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Credit score is central to credit decisions

Lenders primarily use credit scores to evaluate the probability that an individual will
repay loans

– GSE cutoff of 620; Marcus, SunTrust - 660, SoFi -680

Credit score is a good predictor of default, in general

Credit card defaults Mortgage defaults
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Large segment below acceptable credit score
“FICO scores are good, but they’re not perfect.”— Roger Hochschild, Discover Financial Services CEO

Source: Keys, B. J., Mukherjee, T., Seru, A.,

Vig, V. (2010)
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Large segment below acceptable credit score
“FICO scores are good, but they’re not perfect.”— Roger Hochschild, Discover Financial Services CEO

Recent graduates

Recent immigrants

Self-employed individuals

...

Source: Keys, B. J., Mukherjee, T., Seru, A.,

Vig, V. (2010)
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26 million adults lack a credit record - Credit Invisibles
Younger, lower-income, minorities
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Research Questions
Winners and Losers

– Use of alternative data and AI credit models =⇒ Credit availability?
“Adding this kind of alternative data into the mix thus holds out the promise of opening up
credit for millions of additional consumers”–Richard Cordray, director of the CFPB

– Use of alternative data and AI credit models =⇒ Lower rates?

– Types of alternative data

– Impact on borrowers =⇒ Better financial outcomes?

– Do alternative data inadvertently reduce credit access for some households?

6/27



Research Questions
Winners and Losers

– Use of alternative data and AI credit models =⇒ Credit availability?
“Adding this kind of alternative data into the mix thus holds out the promise of opening up
credit for millions of additional consumers”–Richard Cordray, director of the CFPB

– Use of alternative data and AI credit models =⇒ Lower rates?

– Types of alternative data

– Impact on borrowers =⇒ Better financial outcomes?

– Do alternative data inadvertently reduce credit access for some households?

6/27



Research Questions
Winners and Losers

– Use of alternative data and AI credit models =⇒ Credit availability?
“Adding this kind of alternative data into the mix thus holds out the promise of opening up
credit for millions of additional consumers”–Richard Cordray, director of the CFPB

– Use of alternative data and AI credit models =⇒ Lower rates?

– Types of alternative data

– Impact on borrowers =⇒ Better financial outcomes?

– Do alternative data inadvertently reduce credit access for some households?

6/27



Research Questions
Winners and Losers

– Use of alternative data and AI credit models =⇒ Credit availability?
“Adding this kind of alternative data into the mix thus holds out the promise of opening up
credit for millions of additional consumers”–Richard Cordray, director of the CFPB

– Use of alternative data and AI credit models =⇒ Lower rates?

– Types of alternative data

– Impact on borrowers =⇒ Better financial outcomes?

– Do alternative data inadvertently reduce credit access for some households?

6/27



Research Questions
Winners and Losers

– Use of alternative data and AI credit models =⇒ Credit availability?
“Adding this kind of alternative data into the mix thus holds out the promise of opening up
credit for millions of additional consumers”–Richard Cordray, director of the CFPB

– Use of alternative data and AI credit models =⇒ Lower rates?

– Types of alternative data

– Impact on borrowers =⇒ Better financial outcomes?

– Do alternative data inadvertently reduce credit access for some households?

6/27



Roadmap

Data/Setting

The Platform’s Underwriting Model

The Predictive Power of the Platform’s Model

Data or Model?

The Effects of the Advanced Underwriting Model on Borrowers



Our Setting:

– Anonymized administrative data and the underwriting algorithm from Upstart,
a major fintech lender

– Use alternative data and artificial intelligence in making credit underwriting
and pricing decisions
→ Variables from credit report, alternative variables, AI −→ prob. of default

– Attracted the attention of the CFPB in 2017; concerns about the potential
violation of fair lending regulations; issued a ‘no-action letter’
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Key Features of the Data
Close to the ideal setting

– Credit decisions and interest rates for all applicants

– Full information set of the Platform

– Counterfactual credit decisions and interest rates for all applicants
– A traditional model developed with the CFPB; Used for regulatory reporting
– Representative of the traditional lenders’ credit decisions
– An additional benchmark model provided by a large bank

– A panel of both the funded and rejected applicants
– Credit report for an additional 12 months after application for all applicants
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Data

Covers the 2014-2021 period

Disqualified Funded

Number of Obs 2,374,912 770,523

Credit report at origination Yes Yes
≈ 1400 variables
Loan performance data No Yes
Credit report after 1 year Yes Yes
Upstart model outcome Yes Yes
Counterfactual model outcome Yes Yes
Alternative variables Yes Yes
Education, employment, device, digital footprint
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Funded vs. Disqualified Applications

• 10k - 3-5 year unsecured loans

• On average, the funded applicants exhibit a 70-point higher credit score and a
$14,000 higher annual income.

• However, they also have higher total liabilities and credit balances.

• Borrowers who get funded are also more likely to be college-educated, less likely to
be hourly employees, and more likely to use a computer and use the loan for debt
consolidation
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The Platform Model vs. Traditional Benchmarks

• Platform’s Underwriting Model:
→ Uses over 1,600 variables (traditional+alternative) for predicting the PD
→ Utilizes sophisticated machine learning techniques.

• Traditional Model (Benchmark 1):
→ Developed in coordination with the CFPB for regulatory reporting
→ Logistic regression; traditional variables

• Large Bank Model (Benchmark 2):
→ Used by one of the top 25 banks in the U.S.
→ Approves based on credit scores, DTI, and loan amounts

• Conventional Credit Scores (Benchmark 3)
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Platform PD vs. Credit Score
The Platform’s model identifies risk factors not captured by the traditional models
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Model Performance: Platform PD vs. Credit Score
The platform model does a good job in identifying invisible primes
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Model Performance Comparison (AUC)

Panel A: < 660 Credit Score Sample
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What are the main features?

• We use Recursive Feature Elimination with Random Forests (RFE-RF) to select the
most relevant variables in predicting the Upstart score.

• The RFE-RF procedure performs feature selection by iteratively training a random
forest model, then ranking the different features, and finally removing the lowest
ranking features, i.e. the ones not improving the predictive power of the model.

• It allows the different features to have non-linear effects and includes interactions.
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Recursive feature elimination: Root-mean-square deviation

0.072

0.075

0.078

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

R
M

S
E

 (
R

ep
ea

te
d 

C
ro

ss
−

V
al

id
at

io
n)

Top 15 variables include level of education, type of job, and loan purpose.
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Education Exchange Rate

• Conditional on credit score, loan amount, and age:

– To go from high school or less to an advanced degree: $107k

– From associate to advanced: $114k

– From college to advanced: $22k

• Conditional on age, income and loan amount:

– High school to Advanced: 37 points

– Associate to Advanced: 23 points

– College to Advanced: 4 points
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Contribution of data vs. the sophisticated model

• Decompose the AUC difference between the traditional and the Platform model
→ Recall, the traditional model is a logistic regression using all the traditional variables

• A third logistic model (new model) that augments the traditional model’s output with:
→ Education, Employment type, Employment industry, Loan purpose, Device, Technology

• Any difference in AUC between the traditional model and the new model can be
attributed to the use of alternative data

• The difference in AUC between the new model and the Platform model can be
attributed to the increased sophistication of the model
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Contribution of data vs. the sophisticated model
Superior performance is mostly due to alternative data

Panel A: < 660 Credit Score Sample
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Platform approval rates for rejected loans by traditional models
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Loan approval by different models

approvedi,z,y =
∑
cs

βcs × I(credit scorei ∈ cs) + µz,y + ϵi,z,y

i, z, y, and, cs represent the application, zip code, year, and credit score bin, respectively. Omitted category cs = 800
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Savings due to the Platform model, compared to the traditional model
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Regression evidence (Dependent variable: interest rate)
apri,z,y =

∑
cs

βcs × I(credit scorei ∈ cs) + µz,y + ϵi,z,y

i, z, y, and, cs represent the application, zip code, year, and credit score bin, respectively. Omitted category cs = 800
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Does better access to credit improve borrower outcomes?

Challenges:
• Omitted variable bias in OLS estimation
• Ability to observe longitudinal data for both approved and rejected applicants

Our strategy: Utilizing two disqualifying criteria in an RDD framework
• DTI > 50%
• Loan application post-bankruptcy within 36 months

Data: Platform data tracks both rejected and approved applicants for at least 12 months
post-application

Measures of financial health: Change in credit score, missed credit card payments, and
first-time home purchase.
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RDD Setup
Panel A: DTI > 50
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Panel B: Bankruptcy within 36 months
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The Effects of Credit Access: Regression Results
Panel A: Debt-to-income ratio Discontinuity

Credit score < 660 Credit score >= 660

Credit card delinq Credit score change Mortgage Credit card delinq Credit score change Mortgage

(1) (2) (3) (4) (5) (6)

̂Approved -0.176* 0.082*** 0.132* -0.028 -0.008 -0.004
(0.099) (0.025) (0.073) (0.074) (0.014) (0.059)

Controls Y Y Y Y Y Y
Zip code*Year Y Y Y Y Y Y
N 29,607 29,607 21,118 12,768 12,767 7,581
Adjusted R2 0.302 0.300 0.053 0.339 0.496 0.293

Panel B: Months Since Bankruptcy Discontinuity

Credit score < 660 Credit score >= 660

Credit card delinq Credit score change Mortgage Credit card delinq Credit score change Mortgage

(1) (2) (3) (4) (5) (6)

̂Approved -0.223** 0.050*** 0.077 0.057 -0.014 -0.077
(0.096) (0.018) (0.055) (0.309) (0.067) (0.356)

Controls Y Y Y Y Y Y
Zip code*Year Y Y Y Y Y Y
N 49,760 49,663 42,755 15,545 15,533 10,269
Adjusted R2 0.159 0.151 0.124 0.116 0.142 0.172 26/27



Conclusion

• Credit scores are not reliable predictors for certain borrower groups, suggesting the
need for alternative means of assessments

• By considering easy-to-collect non-traditional factors like education, employment,
and digital footprints, lenders could identify invisible prime borrowers and provide
them access to cheaper credit

• Invisible primes’ financial health improves significantly as a result of access to
cheaper credit
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