, women evaluated lower than men, but what is the mechanism?

∆(h,X ) = E[D̂|G=M,X ]− E[D̂|G=F ,X ]
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Gender-balanced result Weighting details By group Main results Summary

Gender-balanced test-takers; standard error estimates clustered at subject level
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Stylized mechanism Main results Summary

female male

high math skill

low math skill
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Stylized mechanism Main results Summary

female male

high math skill

low math skill

college degree
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Stylized mechanism Empirical evidence Main results

female male

high math skill

low math skill

college degree
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Stylized mechanism Empirical evidence Main results

female male

high math skill

low math skill

college degree
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Bias from a failure to adjust Main results Summary

Structure behind data

female male

high math skill

low math skill

college degree

Structure of agent’s belief

female male

high math skill

low math skill

college degree
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Main results Overall Main results Summary

Weighted for test-taker population distribution by age bracket, education, gender;
standard error estimates clustered at subject level
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Gender-balanced results Balanced results Main results

Gender-balanced test-takers; standard error estimates clustered at subject level
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Covariate distribution Balanced results Main results

Empirical distribution of test-takers Balanced distribution of held-out
test-takers
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Performance and distribution of test-takers Stylized mechanism Main results Summary

Performance Distribution
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Generalizations and extensions Main results Summary

Correlated features: G may be prohibited; consider inclusion of Z correlated with G

data (Yi ,Xi ,Zi ,Gi )
machine−→ prediction Ŷ = f̂ (X ,G)

human−→ decision D̂ = E∗[Y |Ŷ ,X ,Z ,G ,H]

Beyond input restrictions:

In many cases, input restrictions ineffective, suboptimal, or even counterproductive
in first place (Kleinberg et al., 2018; Gillis and Spiess, 2018)

Kleinberg et al. (2018): Use protected characteristic, adjust across groups, e.g.

f̂ (x , g) = Ê[Y |X=x ,G=g ] + α̂(g)

However, data still uninformative about group differences → prior disparity prevails

Optimal design: Principal–agent problem where principal chooses f̂ to minimize

E[ℓ(Y , D̂)] + λ(E[D̂|G=M]− E[D̂|G=F ])2 D̂ = E∗[Y |X ,G ,H, f̂ (X ,G )]
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