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Abstract

We solve a multi-period model of strategic trading with long-lived information in
multiple assets with correlated innovations in fundamental values. Market makers in
each asset can only condition their price functions on trading in the that asset (but not
on trading in the other asset). Using daily non-public data from the New York Stock
Exchange we test the model’s predictions on the conditional and unconditional lead-
lag relations of institutional order flows and returns within portfolios. We find support
for the model prediction of positive autocorrelations in portfolio returns as well as the
predictions for how informed order flow positively predicts future returns and future
informed order flow. As the model predicts we find these relations strengthen for
portfolios formed from assets with higher correlation of fundamental values.

1 Introduction

Asset prices following a random walk is the basis for much of theoretical and empirical asset

pricing. Therefore, an examination of the predictability of asset returns is the first non-

introduction chapter in Campbell, Lo, and MacKinlay (1997). Lo and MacKinley (1988)
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show that the autocorrelations of equal-weighted portfolio returns are significantly positive

while the autocorrelations of individual asset returns are generally negative. Together

these point to positive cross-autocorrelations in asset returns (Lo and MacKinley (1990a)).

We study whether or not informed institutional trading is a source of these correlation

patterns. We construct a multi-period model of strategic trading with long-lived information

in multiple assets with correlated fundamental values. The model’s key assumption is that

in each trading period prices in each asset are functions of only trading in that asset (and

not trading in the other asset). We find support for the model’s prediction of positive

autocorrelations in daily portfolio returns as well as the predictions for how informed order

flow positively predicts future returns and future informed order flow. We also test and

find support for the model’s comparative static predictions on the fundamental correlation

of assets by examining portfolios formed from stocks in the same industry versus portfolios

formed from stocks randomly chosen from different industries.

Explanations other than asymmetric information and the slow diffusion of information

have been suggested to explain the positive autocorrelation in daily and weekly portfolio

returns. Conrad and Kaul (1988) propose time varying risk premia. Lo and MacKinley

(1990b) and Boudoukh, Richardson, and Whitelaw (1994) explore asynchronous trading.

However, these have proven unsatisfactory, e.g., using several tests based on transaction

data Anderson, Eom, Hahn, and Park (2008) find that partial price adjustment is the major

source of the portfolio autocorrelations. Lo and MacKinley (1990b), Brennan, Jagadeesh

and Swaminathan (1993), Chan (1993), and others suggest that slow adjustment to common

information is the source for partial price adjustment; but, Bernhardt and Mahani (2008)

show that it is difficult to construct a model in which asymmetric information with strategic

trading that leads to positive autocorrelations in portfolio returns.

We propose a simple friction that generates positive autocorrelation in portfolio returns

in a multi-period Kyle (1985) style model with strategic trading on long-lived information

in multiple assets with correlated innovations in the assets’ fundamental values. The

key assumption is that in each asset the market makers can only condition their pricing

rule on trading in that asset. This friction exists in virtually all markets.1 This same

1Allowing orders to be contingent on trading in multiple asset can prevent market clearing as the
contingencies on the different orders can be mutually exclusive.
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assumption arises from any friction that prevents market makers from observing and perfectly

interpreting information from trading in all other assets continuously and instantaneously.2

Because assets’ fundamental values are correlated, order flows in both assets are informative

about payoffs in both assets.The informed trader strategically anticipate this by conditioning

his orders in each asset on information not directly relevant to that asset’s signal (the signal

in the other asset).

The model has an analytical solution in the case of two assets traded over two trading

rounds when assets have symmetrically distributed fundamental values and liquidity trades

are independent across time and assets with the same variance. The informed trader

minimizes the informational impact of his trades in both assets by strategically choosing

informational trading intensities across time and assets. The informed trader does this

across time by curbing the aggressiveness of his trades in both assets in the first period in

a manner similar to a two-period version of the original Kyle (1985) model. His cross-asset

strategy is quite different. The informed trader sets the sensitivities of his trading demand

in either asset to be positive in his information about the asset he trades in and negative

in his information about the other asset. This signal jamming strategy reduces the market

maker’s ability to learn about the value of either asset from both order flows.

The main time-series implications of the model is that individual assets’ returns are

independent across time while returns on a portfolio of the assets are positively auto-

correlated. The individual assets’ returns are independent across time because asset-specific

order flows are sufficient statistics for prices of their respective assets. In other words, the

informed trader does not reuse any information he has traded on in the past since it has

been already incorporated into the price. This property of the model also makes current

order flow independent of lagged returns.

The intuition behind positive cross-autocorrelation can be illustrated by the following

example. Suppose that there are two assets and that in the first trading round the market

2In a model without informed trading Chan (1993) uses a similar assumption. In a model with informed
trading Chordia, Sarkar, and Subrahmanyam (2008) use a related assumption to examine short-lived
information—the informed traders only have one period to trade on their information which is revealed
before the informed can trade again. The short-lived information along with the assumption that common
factor information is only traded on in the large stocks allows Chordia, Sarkar, and Subrahmanyam to
examine time variation in liquidity and information diffusion.
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maker in the first asset receives a large positive order flow in his asset but cannot condition

on order flow in the other asset. Because the total order flow contains a noisy liquidity

component, the market maker adjusts her assets’s price only partially upward in response to

the large positive order flow. After the transaction takes place, she examines the transaction

price of the second asset and uncovers its order flow which contains additional information

about her asset. If it is also large and positive, she is more confident about the favorable

information and adjusts her asset’s price further upward. If it is not, she is less confident

about the favorable information and revises the asset’s price downward. Therefore, the price

change of the first asset in the second trading round is positively correlated with the price

change of the second asset in the first trading round. It is worth noting that there is no

opportunity for anyone without the informed trader’s information to construct a profitable

trading strategy based on the positive autocorrelation in portfolio returns. In this sense our

results support market efficiency even though there is predictability in portfolio returns.

Except for the zero correlation between informed order flow and lagged returns, the model

predicts that portfolios lead-lag autocorrelations between returns and informed order flows

increase in the correlation between innovations in the assets’ fundamental values. The model

also allows for a joint test of return and informed order flow predictability in a conventional

vector autoregression setting.

We use daily non-public data from the New York Stock Exchange (NYSE) to test

the model’s predictions on the correlations of institutional order flows and returns within

portfolios and within the asset making up the portfolios. The data set contains seven years

from January 1999 to December of 2005 of daily buy and sell volume of executed institutional

investor orders for a large cross-section of NYSE stocks.3 The data set was constructed

from the NYSE’s Consolidated Equity Audit Trail Data (CAUD) files that contain detailed

information on all executed orders. One of the fields associated with each order, Account

Type, specifies whether the order comes from an institution. We use institutional order

flow (buy volume minus sell volume) normalized by the market cap as a data proxy for

the informed order flow in the model. We first test the model’s predictions on the market

3Badrinath, Kale, and Noe (1995) and Sias and Starks (1997) show how the fraction of firms owned by
institutions affects portfolio return autocorrelations, but do not examine the relations between institutional
flows and returns that is the focus of this paper.
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portfolio. We find support for the model’s predictions: positive autocorrelations in portfolio

returns as well as the predictions for how informed order flow positively predicts future

returns and future informed order flow, while returns do not predict informed order flow.

We also test and find support for the model’s comparative static predictions on the

fundamental correlation of assets by examining portfolios formed from stocks in the same

industry versus portfolios formed from stocks randomly chosen from different industries.

We show that the lead-lag correlations between returns and informed order flow is higher

in industry portfolio than in randomly formed portfolios. We also show that the relevant

vector autoregression coefficients for industry portfolios are higher and lower, as predicted,

than the same coefficients for random portfolios.

The the paper is organized as follows. The model is presented in Section 2. Our empirical

analysis are reported in Section 3. Section 4 concludes.

2 The Model

2.1 Set Up

We consider an economy in which two risky assets are traded in the financial market over

two trading rounds.4 There are three types of risk-neutral agents in the economy: an

informed trader, competitive market makers, and a number of liquidity (“noise”) traders.

At t = 0 the informed trader learns the fundamental values of both risky assets, V = (V1, V2)
′
,

simultaneously drawn from the joint normal distribution

Ṽ =
(

Ṽ1

Ṽ2

)
∼ N




(
0
0

)
, σ2

0


 1 ρ

ρ 1





 . (1)

The statistical properties of the assets’ fundamental values are summarized in Assumption

1.5

ASSUMPTION 1: The fundamental values of the assets, Ṽ1,2, are positively correlated, ρ > 0

4The analysis can be extended to the case of multiple risky assets
5This and some other assumptions are made for the sake of clarity and tractability. Under these

assumptions the model can be solved analytically. By reducing the degrees of freedom these assumptions
also put a much higher hurdle on the model fit to the data.
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, have means normalized to zero, and the same variance, σ2
0 .

Each asset is handled by competitive market makers. Market makers do not know V1

and V2 until the announcement after the second and final trading round. Before any trading

takes place, market makers know the unconditional joint distribution of Ṽ and thus quote

P(0) = E[Ṽ] = 0 at t = 0. The aggregate liquidity demand in asset i = 1, 2 at time t = 1, 2,

u (t) = (u1(t), u2(t))
′
, is normally distributed with zero mean and variance equal to σu

u (t) ∼ N
(
0, σ2

uI
)

, (2)

where I is a 2 × 2 unit matrix. Assumption 2 outlines cross-sectional and intertemporal

properties of the liquidity demands. This assumption simplifies the market makers’ inference

problem, but is not crucial.

ASSUMPTION 2: The liquidity demands are independent across assets, Cov(ui (t) , uj (t)) = 0,

and time, Cov(ui (1) , ui (2)) = 0.

Figure 1 illustrates the sequence of events and the information sets of all agents. In the

first trading rounds the informed trader takes into account the correlation between assets by

conditioning his demand in each asset, x(t) = (x1(t), x2(t))
′
, on the value of the other asset,

Vj 6=i. The informed order flows at t = 1 are given by

x (1) =


 β11 (1) β12 (1)

β12 (1) β22 (1)




(
V1

V2

)
= β (1)V, (3)

and the corresponding total order flows, y(t) = (y1(t), y2(t))
′
, are given by

y (1) = β (1)V + u (1) . (4)

[insert Figure 1]

During the trading rounds market makers observe order flows and use Bayes rule to

update their beliefs about V1 and V2. Assumption 3 outlines the strategies available to the

market makers.
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ASSUMPTION 3: In both trading rounds the market makers condition their pricing functions

in an asset on order flow in that asset (and not on order flow in the other asset). After the

first trading round, time t = 1+, market makers observe the prices of both assets, infer order

flow in both assets, and adjust prices before the second trading round.

At a high enough frequency, Assumption 3 is consistent with the fact that no market

structure allows market makers (or any traders) to condition their prices in one asset on

trading in another asset. Even if market makers could condition their pricing function in an

asset on order flow in other assets, Assumption 3 is a reduced-form way of capturing any

friction precluding the market makers’ from instantaneously and fully processing and acting

on all information in all securities.6

Assumption 3 is crucial for our analysis. If market makers observe and condition prices

on order flows in both assets, then, as in Kyle (1985), prices would be fully informationally

efficient: information in the current order flow for either asset being orthogonal to the

information in the next period order flow for both assets. As a result, order flows and,

therefore, returns for individual assets and their equal-weighted portfolio would not be

predictable.

When Assumption 3 holds market makers condition prices only on their own order flows

their prices are less than fully informationally efficient and the pricing error of the first asset

is correlated with the order flow in the second asset. This is because the assets’ fundamental

values are correlated and, therefore, the order flows they do not observe contain additional

information about the asset they make. Further, although each asset price is an unbiased

estimate of the true asset value conditional on its own order flow, the sum of asset prices

(the price of an equal-weighted portfolio) is not an unbiased estimate of the true aggregate

value conditional on both order flows. Consequently, when market makers correct pricing

errors using order flow inferred from the price change of the other asset, stock returns will

be positively cross-autocorrelated.

In accordance with Assumption 3, competitive market makers observe the order flows in

6The informed trader acts strategically to take advantage of this inefficiency in order to maximize his
expected profits.
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the assets they make and set prices at t = 1 according to the schedules

P (1) =
(

E[Ṽ1|y1 (1)]
E[Ṽ2|y2 (1)]

)
= λ (1)y (1) . (5)

In the spirit of Kyle (1985), the inverse market depth parameter λi (1) in (5) is a slope

coefficient in the linear regression of Ṽi on yi (1):

λ (1) =




Cov(Ṽ1,y1(1))
Var(y1(1))

0

0 Cov(Ṽ2,y2(1))
Var(y2(1))


 = (6)

=




β11(1)+ρβ12(1)
β2
11(1)+2ρβ11(1)β12(1)+β2

12(1)+β2
K

0

0 β22(1)+ρβ21(1)
β2
22(1)+2ρβ22(1)β21(1)+β2

21(1)+β2
K


 ,

where βK ≡ σu
σ0

refers to the elasticity of informed order flow to private information in Kyle

(1985). At the end of the first trading round, t = 1+, after trades take place the market

makers observe prices of the assets they do not make. Market makers use posted prices to

infer order flows they did not observe at the start of the first trading round and use them to

adjust the prices of their assets to the full information level according to

P(1+) = E[Ṽ|y1 (1) , y2 (1)] =


 Λ11 Λ12

Λ12 Λ22




(
y1 (1)
y2 (1)

)
= Λy (1) . (7)

where Λij are slope coefficients in the linear regression of Ṽi on yj (1)

Λi1 =
Cov(Ṽi, y1 (1))Var(y2 (1))− Cov(Ṽi, y2 (1))Cov(y1 (1) , y2 (1))

Var(y1 (1))Var(y2 (1))− (Cov(y1 (1) , y2 (1)))2
, (8)

Λi2 =
Cov(Ṽi, y2 (1))Var(y1 (1))− Cov(Ṽi, y1 (1))Cov(y1 (1) , y2 (1))

Var(y1 (1))Var(y2 (1))− (Cov(y1 (1) , y2 (1)))2
, i = 1, 2.

Evaluating the slope coefficients yields

Λ = Ψ−1β(1)
′
, (9)

where the covariance matrix of the fundamental values conditional on the order flows,
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Cov
(
Ṽ| y (1)

)
, is

Ψ =


 ψ11 ψ12

ψ12 ψ22


 =




β2
K

1−ρ2 + β1 (1)β
′
1 (1) − ρβ2

K
1−ρ2 + β1 (1)β

′
2 (1)

− ρβ2
K

1−ρ2 + β1 (1) β
′
2 (1) β2

K
1−ρ2 + β2 (1) β

′
2 (1)


 , (10)

where βi (1) denotes ith row of the matrix β (1). The “efficient” prices (7) are quoted to the

informed trader at the start of the second trading round.

At the beginning of the second trading round, t = 2, the informed trader submits market

orders

x (2) = β (2)
(
V −P(1+)

)
, (11)

and market makers receive the following total order flows

y (2) = β (2)
(
V −P(1+)

)
+ u (2) . (12)

Analogous to the first trading period, market makers can only condition their pricing

functions on the order flows in each assets and not on the order flows in the other asset:

P (2) = P(1+) + λ (2)y (2) . (13)

where the inverse market depth parameter λ (2) in (13) is the slope coefficient in the linear

regression of : Ṽi −P1(1+) on yi (2)

λ (2) =




Cov(Ṽ1−P1(1
+),y1(2))

Var(y1(2))
0

0 Cov(Ṽ2−P2(1
+),y2(2))

Var(y2(2))


 . (14)

At the end of the second trading round V is revealed to all agents and payoffs are realized.

2.2 Solution and Results

The model is solved by finding a vector of trading strategies, x∗(t), which maximizes the

informed trader’s expected profits over both trading rounds

x∗ (t) = arg max
x(t)

E




2∑

t=1

2∑

i=1

xi (t) (Vi − Pi(t)) |Ṽ = V




︸ ︷︷ ︸
Informed trader’s total expected payoff

. (15)
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The following theorem summarizes the solution of the model. The symmetry of the asset

values’ statistical properties together with the independence of liquidity demand across assets

and time allow for the model to be solved up to a system of nonlinear equations.

THEOREM 1: There exists a linear solution to the informed trader’s profit maximization

problem (15) characterized by the following parameters.

At time t = 1 the informed trader’s strategy, x (1) = β (1)V, is characterized by β11 (1) =

β22 (1) ≡ β+ and β12 (1) = β21 (1) ≡ β− which are the solutions to the system of nonlinear

equations:

β+ + β− = βK


2βKλ1 +


2λ2βK(1 + ρ)

(
1

(1 + ρ)
+

(
β+ + β−

βK

)2
)2



−1



−1

, (16)

β+ − β− = βK


2βKλ1 +


2λ2βK(1− ρ)

(
1

(1− ρ)
+

(
β+ − β−

βK

)2
)2



−1



−1

.

The market maker pricing function is P (1) = λ (1) (β (1)V + u (1)) = λ (1)y (1), with:

λ1(1) = λ2(1) ≡ λ1 =
β+ + ρβ

β2
+ + 2ρβ+β− + β2− + β2

K

. (17)

At time t = 1+ the asset prices are updated using both order flows P(1+) = Λy (1), with

Λ11 = Λ22 ≡ Λ+ =
ψ+β+ − ψ−β−

ψ2
+ − ψ2−

, (18)

Λ12 = Λ21 ≡ Λ− =
ψ+β− − ψ−β+

ψ2
+ − ψ2−

,

where ψ+ = β2
K

1−ρ2 + β2
+ + β2− and ψ− = − ρβ2

K
1−ρ2 + 2β+β−.

At time t = 2 the informed trader’s strategy is x (2) = β (2)
(
V −P(1+)

)
and the market

maker pricing function is P (2) = P(1+) + λ(2) (x (2) + u (2)), with

β11 (2) = β22 (2) =
1
λ2

, (19)

β12 (2) = β21 (2) = 0,

λ1 (2) = λ2 (2) ≡ λ2 =

√
1− β+Λ+ − β−Λ− − ρ (β+Λ− + β−Λ+)

4β2
K

. (20)
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Proof: All proofs are in the Appendix.

Figure 2 provides a graphical illustration of the parameters that characterize Theorem 1

as a function of the correlation of the fundamental values of the assets (ρ). The symmetry of

the assets and the independence of the liquidity demand across both time and assets leads

to a symmetric solution. The friction of the market makers not being able to condition

their prices on order flow in both assets leads to complex first-period trading strategy by

the informed traders characterized by (16). The informed trader’s strategy solves the fixed

point problem discussed in the proof that translates into the system of nonlinear equations

(16). The solution is unique and can be solved for numerically. Figure 2 does this fixing the

parameter βK = 1 and solving equations (16) for all values of ρ.

[insert Figure 2]

Panel A of Figure 2 graphs the informed trader’s first-period trading strategy. The

solution is symmetric and is described by the linear trading intensity in each asset as a

function of the final payoff in that asset, β+, and the linear trading intensity of in each asset

as a function of the final payoff in the other asset, β−. Panel A has 4 lines: β+, β−, β+ + β−,

and β+(ρ = 0). The latter two lines are included to illustrate how the solution changes with

ρ. When the correlation between assets is zero β+ is simply the first-period β in a standard

2-period Kyle (1985) model. Because the informed knows the final payoffs with certainty

there is no reason to trade on the information in one asset in the other asset and the cross-

asset β is zero, β− = 0. As the assets become more correlated, ρ increases, the informed

trader increases his first-period trading intensity, β+. This is because the correlation of the

assets improves the market makers ability to learn when observing prices of both assets.

This makes the second-period prices P(1+) more informative and decreases the profitability

of the informed’s second-period profits. Knowing this the informed increases his first-period

trading intensity.

Because the asset correlation improves the market makers’ learning from trading in both

assets, the informed tries to disguise his first-period trading by negatively trading on the

cross-asset information: β− is negative and decreasing in ρ. This negatively trading on

information that is irrelevant to the final value of that asset, but relevant to the market

11



makers’ learning, reduces the informed trader’s first-period profits.7 However, jamming

the market makers’ inference problem increases the informed’s second-period profits even

more. This leads to the overall trading intensity dropping with the asset correlation, β−+β+

decreases in ρ relative to β+(ρ = 0).

The signal jamming affects the market makers’ pricing function in period 1, λ1 from

equation (17), and period 2, Λ+, Λ−, and λ2 from equations (18) and (20). The parameters

that characterize these are graphed in Panels B and C of Figure 2. The optimal tradeoff

between increasing the within asset trading intensity β+ and decreasing the cross-asset

trading intensity β− is reflected in the market makers updating after the first period trading.

The within asset price impact function is given by Λ+ and the cross-asset price impact Λ−.

At ρ = 0 the price impact functions are the standard Kyle (1985) 2-period solution: Λ− = 0

and Λ+ = λ1. As the correlation increases the informed trader tries to jam the market

maker by making β− more negative. Because the jamming is less than complete the effect

of the correlation in signals is greater than the jamming and the maker makers respond by

increasing the sensitivity of price to the cross asset order flows at time t = 1+: Λ− increases

in ρ. The signal jamming does reduce the within asset price impact at time t = 1+, Λ+.

Because signal jamming is costly to first-period profits, the informed trader only partially

jams the signal and the total price impact at time t = 1+, Λ+ + Λ−, increases. The signal

jamming also increases first-period depth as seen by the decrease in the t = 1 price impact

λ1. The less than full signal jamming also means that more information in revealed before

second trading period begins so the market makers use a smaller second period price impact

λ2.

Using the equilibrium given in Theorem 1 we analyze the lead-lag correlations of

individual assets’ returns and informed order flows. As is standard we use incremental

price changes, ∆Pi (t) = Pi(t) − Pi(t − 1), as a proxy for assets’ returns. Proposition 1

summarizes the within asset and across asset lead-lag relations. In the data we will

7While this is the first instance of signal jamming in the strategic trading literature, signal jamming has
been studied in other settings. Fudenberg and Tirole (1986) consider the situation in which the information
available to an entrant (who is uncertain about future profitability) is distorted by an incumbent through
the use of predatory pricing. Stein (1989) considers a signal-jamming model of managerial incentives in a
capital market, where managers distort current earnings by borrowing at adverse rates from the future. We
are not aware of prior work on signal jamming in a multidimensional signaling setting.
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follow the usual convention of examining autocorrelations and cross-autocorrelations. We

present covariances here because the expressions are simpler and of the same sign as the

corresponding correlations.

PROPOSITION 1: The lead-lag covariances of assets’ returns are given by

Cov (∆Pi (1) ,∆Pi (2)) = 0, i = 1, 2, (21)

Cov
(
∆Pi (1) ,∆Pj 6=i (2)

)
=

(
1− ρ2

)
λ1(λ1 − Λ+)

(
ψ2

+ − ψ2−
)

ρ
(
β2
+ + β2−

)
+ 2β+β−

σ2
0 ≥ 0, i, j = 1, 2.

The lead-lag covariances of informed order flows are given by

Cov (xi (1) , xi (2)) =
Λ+

2λ2
σ2
u > 0, i = 1, 2, (22)

Cov
(
xi (1) , xj 6=i (2)

)
=

Λ−
2λ2

σ2
u ≥ 0, i, j = 1, 2.

The lead-lag covariances of informed order flows and price returns are given by

Cov (xi (1) ,∆Pi (2)) = (2λ1 − Λ+)
σ2
u
2

> 0, i = 1, 2, (23)

Cov
(
xi (1) ,∆Pj 6=i (2)

)
= −Λ−

2
σ2
u +

1
λ1

Cov
(
∆Pi (1) , ∆Pj 6=i (2)

)
≥ 0, i, j = 1, 2,

and

Cov
(
∆Pi (1) , xj (2)

)
= 0, i, j = 1, 2. (24)

The intuition behind the autocovariances and cross-autocovariances is straightforward.

Because the informed trader strategically trades so as to not reveal all of his information in

the first period the within asset informed order flow positively autocovary, Cov(xi(1), xi(2)) >

0. Because the assets final values are positively correlated the informed order flow

has positive contemporaneous covariance, Cov(x1(1), x2(1)) > 0, and cross autocovariance,

Cov(x1(1), x2(2)) > 0. Because order flow has positive price impact and the uniformed order

flow is not observable to the market makers, the covariance of informed order flows with

subsequent price changes has the positive signs as with subsequent informed order flow:

Cov(xi(1), ∆Pj(2)) > 0.

As is standard in Kyle models price changes in each asset are a martingale:
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Cov(∆Pi(1),∆Pi(2)) = 0. This is because asset-specific order flows are sufficient statistics

for prices of their respective assets. In other words, the informed trader does not reuse any

information he has traded on in the past because it has been already incorporated into the

price. This property of the model also makes current order flows independent of lagged

returns: Cov(∆Pi(1), xj(2)) = 0.

The positive cross-autocovariance follows from market makers’ cross-asset learning about

information that is common across assets. Upon observing the order flow in one asset the

market makers fully update that asset’s price based on the information in order flow. Upon

observing the price in the other asset the market makers can infer the order flow in the

other asset. The correlation in the assets fundamental values allows the market makers to

use both asset prices/order flows to better filter out the noise trading. If the price change

in the second asset is consistent with the price change in the first asset, then the market

makers further update prices in same direction. If the price change in the second asset is

not consistent with the price change in the first asset, then the market makers revises price

in the opposite direction.

Proposition 1’s results on the within and cross asset autocovariances provide the intuition

necessary to understand the results for a portfolio of the assets. Next we combine both assets

into the equal-weighted portfolio

∆Pp (t) =
1
2

(∆P1 (t) + ∆P2 (t)) , (25)

xp (t) =
1
2

(x1 (t) + x2 (t)) ,

and study its lead-lag covariances in Proposition 2.

PROPOSITION 2: The equal-weighted portfolio of securities is characterized by the

following lead-lag covariances

Cov
(
∆Pp (1) , ∆Pp (2)

)
=

1
2
Cov (∆P1 (1) ,∆P2 (2)) ≥ 0, (26)

Cov
(
xp (1) , xp (2)

)
=

Λ+ + Λ−
4λ2

σ2
u > 0,

Cov
(
xp (1) , ∆Pp (2)

)
=

σ2
u
2

(
λ1 −

Λ+ + Λ−
2

)
+

1
λ1

Cov (∆P1 (1) ,∆P2 (2)) ≥ 0,

Cov
(
∆Pp (1) , xp (2)

)
= 0.

14



The portfolio autocoviances in Proposition 2 are averages of the within and across

asset autocovariances in Proposition 1. Because within asset price changes have zero

autocovariance and price changes have positive cross autocovariance the portfolio price

changes positively autocovary. Informed trading in each individual asset predicts subsequent

informed order flow and price changes in both assets so the informed order flow in the

portfolio has positive autocovariance with the subsequent informed order flow and price

changes in the portfolio. Past price changes in each asset do not covary with subsequent

order flow in either asset so consequently the price change of the portfolio has zero covariance

with informed trading in the portfolio.

3 Empirical Tests

To test the empirical predictions of the model we need to choose a time horizon corresponding

to the trading periods in the model. In our standard Kyle setting trading occurs in batches.

Assumption 3 requires that the time period is short enough that the market makers cannot

condition their trading on order flow in both assets. However, we also would like to see if

the effects of the friction in Assumption 3 are relevant at more than very short horizons.

To balance these considerations we focus on daily returns and trading. We expect the

effects to be larger at shorter horizons and attenuate at longer horizons. Below we examine

correlations and regressions using lags longer than one and the results confirm the intuition

that the results are stronger at shorter horizons. To proxy for informed order flow we will

use a measure of institutional trading from the NYSE.

3.1 Data

The data set contains seven years of daily buy and sell volume of executed institutional

investor orders for all NYSE common domestic stocks that were traded on the NYSE any

time between January 1, 1999 and December 31, 2005. The data set was constructed

from the NYSE’s Consolidated Equity Audit Trail Data (CAUD) files that contain detailed

information on all orders that execute on the exchange, both electronic (from the limit order

book) and manual (those handled by floor brokers). One of the fields associated with the
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buyer and seller of each order, Account Type, specifies whether the order comes from an

institutional investor. We use the institutional order flow (buy volume minus sell volume)

as a proxy for informed trading. The CAUD data was first provided to academics as part

of the TORQ dataset constructed by Joel Hasbrouck. Our CAUD data is complemented

by the daily data on returns (from transaction price in CRSP and from closing quotes in

TAQ),trading volume (CRSP), and market capitalization (number of shares outstanding

times price from CRSP).

3.2 Market-Level Tests

We begin testing the lead-lag portfolio relations between informed order flows and returns

given in Proposition 2. To do this we construct an equal-weight market portfolio for returns

and informed order flow for all stocks each day. We use institutional order flow (buy volume

minus sell volume) measured as a percent of a total market cap as a proxy for informed

order flows in the model. Table 1 provides overview statistics for these market portfolios.

The mean market return is 5.7 basis points per day and the standard deviation of the

market return is almost 1% per day. Institutions’ order flow is slightly positive over the

sample period. The standard deviation of institutional order flow is a little less than 1 basis

point of market capitalization per day. The last two rows of Table 1 provide evidence on

the size of institutional trading volume (as opposed to order flow). Institutional trading is

40.95% of NYSE trading volume. Unless such a large fraction of the total trading is due

to informed trading the institutional trading proxy likely includes some noise trading as

well, e.g., mutual funds facing redemptions. This does not affect the signs of the lead-lag

covariances in Proposition 2, but can affect any analysis where both returns and our informed

order flow proxy are both included as explanatory variables.

[insert Table 1]

The model has 2 trading periods so the correlation calculations in Proposition 2 are for

a single lag. As discussed above it is an open question as to what calendar time period

corresponds to the trading periods in the model, we also examine lags up to 4 days. This

allows for time-series dependencies in returns and institutional order flow beyond one day.
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The correlation results are shown in Table 2. Panel A of this table reports the correlation

coefficients of equal-weighted market returns, Rm(t), with lagged equal-weighted market

returns and market institutional order flow, xm(t). In agreement with the model’s predictions,

lagged returns do not predict institutional order flow, but lagged returns do predict returns.

Panel B of this table reports correlation coefficients of daily market institutional order flow

with lagged equal-weighted market returns and market institutional order flow. With an

exception of a two-day lag, correlations between returns and lagged institutional order flow

are positive and statistically significant, as the model predicts. Institutional order flow is

positively serially correlated, again in an agreement with the model.

[insert Table 2]

In the data, however, cross-autocorrelations between informed order flows and returns

can be the manifestation of the high autocorrelations of institutional order flow combined

with a high contemporaneous correlation between institutional order flow and returns. Under

such a scenario, the lagged institutional order flow is a noisy proxy for the lagged returns

and, once we control for lagged returns, the lead-lag effect will disappear. To address this

alternative hypothesis we estimate joint autoregression described in Proposition 3.

PROPOSITION 3: Consider the following vector autoregression (VAR) of the equal-weighted

portfolios
(

∆Pp (t)
xp (t)

)
=

(
a1

a2

)
+


 b11 b12

b21 b22




(
∆Pp (t− 1)
xp (t− 1)

)
+

(
ε1(t)
ε2(t)

)
. (27)

The coefficients bij are given in the model by

b11 =
1
2

(
Λ+ + Λ−

2λ1
− 1

)
< 0, (28)

b12 = −
(

1 +
β2
K

(1 + ρ) (β+ + β−)2

)
λ1b11 +

β2
K

λ1σ2
u (1 + ρ) (β+ + β−)2

Cov (∆P1 (1) ,∆P2 (2)) > 0,

b21 = −Λ+ + Λ−
4λ1λ2

< 0,

b22 =

(
1 +

β2
K

(1 + ρ) (β+ + β−)2

)
Λ+ + Λ−

4λ2
> 0.
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Regression models similar to Proposition 3 are used in Brennan et al. (1993) and Chordia

and Swaminathan (2000) to study the lead-lag relations between stocks with different levels

of analyst coverage and trading volume and by Hou (2007) to study lead-lag relations

between large and small stocks within and across industries. The unconditional relations

(correlations) in Proposition 2 and the conditional relations (regression coefficients) in

Proposition 3 have the same sign when the lagged variable is informed order flow as b12

and b22 are positive. However the conditional relations between past price changes and

subsequent price changes and informed order flow, b11 and b21, become negative because of

the contemporaneous correlation between the informed order flow and price changes.

In Proposition 2 there is no relation between past prices changes and informed order flow.

However, liquidity trading is a component of returns. In the second period the informed

trader trades against price changes due to noise. As a result, b21 is negative. In addition,

Cov
(
∆Pp (1) , ∆Pp (2)

)
is less than Cov

(
xp (1) , ∆Pp (2)

)
which makes b11 negative.

We estimate equations (27) with one (K = 1) and four (Panel B, K = 4) lags in the data

Rm(t) = a0,1 +
K∑

k=1

akRm(t− k) +
K∑

k=1

bkxm(t− k) + ε1(t), (29)

xm(t) = a0,2 +
K∑

k=1

ckRm(t− k) +
K∑

k=1

dkxm(t− k) + ε2(t). (30)

Table 3 reports the VAR results with Newey-West corrected t- and F -statistics. In

agreement with the model, the coefficients on institutional order flow in the returns equation,

the sum of bk, are positive and statistically significant at the 1% level for one-lag regressions

(Panel A, 5.1719, t-statistic = 4.70) and at the 5% level for four-lag regressions (Panel B, 7.284,

F -statistic = 3.96). Thus, lagged institutional order flow contains information about future

market returns beyond that contained in lagged market returns. Also in agreement with the

model the coefficients on institutional order flow in the institutional order flow equation, the

sum of dk, are positive and statistically significant at the 1% level, 0.0810 with a t-statistic

= 10.83 for one-lag (Panel A) and 0.1575 with a F -statistic = 11.83 for four lags (Panel B).

The provide further support our use of institutional order flow as a proxy for informed order

flow and also support the model.
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[insert Table 3]

The signs of the coefficients on returns in the returns equation, the sum of ak, are negative

in Proposition 3 while positive and statistically significant in the data, at the 1% level for

one-lag (Panel A, 0.0810, t-statistic = 10.83) and four-lag (Panel B, 0.1575, F -statistic =

11.83) regressions. The coefficients on returns in the institutional order flow equation, the

sum of ck, is negative in Proposition 3. In the data there is no relation between returns and

subsequent informed order flow. These both may be due to institutional order flow being an

imperfect proxy of the informed order flow.

3.3 Industry-Level Test: The Impact of Asset Correlation (ρ)

While the market-level analysis is supportive of the model, the correlation in the fundamental

values of the assets is a key driver of the model. To further study the model’s relation to

the data we examine how increasing this correlation (ρ) change the correlation and VAR

coefficients in Propositions 2 and 3 and Tables 2 and 3. Panel A of Figure 3 presents

the correlation coefficients as a function of ρ. As noted in Proposition 2 the covariance of

informed order flow with lagged price changes, Cov
[
∆Pp (1) , xp (2)

]
, is zero for all values of

ρ so the corresponding correlation is omitted. The other correlation coefficients all increase

with ρ. These follow from the informed trader’s order flow becoming more correlated as the

fundamental correlation increases. However, the informed tries to jam the market makers’

inference problem which leads to the autocorrelation of informed order flow growing more

slowly than the other two correlations.

[insert Figure 3]

Similarly, Panel B of Figure 3 graphs the VAR coefficients from Proposition 3 as a function

of ρ. As seen in Panel A the autocorrelation of the informed trader’s trading increases in

ρ, this leads to the coefficients on lagged order flow in both the returns and order flow

equations, b12 and b22, increasing with ρ. The coefficient on lagged returns in the returns

equation, b11, starts off negative at ρ = 0 and increases with ρ; b11 increases faster than b12

and b22 because the informed trader increases the signal jamming strategy with ρ, but not

fast enough to counteract the market makers’ improved cross-asset learning. The coefficient
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of lagged returns in the informed order flow equation becomes increasingly negative with ρ.

This is because the increased correlation of fundamentals means that the informed trades

more aggressively against noise in the portfolio return.

Testing the impact of ρ requires identification of assets that have higher or lower

fundamental correlation. We follow Hou (2007) in using industry designation as a proxy

for where the fundamental correlation is higher. We use the 12 industry SIC-code-based

classifications from Ken French’s website. The final of the 12 industries includes stocks that

do not fit the first 11 industries and is referred to as “other.” The “other” group is by far

the largest group (763 stocks in our sample period as compared to the next largest which is

“Manufacturing” with 314 stocks). To ensure that all of our tests do not reuse any data we

will use this other category to form random (non-industry) portfolios.

To construct portfolios we take stocks in the the first 11 industry portfolios and calculate

returns and informed order flows as we did for the market portfolio. For the other category

we randomly divide stocks in it into 11 portfolios and calculate returns and informed order

flows for each. Thus, we have 22 portfolios where 11 are formed from stocks within the same

industry and 11 which are formed from stocks chosen from random industries. To focus on

the industry-level effects we remove the market-level effects from the within industry and

random portfolios by using the residuals from the regression of returns (order flows) of each

portfolio on the market returns (order flows). To avoid creating correlation in the residuals

across the industry and random categories portfolios in each group are regressed on the

“market” formed from stocks only within the 11 portfolios in the same category.

Similar to Table 2 for the market-level analysis, Table 4 examines the lead-lag correlations

coefficients for the 11 portfolios formed within industries and the 11 randomly formed

portfolios. The correlation coefficients for each of the 22 portfolios are estimated individually.

To allow for statistical inference that properly accounts for possible correlations across

portfolios and time we estimate the full covariance matrix for the 22 coefficients via seemingly

unrelated regression (SUR) with the Newey-West approach to control for heteroskedasticity

and autocorrelation.

[insert Table 4]
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Panel A of Table 4 reports the correlation coefficients for the 11 within industry

portfolios. Average coefficients across each category of portfolios are reported along with

the corresponding F -statistics. As in the market portfolio and in the model returns are

significantly positively correlated with lagged returns and lagged informed order flow. Order

flow is positively autocorrelated. Order flow is not correlated with the first two lags of

returns. These correlations are consistent with the model.

Panel B of Table 4 reports the correlation coefficients for the 11 randomly formed

portfolios. For the random portfolios the only autocorrelation that is reliably different from

zero is order flow. Given that lagged order flow is not positively correlated with returns, this

suggests that institutional order flow that is orthogonal to the systematic institutional order

has some persistent component that appears unrelated to information.

Panel C tests the differences in each correlation coefficient between the industry portfolios

(Panel A) and random portfolios (Panel B). The differences in average coefficient between

the two categories is given along with the F -statistic that the difference does not equal zero.

Given that the coefficients in Panel B other than the autocorrelation of order flow show

little difference from zero, it is not surprising that the differences in Panel C are similar in

magnitude and statistical significance to the within industry correlations in Panel A. The

differences in the autocorrelation of order flow is positive and statistically significant. These

differences match the model predictions that the correlation coefficients are increasing in ρ

shown in Panel A of Figure 3.

Using the same approach as Table 4, Table 5 presents the VAR for returns and order

flows for the industry and random portfolios. As in Table 3 the VARs are estimated for both

1 lag and 4 lags. As with the correlation coefficients in Table 4 the VAR coefficients for

each of the 22 portfolios are estimated individually. To allow for statistical inference that

properly accounts for possible correlations all the VAR coefficients across the 22 portfolios

are estimated simultaneously via seemingly unrelated regression (SUR).

[insert Table 5]

Panel A of Table 5 presents the 1-lag and 4-lag VAR for the within industry portfolios. As

with the market portfolio the coefficients on lagged order flow are positive and statistically
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significant in both the return and order flow equations. The coefficients on lagged returns in

the return equation are positive and statistically significant. Unlike the market results, but

consistent with the model’s predictions, the coefficients on returns in the order flow equation

are negative.

Panel B of Table 5 provides the 1-lag and 4-lag VAR for the randomly formed portfolios.

The cross-equation coefficients, order flow in the return equations and returns in the order

flow equation, do not differ from zero. As with the correlation coefficients the coefficients

on lagged order flow are positive in the order flow equations. The coefficients on lagged

returns in the returns equation differ from zero, but have opposite signs in the 1-lag and

4-lag specifications.

Panel C tests the differences in the VAR coefficients between the industry portfolios

(Panel A) and random portfolios (Panel B). All the differences in coefficients have the signs

predicted by the model in Panel B of Figure 3.

4 Conclusion

We solve a multi-period model of strategic trading with long-lived information in multiple

assets with correlated innovations in fundamental values. The model assumes that market

makers in assets cannot condition their price functions in either asset on trading in the other

asset. Using daily non-public data from the New York Stock Exchange we test the model’s

predictions on the unconditional and conditional relations between our proxy for informed

order flow (institutional order flow) and returns within portfolios. We find support for the

model’s prediction of positive autocorrelations in portfolio returns as well as the predictions

for how informed order flow positively predicts future returns and future informed order

flow. We also test the model’s comparative static predictions for how the relations between

informed order flow and returns depend on and the fundamental correlation of assets within

a portfolio. We find support for many of the predicted relations in the data.

The predictability of a portfolio of asset returns, but no predictability within the

individual assets, follows from the market makers’ inability to condition their pricing

functions in each asset on trading in all the assets. The correlation in the informed order flow
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across assets reveals additional information which the market makers incorporate into price

before the next trading opportunity. Therefore, while returns are predictable, there is no

opportunity for anyone without the informed trader’s information to construct a profitable

trading strategy based on the positive autocorrelation in portfolio returns. In this sense our

results support market efficiency even though there is predictability in portfolio returns.
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Appendix A. Proofs

Proof of Theorem 1. The informed trader’s total expected payoff, πI , is given by

πI = E




2∑

t=1

2∑

i=1

xi (t) (Vi − Pi(t)) |Ṽ = V


 , (A1)

where the expectation is performed with respect to both the liquidity demand and the
realizations of the fundamentals8.

Combining (A1) with (5), (7), and (13), we obtain

πI = E [x1 (1) (V1 − λ1 (1)x1 (1))]+ (A2)

+ E [x1 (2) (V1 − (Λ11y1 (1) + Λ12y2 (1))− λ1 (2)x1 (2))]

+ E [x2 (1) (V2 − λ2 (1) x2 (1))]

+ E [x2 (2) (V2 − (Λ21y1 (1) + Λ22y2 (1))− λ2 (2)x2 (2))] .

Following Kyle (1985) the optimization is performed in two steps using backward induction.
First, we optimize (A2) with respect to x1 (2) and x2 (2), to obtain

x∗i (2) = arg max
xi(2)

xi (2)
(
Vi − Pi(1

+)− λi (2)xi (2)
)

, i = 1, 2, (A3)

which after comparing with (11) implies that the optimal matrix β (2) is diagonal

β11 (2) =
1

2λ1 (2)
, β22 (2) =

1
2λ2 (2)

, (A4)

β21 (2) = β12 (2) = 0.

This is because all agents know that t = 2 is the last trading round before the fundamentals
are revealed. Clearly, this is not the case for the first trading round, and, therefore, we do
not expect β (1) to be diagonal.

Second, we substitute x∗i (2) back into (A2) and optimize it with respect to x1 (1) and
x2 (1) taking x∗i (2) as given

x∗1 (1) = arg max
x1(1)

x1 (1) (V1 − Λ11x∗1 (2)− Λ21x∗2 (2)− λ1 (1) x1 (1)), (A5)

x∗2 (1) = arg max
x2(1)

x2 (1)
(
V2 − Λ12x∗1 (2)− Λ22x∗2 (2)− λ2 (1) x2 (1)

)
,

The first order conditions for x∗i (1) which follow from (A5) can be written in the matrix form
as

x∗ (1) =
1

2λ (1)

(
V −Λ′ 1

2λ (2)
(
V −Λx∗ (1)

))
, (A6)

8Note that the expectations with respect to u (1) and u (2) are ”nested” because the liquidity demand in
the first trading round is observed in the second trading round and the insider’s strategy is conditioned on
this.

24



taking into account that

x∗ (2) =
1

2λ (2)
(
V −Λx∗ (1)

)
. (A7)

Combining (A6) with (3), β (1) can be found as a solution of the following fixed-point
condition for

β (1) =
(
I− 1

2λ (1)
Λ′ 1

2λ (2)
Λ

)−1 1
2λ (1)

(
I−Λ′ 1

2λ (2)

)
, (A8)

where I stands for the unit matrix.
We proceed with a proof in two steps. First, we guess that solution is symmetric

λ1 (1) = λ2 (1) = λ1, (A9)

λ1 (2) = λ2 (2) = λ2,

β11 (1) = β22 (1) = β+,

β12 (1) = β21 (1) = β−,

Λ11 = Λ22 = Λ+,

Λ12 = Λ21 = Λ−.

Second, we will verify that solution (A9) exists and satisfies all the necessary conditions.
In the symmetric case, the fixed point condition (A8) is simplified to

(
I− 1

4λ1λ2
Λ2

)
β (1) =

1
2λ1

(
I− 1

2λ2
Λ

)
, (A10)

and effectively represents a system of two equations for β+ and β−
(

1− Λ2
+ + Λ2−
4λ1λ2

)
β+ − Λ+Λ−

2λ1λ2
β− =

1
2λ1

(
1− Λ+

2λ2

)
, (A11)

−Λ+Λ−
2λ1λ2

β+ +

(
1− Λ2

+ + Λ2−
4λ1λ2

)
β− = − Λ−

4λ1λ2
.

Next, we introduce new “auxiliary” variables

z± ≡
√

1± ρ
(β+ ± β−)

βK
. (A12)

The subscript ± on a variable is used to represent two equations where in the first (second)
equation the relevant variable with subscript ± is replaced by that variable with subscript
+ (−). Similarly if ± is used as an operator it means + in the first equation and − in

the second equation. Therefore (A12) represents two equations: z+ =
√

1 + ρ
(β++β−)

βK
and

z− =
√

1− ρ
(β+−β−)

βK
. z+ represents a rescaling of the expected informed trading intensity,

β+ + β−, and z− represents a rescaling of the difference between the within and across asset
expected informed trading intensity, β+ − β−. The properties of z± which we will examine
later simplify many of the following proofs. Next we guess that

Λ+ ± Λ− =
1

βK

√
1± ρz±
1 + z2±

. (A13)
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Substituting both (A12) and (A13) back into the system (A11) yields a system of nonlinear
equations for z±. Next we verify that our guess for Λ± is self-consistent. It can be easily
shown that in the case of the symmetric solution matrix Ψ takes the following form

ψ11 = ψ22 ≡ ψ+ =
β2
K
2

(
1 + z2

+

1 + ρ
+

1 + z2−
1− ρ

)
, (A14)

ψ12 = ψ21 ≡ ψ− =
β2
K
2

(
1 + z2

+

1 + ρ
− 1 + z2−

1− ρ

)
,

It follows from (9) that

Λ+ =
ψ+β+ − ψ−β−

ψ2
+ − ψ2−

=
1

2βK

(√
1 + ρz+

1 + z2
+

+
√

1− ρz−
1 + z2−

)
, (A15)

Λ− =
ψ+β− − ψ−β+

ψ2
+ − ψ2−

=
1

2βK

(√
1 + ρz+

1 + z2
+

−
√

1− ρz−
1 + z2−

)
.

which verifies (A13). Finally, using (A14) we find λ1

λ1 =
β+ + ρβ

β2
+ + 2ρβ+β− + β2− + β2

K

=
1

βK

√
1 + ρz+ +

√
1− ρz−

2 + z2
+ + z2−

. (A16)

Using equations (14) and (A25) we find λ2

λ2
2 =

1− β+Λ+ − β−Λ− − ρ (β+Λ− + β−Λ+)
4β2

K

=
1

8β2
K

(
1 + ρ

1 + z2
+

+
1− ρ

1 + z2−

)
, (A17)

which completes the proof.¥

LEMMA 1: Λ−(ρ) is nonnegative on the interval ρ ∈ [0, 1].

Proof:

Λ−(ρ)Λ+(ρ) =
1

4β2
K




(1 + ρ) z2
+(

1 + z2
+

)2
− (1− ρ) z2−(

1 + z2−
)2


 = (A18)

1
4β2

K

z2
+

(
1 + z2−

)2 − z2−
(
1 + z2

+

)2
+ ρ

(
z2
+

(
1 + z2−

)2
+ z2−

(
1 + z2

+

)2
)

(
1 + z2

+

)2 (
1 + z2−

)2
.

We need to show that

z2
+

(
1 + z2−

)2 − z2−
(
1 + z2

+

)2
= (z+ − z−) (1− z+z−)

[
z+

(
1 + z2−

)
+ z−

(
1 + z2

+

)]
≥ 0, (A19)

which follows from the property described below in (A20).
The below Figure graphs the numerical solution for z± (ρ) as functions of ρ. It shows

that z+ (ρ) is monotonically increasing on the interval ρ ∈ [0, 1] while z− (ρ) is monotonically
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decreasing on the same interval. Importantly, the auxiliary functions z± (ρ) and z+ (ρ) satisfy
the condition

1 > z+ (ρ) ≥ z− (ρ) ≥ 0, ρ ∈ [0, 1] , (A20)

Plot of Auxiliary Variables z±:
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The result of Lemma 1 follows since Λ+(ρ) is positive and Λ−(ρ)Λ+(ρ) ≥ 0 on ρ ∈ [0, 1] .¥

We will need the following Lemma for our further proofs.

LEMMA 2: Order flows have the following variances

Var (y1 (1)) = Var (y2 (1)) =

(
1 +

z2
+ + z2−

2

)
σ2
u, (A21)

Var (y1 (2)) = Var (y2 (2)) = 2σ2
u,

Var (x1 (1)) = Var (x2 (1)) =

(
z2
+ + z2−

2

)
σ2
u,

Var (x1 (2)) = Var (x2 (2)) = σ2
u.

Total order flows, yi(t), have the following covariances

Cov(y1 (1) , y2 (1)) =

(
z2
+ − z2−

2

)
σ2
u, (A22)

Cov(y1 (1) , y1 (2)) = Cov(y1 (1) , y2 (2)) = 0,

Cov(y1 (2) , y2 (2)) = Cov(x1 (2) , x2 (2)) =
σ2
0

8λ2
2

(
1 + ρ

1 + z2
+

+
1− ρ

1 + z2−

)
.
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Price changes have the following covariances

Var (∆P1 (1)) = Var (∆P2 (1)) = λ2
1Var (y1 (1)) , (A23)

Var (∆P1 (2)) = Var (∆P2 (2)) = 2λ2
2σ2

u +
(
Λ2− − (Λ+ − λ1)2

)
Var (y1 (1)) ,

Cov(∆P1 (2) , ∆P2 (2)) = λ2
2Cov(y1 (2) , y2 (2))+

+
(
(Λ+ − λ1)2 − Λ2−

)
Cov(y1 (1) , y2 (1)).

Proof: Var (y1 (1)) is equal to Var (y2 (1)) by symmetry and can be calculated directly

Var (y1 (1)) = σ2
0

(
β2
+ + β2− + 2ρβ+β−

)
+ σ2

u = (A24)

=
σ2
0β2

K
4

{
2z2

+

1 + ρ
+

2z2−
1− ρ

+ 2ρ

(
z2
+

1 + ρ
− z2−

1− ρ

)}
+ σ2

u =

=

(
1 +

z2
+ + z2−

2

)
σ2
u.

Because Var (y1 (1)) = Var (x1 (1)) + σ2
u the expression for Var (x1 (1)) follows immediately.

We can write x1 (2) as

x1 (2) =
1

2λ2

{
(1− β+Λ+ − β−Λ−) Ṽ1 − (β−Λ+ + β+Λ−) Ṽ2 − Λ+u1(1)− Λ−u2(1)

}
. (A25)

Then

Var (x1 (2)) =
1

4λ2
2

{[
(1− β+Λ+ − β−Λ−)2 + (β−Λ+ + β+Λ−)2− (A26)

−2ρ (1− β+Λ+ − β−Λ−) (β−Λ+ + β+Λ−)] σ2
0 +

(
Λ2

+ + Λ2−
)

σ2
u

}
.

It can be easily verified that

1− β+Λ+ − β−Λ− =
1
2

(
1

1 + z2−
+

1
1 + z2

+

)
, (A27)

β−Λ+ + β+Λ− =
1
2

(
1

1 + z2−
− 1

1 + z2
+

)
,

(
Λ2

+ + Λ2−
)

σ2
u =

(
1 + ρ

2
z2
+

1 + z2
+

+
1− ρ

2
z2−

1 + z2−

)
σ2
0 .

Substituting (A27) into (A26) yields the desired result.
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Cov(y1 (1) , y2 (1)) can be obtained as follows

Cov(y1 (1) , y2 (1)) = σ2
0

(
ρ

(
β2
+ + β2−

)
+ 2β+β−

)
= (A28)

=
σ2
0β2

K
4

{
2ρz2

+

1 + ρ
+

2ρz2−
1− ρ

+ 2

(
z2
+

1 + ρ
− z2−

1− ρ

)}
=

=

(
z2
+ − z2−

2

)
σ2
u.

In order to prove that the total order flows are not correlated across time we note that using
the symmetry of the solution (specifically that Var(y1 (1)) = Var(y2 (1))) the equations (8) can
be written as

Λ+ =
Cov(Ṽ1, y1 (1))Var(y1 (1))− Cov(Ṽ1, y2 (1))Cov(y1 (1) , y2 (1))

(Var(y1 (1)))2 − (Cov(y1 (1) , y2 (1)))2
, (A29)

Λ− =
Cov(Ṽ1, y2 (1))Var(y1 (1))− Cov(Ṽ1, y1 (1))Cov(y1 (1) , y2 (1))

(Var(y1 (1)))2 − (Cov(y1 (1) , y2 (1)))2
.

Substituting y1 (2) into the covariance yields

Cov(y1 (1) , y1 (2)) =
1

2λ2

{
Cov(Ṽ1, y1 (1))− Λ+Var(y1 (1))− Λ−Cov(y1 (1) , y2 (1))

}
. (A30)

We just need to show that Λ+Var(y1 (1)) + Λ−Cov(y1 (1) , y2 (1)) = Cov(Ṽ1, y1 (1)), which directly
follows from (A29).

To prove the last identity note that ∆P1 (2) can be written as

∆P1 (2) = λ2y1 (2) + (Λ+ − λ1) y1 (1) + Λ−y2 (1) . (A31)

Consider now

Var (∆P1 (2)) = 2λ2
2σ2

u +
(
Λ2− + (Λ+ − λ1)2

)
Var (y1 (1)) + 2Λ− (Λ+ − λ1)Cov(y1 (1) , y2 (1)). (A32)

It follows from (A30) that

λ1 − Λ+

Λ−
=

Cov(y1 (1) , y2 (1))
Var (y1 (1))

=
z2
+ − z2−

2 + z2
+ + z2−

, (A33)

which upon substitution into (A32) yields the desired result.
Cov(y1 (2) , y2 (2)) can be obtained using (A25) and (A27)
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Cov(y1 (2) , y2 (2)) = Cov(x1 (2) , x2 (2)) = (A34)

=
σ2
0

4λ2
2

{
ρ

(
(1− β+Λ+ − β−Λ−)2 + (β−Λ+ − β+Λ−)2

)
−

−2 (1− β+Λ+ − β−Λ−) (β−Λ+ − β+Λ−) + 2β2
KΛ+Λ−

}
=

=
σ2
0

8λ2
2




(1 + ρ) z2
+(

1 + z2
+

)2
− (1− ρ) z2−(

1 + z2−
)2

+
1 + ρ

(
1 + z2

+

)2
− 1− ρ

(
1 + z2−

)2


 ,

and the result follows immediately.
Finally we find Cov(∆P1 (2) ,∆P2 (2)). Using (A31) we obtain

Cov(∆P1 (2) , ∆P2 (2)) = λ2
2Cov(y1 (2) , y2 (2))+ (A35)

+
(
Λ2− + (Λ+ − λ1)2

)
Cov(y1 (1) , y2 (1)) + 2Λ− (Λ+ − λ1)Var (y1 (1)) .

The result follows immediately after applying (A33) in (A35).¥

Proof of Proposition 1.
Because all variances are provided by Lemma 2, we only need to calculate all the necessary

covariances in order to prove Proposition 1. We will use result of Lemma 2 that total order
flows are not correlated across time (second relation in (A22)) to prove (22)

Cov(y1 (1) , y1,2 (2)) = Cov(x1 (1) + u1(1), x1,2 (2)) (A36)

= Cov(x1 (1) , x1,2 (2))− 1
2λ2

Cov(u1(1), P1,2

(
1+

)
)

= Cov(x1 (1) , x1,2 (2))− 1
2λ2

Cov(u1(1), Λ±u1(1)) = 0.

It immediately follows that

Cov(x1 (1) , x1,2 (2)) =
Λ±
2λ2

σ2
u. (A37)

The lead-lag covariances of price changes are given by

Cov(∆P1 (1) , ∆P1 (2)) = λ1 (Λ+ − λ1)Var (y1 (1)) + λ1Λ−Cov(y1 (1) , y2 (1)), (A38)

Cov(∆P1 (1) , ∆P2 (2)) = λ1Λ−Var (y1 (1)) + λ1 (Λ+ − λ1)Cov(y1 (1) , y2 (1)).

Combining (A38) and (A33), we obtain

Cov(∆P1 (1) , ∆P1 (2)) = 0, (A39)

Cov(∆P1 (1) , ∆P2 (2)) =
λ1Λ−

Var (y1 (1))

(
Var (y1 (1))2 − Cov(y1 (1) , y2 (1))2

)
.

Taking into account that

Var (y1 (1))2 − Cov(y1 (1) , y2 (1))2 =
(
1 + z2

+

)(
1 + z2−

)
σ4
u, (A40)
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we immediately obtain

Cov(∆P1 (1) , ∆P2 (2)) =
2λ1Λ−

(
1 + z2

+

)(
1 + z2−

)

2 + z2
+ + z2−

σ2
u ≥ 0. (A41)

(A41) combined with

ψ2
+ − ψ2− = β4

K

(
1 + z2

+

)(
1 + z2−

)

1− ρ2
, (A42)

(A33) and (A28) yields (21).
The lead-lag covariances of informed order flows and returns are given by

Cov(x1 (1) , ∆P1 (2)) = λ2Cov(x1 (1) , x1 (2)) + (Λ+ − λ1) Var (x1 (1)) + Λ−Cov(y1 (1) , y2 (1))

=
Λ+

2
σ2
u − (Λ+ − λ1)σ2

u + (Λ+ − λ1)Var (y1 (1)) + Λ−Cov(y1 (1) , y2 (1))︸ ︷︷ ︸
0

=
(

λ1 −
Λ+

2

)
σ2
u. (A43)

Cov (x1 (1) , ∆P2 (2)) = λ2Cov(x1 (1) , x2 (2)) + Λ−Var (x1 (1)) + (Λ+ − λ1)Cov (y1 (1) , y2 (1))

=
Λ−
2

σ2
u − Λ−σ2

u + Λ−Var (y1 (1)) + (Λ+ − λ1)Cov (y1 (1) , y2 (1))

= −Λ−
2

σ2
u +

1
λ1

Cov(∆P1 (1) , ∆P2 (2)). (A44)

which in combination with (A33) yields

Cov(x1 (1) , ∆P1 (2)) = Λ+σ2
u


1

2
+

Λ−
(
z2
+ − z2−

)

Λ+

(
2 + z2

+ + z2−
)


 > 0, (A45)

Cov(x1 (1) , ∆P2 (2)) = Λ−σ2
u

(
1
2

+
(z+ + z−)2

2 + z2
+ + z2−

)
≥ 0. (A46)

Combining the covariances with results of Lemma 2 completes the proof.¥

Proof of Proposition 2. Result for Cov
(
∆Pp (1) , ∆Pp (2)

)
and Cov

(
∆Pp (1) , xp (2)

)
follow

immediately from Proposition 1. Next we consider

Cov(xp (1) , xp (2)) =
1
2

(Cov(x1 (1) , x1 (2)) + Cov(x1 (1) , x2 (2))) , (A47)

and the result follows when we use (A37) in (A47). Finally, consider

Cov(xp (1) , ∆Pp (2)) =
1
2

[Cov (x1 (1) , ∆P1 (2)) + Cov (x1 (1) ,∆P2 (2))] , (A48)

and the result follows immediately.¥
We need the following Lemma to prove Proposition 3.
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LEMMA 3: Portfolio informed order flows have the following variances

Var
(
xp (1)

)
=

z2
+

2
σ2
u, (A49)

Var
(
xp (2)

)
=

1
2

(
σ2
u + Cov(x1 (2) , x2 (2))

)
,

Portfolio price changes have the following variances

Var
(
∆Pp (1)

)
=

λ2
1

(
1 + z2

+

)

2
σ2
u, (A50)

Var
(
∆Pp (2)

)
= λ2

2

(
σ2
u +

1
2
Cov(y1 (2) , y2 (2))

)
+

2Λ2−
(
1 + z2

+

)(
1 + z2−

)2

(
2 + z2

+ + z2−
)2

.

Portfolio price changes and informed order flows have the following covariance

Cov(xp (1) , ∆Pp (1)) = λ1Var
(
xp (1)

)
. (A51)

Proof: The variance of xp (1) can be calculated as follows

Var
(
xp (1)

)
=

1
2

(Var (x1 (1)) + Cov(x1 (1) , x2 (1))) (A52)

=
σ2
u
2

(
z2
+ + z2−

2
+

z2
+ − z2−

2

)
.

Var
(
xp (2)

)
is equal to

Var
(
xp (2)

)
=

1
2


Var (x1 (2))︸ ︷︷ ︸

σ2
u

+ Cov(x1 (2) , x2 (2))


 , (A53)

and the result follows. The other proofs are straightforward except for Var
(
∆Pp (2)

)
, which

we prove next.

Var
(
∆Pp (2)

)
=

1
2

(Var(∆P1 (2)) + Cov(∆P1 (2) , ∆P2 (2))) = (A54)

λ2
2

(
σ2
u +

1
2
Cov(y1 (2) , y2 (2))

)
+ Λ2−

(
λ1 − Λ+

Λ−
− 1

)2

(Var (y1 (1)) + Cov(y1 (1) , y2 (1))) .

The result follows after substituting (A33) into (A32).¥
Proof of Proposition 3: The VAR coefficients b11 and b12 are found from

(
b11

b12

)
=

(
Var

(
∆Pp (1)

)
Cov(xp (1) , ∆Pp (1))

Cov(xp (1) , ∆Pp (1)) Var
(
xp (1)

)
)−1

︸ ︷︷ ︸
A

(
Cov(∆Pp (1) , ∆Pp (2))
Cov(xp (1) ,∆Pp (2))

)
. (A55)
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We need to calculate
det(A) = λ2

1σ2
uVar

(
xp (1)

)
. (A56)

Next we find b11

b11 =
1

det(A)
(
Cov(∆Pp (1) , ∆Pp (2))Var

(
xp (1)

)− Cov(xp (1) ,∆Pp (2))Cov(xp (1) ,∆Pp (1))
)

= (A57)

=
Cov(∆Pp (1) , ∆Pp (2))− λ1Cov(xp (1) , ∆Pp (2))

λ2
1σ2

u
=

1
2

(
Λ+ + Λ−

2λ1
− 1

)
.

Using relation (A33), which can be rewritten as

λ1 −
Λ+

2
=

Λ+

2
+

Λ−
(
z2
+ − z2−

)

2 + z2
+ + z2−

,

in (A57) we obtain

b11 = − 1
2λ1


Λ+ − Λ−

2
+

Λ−
(
z2
+ − z2−

)

2 + z2
+ + z2−


 < 0.

b12 can be found analogously

b12 =
1

det(A)
(
Cov(xp (1) ,∆Pp (2))Var

(
∆Pp (1)

)− Cov(∆Pp (1) ,∆Pp (2))Cov(xp (1) ,∆Pp (1))
)

=

(A58)

=
1 + z2

+

z2
+


Λ+ + Λ−

4
+

Λ−
(
z2
+ − z2−

)

2
(
2 + z2

+ + z2−
) +

Λ− (z+ + z−)2

2 + z2
+ + z2−


−

Λ−
(
1 + z2

+

)(
1 + z2−

)

2 + z2
+ + z2−

=

=

(
1 +

1
z2
+

)(
Λ+ + Λ−

4
+

Λ−z+z− (1− z+z−)
2 + z2

+ + z2−

)
> 0.

Alternatively, it can be rewritten as

b12 =
1
σ2
u

[(
1 +

1
z2
+

)
Cov(xp (1) , ∆Pp (2))− 1

λ1
Cov(∆Pp (1) , ∆Pp (2))

]
=

=
1
2

(
1 +

1
z2
+

) (
λ1 −

Λ+ + Λ−
2

)
+

1
λ1σ2

uz2
+

Cov (∆P1 (1) , ∆P2 (2)) .

We can now find b22 and b21 which are equal to

(
b21

b22

)
=

(
Var

(
∆Pp (1)

)
Cov(xp (1) ,∆Pp (1))

Cov(xp (1) ,∆Pp (1)) Var
(
xp (1)

)
)(

Cov(∆Pp (1) , xp (2))
Cov(xp (1) , xp (2))

)
. (A59)
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Therefore,

b21 =
1

det(A)


Cov(∆Pp (1) , xp (2))Var

(
xp (1)

)
︸ ︷︷ ︸

0

− Cov(xp (1) , xp (2))Cov(xp (1) ,∆Pp (1))


 = (A60)

= −Λ+ + Λ−
4λ1λ2

.

Finally,

b22 =
1

det(A)


Cov(xp (1) , xp (2))Var

(
∆Pp (1)

)− Cov(∆Pp (1) , xp (2))Cov(xp (1) ,∆Pp (1))︸ ︷︷ ︸
0


 = (A61)

=
1
4

(
1 +

1
z2
+

)
Λ+ + Λ−

λ2
.

The result follows after using the definition of z+ (equation (A12)) in (A61).¥
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Table 1: Summary Statistics

This table reports summary statistics of equal-weighted market returns, Rm(t), market institutional order
flows (buy volume minus sell volume), xm(t), as well as ratios of total market institutional orders to market
cap and trading volume. Market portfolio is formed on any give day by equally weighing returns for all stocks
with available data that day from January 1999 to December 2005. Institutional order flow is measured as
a percent of a total market cap. Newey-West t-statistics are reported in the parentheses.

Mean Std. dev. Min. Max.

Rm(t) 5.7524× 10−4 9.7248× 10−3 −0.0521 0.0517

xm(t) 2.0824× 10−5 1.0079× 10−4 −3.9424× 10−4 5.5299× 10−5

buy(t)+sell(t)
2∗mktcap(t) 2.5120× 10−3 6.8296× 10−4 5.6341× 10−4 4.7912× 10−3

buy(t)+sell(t)
2∗vol(t) 0.4095 0.0491 0.2704 0.5985
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Table 2: Lead-Lag Correlation Coefficients for the Market Portfolio

Panel A of this table reports correlation coefficients of equal-weighted market returns, Rm(t), with lagged
equal-weighted market returns and market institutional order flows, xm(t). Panel B of this table reports
correlation coefficients of daily net market institutional order flow with lagged equal-weighted market returns
and market institutional volume. The correlations are reported up to four lags. All variables are daily.
Market portfolios are formed each day by equally weighing returns/institutional order flows for all stocks
with available data that day from January 1999 to December 2005. Institutional order flow is measured as
a percent of a total market cap. Newey-West t-statistics are reported in the parentheses. ***, **, and *
denote statistical significance at the 1, 5, and 10% levels, respectively.

Panel A: Return
Rm(t− 1) Rm(t− 2) Rm(t− 3) Rm(t− 4)

Rm(t) 0.0673 0.0143 0.0458 0.0261
(2.14∗∗) (0.42) (1.34) (0.76)

xm(t) −0.0273 −0.0615 −0.0516 −0.0359
(−0.01) (−0.01) (−0.01) (−0.01)

Panel B: Informed Order Flow
xm(t− 1) xm(t− 2) xm(t− 3) xm(t− 4)

Rm(t) 0.0292 −0.0015 0.0115 0.0219
(27.99∗∗∗) (−1.45) (11.83∗∗∗) (21.89∗∗∗)

xm(t) 0.3071 0.2488 0.2324 0.2059
(10.65∗∗∗) (9.08∗∗∗) (9.19∗∗∗) (7.55∗∗∗)
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Table 3: Vector Autoregressions for the Market Portfolio

This table reports results of jointly estimating the following one-lag (Panel A, K = 1) and four-lag (Panel
B, K = 4) vector autoregressions, using daily equal-weighted market returns, Rm(t), and institutional order
flow, xm(t), from January 1999 to December 2005

Rm(t) = a0,1 +
K∑

k=1

akRm(t− k) +
K∑

k=1

bkxm(t− k) + ε1(t),

xm(t) = a0,2 +
K∑

k=1

ckRm(t− k) +
K∑

k=1

dkxm(t− k) + ε2(t).

Rm(t−1 : t−k), k = 1 or 4, reports
∑K

k=1 ak or
∑K

k=1 ck, depending on the left-hand side variable. Similarly,
xm(t − 1 : t − k), k = 1 or 4, reports

∑K
k=1 bk or

∑K
k=1 dk, depending on the left-hand side variable. All

variables are daily. Market portfolios are formed each day by equally weighing returns/institutional order
flow for all stocks with available data that day. Newey-West t-statistics are reported in the parentheses.
Italics indicate the F -statistics for the hypothesis that the sum of the coefficients equals zero. ***, **, and
* denote statistical significance at the 1, 5, and 10% levels, respectively. Institutional order flow is measured
as a percent of a total market cap.

Panel A: One-Lag
LHS Rm(t− 1) xm(t− 1)
Rm(t) 0.0810 5.1719

(10.83∗∗∗) (4.70∗∗∗)
xm(t) 0.0003 0.2623

(1.12) (119.52∗∗∗)
Panel B: Four-Lag

LHS Rm(t− 1 : t− 4) xm(t− 1 : t− 4)
Rm(t) 0.1576 7.2841

11.83 ∗∗∗ 3.96 ∗∗

xm(t) −0.0001 0.5070
0.04 198.46 ∗∗∗
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Table 4: Lead-Lag Correlation Coefficients for Within-Industry and Random
Portfolios

This table compares lead-lag correlations between portfolios of assets with high and low correlation in
fundamental values, ρ. We start with 12 Fama and French industry portfolios using daily data from January
1999 to December 2005. To construct portfolios we take stocks in the the first 11 industry portfolios and
calculate returns and informed order flows as we did for the market portfolio. For the other category we
randomly divide stocks in it into 11 portfolios and calculate returns and informed order flows for each. Thus,
we have 22 portfolios where 11 are formed from stocks within the same industry and 11 which are formed
from stocks chosen from random industries. To focus on the industry-level effects we remove the market-level
effects from the within industry and random portfolios by using the residuals from the regression of returns
(order flows) of each portfolio on the market returns (order flows). To avoid creating correlation in the
residuals across the industry and random categories portfolios in each group are regressed on the “market”
formed from stocks only within the 11 portfolios in the same category. Panel A reports average correlation
coefficients of returns, Ri(t), and institutional order flow, xi(t), with their lagged counterparts for high ρ

portfolios. Panel B reports average correlation coefficients of returns, Ri(t), and institutional order flow,
xi(t), with their lagged counterparts for low ρ portfolios. The correlations are reported up to four lags in
both cases. Panel C reports the differences between the average correlation coefficients from Panels A and
B. Italics indicate the F -statistics for the hypothesis that the sum of the correlation coefficients equals zero
(Panels A and B) and that the difference is equal to zero (Panel C). Institutional order flow is measured
as a fraction of a total market cap. Coefficients are estimated at the same time using seemingly unrelated
regressions; ***, **, and * denote statistical significance at the 1, 5, and 10% levels, respectively.

Ri(t− 1) Ri(t− 2) Ri(t− 3) Ri(t− 4) xi(t− 1) xi(t− 2) xi(t− 3) xi(t− 4)
Panel A. Within-Industry (High ρ)

Ri(t) 0.1075 0.0186 0.0175 -0.0002 0.0350 0.0017 0.0150 0.0074
226.32 ∗∗∗ 6.72 ∗∗∗ 5.89 ∗∗∗ 0.00 25.44 ∗∗∗ 0.00 3.87 ∗∗ 0.89

xi(t) −0.0089 0.0026 0.0245 0.0161 0.2581 0.1700 0.1477 0.1268
0.81 0.16 6.04 ∗∗∗ 3.71 ∗∗ 1380.70 ∗∗∗ 575.96 ∗∗∗ 431.00 ∗∗∗ 315.95 ∗∗

Panel B. Random (Low ρ)
Ri(t) 0.0021 -0.0116 −0.0147 −0.0193 −0.0011 −0.0053 −0.0109 −0.0090

0.09 2.62 ∗ 4.16 ∗∗∗ 7.18 ∗∗∗ 0.01 0.50 2.39 ∗ 1.56
xi(t) 0.0228 −0.0002 0.0051 0.0202 0.2314 0.1222 0.1012 0.0851

10.29 ∗∗∗ 0.00 0.49 7.28 ∗∗∗ 1094.55 ∗∗∗ 292.94 ∗∗∗ 200.90 ∗∗∗ 140.85 ∗∗∗

Panel C. High Minus Low
Ri(t) 0.1053 0.0303 0.0321 0.0191 0.0361 0.0070 0.0259 0.0164

107.97 ∗∗∗ 8.87 ∗∗∗ 9.98 ∗∗∗ 3.51 ∗∗ 21.43 ∗∗∗ 0.10 5.91 ∗∗∗ 1.89
xi(t) −0.0317 0.0028 0.0194 −0.0041 0.0267 0.0478 0.0465 0.0418

10.63 ∗∗∗ 0.04 0.26 2.26 ∗ 7.33 ∗∗∗ 22.68 ∗∗∗ 21.33 ∗∗∗ 17.10 ∗∗∗
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Table 5: Vector Autoregressions for Within-Industry and Random Portfolios

This table reports results of jointly estimating the following one-lag (Panel A, K = 1) and four-lag (Panel B,
K = 4) vector autoregressions. We start with 12 Fama and French industry portfolios using daily data from
January 1999 to December 2005 which we split into two groups of 11 portfolios each. For within industry
portfolios (high ρ) we use the first 11 industries—everything but the “other” group. For the random portfolios
(low ρ) we randomly divide stocks in the “other” group into 11 equal-sized portfolios. Because assets in this
case are industry specific, they have a common industry component and thus proxy for assets with high ρ.
We then remove a common market component from each portfolio by regressing its return (institutional order
flow) on the market return (institutional order flow) and using the residuals. For each portfolio we calculate
the daily equal-weighted returns, Ri(t), and institutional order flow, xi(t). We estimate the following VAR
for each portfolio:

Ri(t) = a0,i,1 +
K∑

k=1

ai,kRi(t− k) +
K∑

k=1

bi,kxi(t− k) + εi,1(t),

xi(t) = a0,i,2 +
K∑

k=1

ci,kRi(t− k) +
K∑

k=1

di,kxi(t− k) + εi,2(t).

The results in panel A are for portfolios of firms within the same industry. Ri(t−1 : t−k), k = 1 or 4, reports
the average

∑K
k=1 ai,k or

∑K
k=1 ci,k, depending on the left-hand side variable. Similarly, xi(t − 1 : t − k),

k = 1 or 4, reports the average
∑K

k=1 bi,k or
∑K

k=1 di,k, depending on the left-hand side variable. Italics
indicate the F -statistics for the hypothesis that the average of the coefficients equals zero (Panels A and B)
and that the difference is equal to zero (Panel C). Institutional order flow is measured as a fraction of a total
market cap. Coefficients are estimated at the same time using seemingly unrelated regressions; ***, **, and
* denote statistical significance at the 1, 5, and 10% levels, respectively.

One-Lag Four-Lags
Ri(t− 1) xi(t− 1) Ri(t− 1 : t− 4) xi(t− 1 : t− 4)

Panel A. Within-Industry (High ρ)
Ri(t) 0.1060 0.8280 0.1159 1.0094

211.99 ∗∗∗ 4.24 ∗∗∗ 75.75 ∗∗∗ 2.58 ∗

xi(t) −0.0011 0.2701 −0.0012 0.4387
55.15 ∗∗∗ 1460.26 ∗∗∗ 18.71 ∗∗∗ 1609.73 ∗∗∗

Panel B. Random (Low ρ)
Ri(t) 0.0134 −0.0819 −0.0304 −0.3477

3.45 ∗∗ 0.21 4.44 ∗∗∗ 1.40
xi(t) −0.0000 0.2315 0.0002 0.3592

0.01 108.40 ∗∗∗ 0.16 999.00 ∗∗∗

Panel C. High Minus Low
Ri(t) 0.0926 0.9099 0.1463 1.3571

81.40 ∗∗∗ 4.26 ∗∗∗ 55.56 ∗∗∗ 3.83 ∗∗

xi(t) −0.011 0.0386 −0.0014 0.0795
10.98 ∗∗∗ 15.00 ∗∗∗ 4.87 ∗∗∗ 25.42 ∗∗∗
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Figure 2: Graphical Illustration of Theorem 1

We plot the parameters of the solution defined in Theorem 1 as functions of ρ with βK = 1. Panel A shows
elasticities of the order flow to information in the first trading round, β±, given by (16). Panel B shows Λ±
given by (18). Panel C shows inverse market depth parameter for trading rounds one, λ1, given by (17), and
two, λ2, given by (20).
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Figure 3: Model Correlations Coefficients and VAR Coefficients as a Function of
Asset Correlation

This figure compares comparative statics results with respect to ρ for equal-weighted portfolios of two stocks
implied by the model. Panel A plots various lead-lag correlation coefficients implied by the model as functions
of ρ. Panel B plots vector autoregression coefficients from the following regression

(
∆Pp (t)
xp (t)

)
=

(
a1

a2

)
+

(
b11 b12

b21 b22

)(
∆Pp (t− 1)
xp (t− 1)

)
+

(
ε1(t)
ε2(t)

)

as functions of ρ in the model with βK = 1.
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