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1 Introduction

We show that two seemingly unrelated economic puzzles, investment-cash flow sensitivity

and the existence of a “value premium,” both result from firms’ equilibrium investment

behavior, which generates endogenous variation in firms’ exposures to risk, both over the

business cycle and in the cross-sectional. That is, the facts that 1) cash flows explain in-

vestment after controlling for Tobin’sQ, and 2) low market-to-book firms tend to generate

higher average returns than do high market-to-book firms, both arise naturally from firms’

optimal investment decisions if one accounts for equilibrium concerns.

Empirically, cash flows do a better job thanQ of predicting investment, posing a chal-

lenge to neoclassical investment theory, which posits that marginal-q should be a sufficient

statistic for predicting firms’ investment decisions. Observed investment-cash flow sensi-

tivities are not inconsistent, however, with neoclassical tenets. StandardQ-theory, if one

properly accounts for general equilibrium concerns,predicts that standard linear regres-

sions of investment onQ and cash flow will attribute explanatory power to cash flows even

if firms’ investment decisions are predicated solely on marginal-q. Nonlinearities in the

equilibrium relationships between demand, which ultimately drives firms’ investment de-

cisions, and the observable variables, investment,Q, and cash flows, explain these results:

because of these nonlinearities, cash flow is a better demand-proxy thanQ when demand

is high and firms are most likely to invest.

Investment-cash flow sensitivity arises naturally, because in equilibrium firm value is

less sensitive to demand when demand is high. When demand is already high, rising de-

mand elicits investment, which attenuates the impact of demand shocks on prices, and

consequently on firm value. Demand shocks that elicit investment therefore do not show

up in theQ series. Cash flow shocks remain a good proxy for demand shocks when demand

is high, however, so demand shocks that elicit investment are observable in the cash flow

series. Cash flows will therefore have explanatory power in a regression of investment on

cash flow andQ, even if firms invest when and because the shadow cost of capital equals its
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price. That is, firms’ equilibrium investment behavior, and the endogenous mean-reversion

in profitability that this behavior generates, attenuates the impact of demand shocks on

average-Q at those times when firms are most likely to invest. The impact of demand

shocks on cash flow remains large, however, so while it will be difficult to identify a de-

mand shock that elicits investment by looking at changes in average-Q, we will observe

the shock in the cash flow series.

This suggests an alternative empirical strategy for testingQ-theory: use cash flow

shocks to identify the magnitude of demand shocks, and the relative magnitudes ofQ and

cash flow shocks to identify the level of demand. That is,Q-theory predicts that invest-

ment should occur in response to positive cash flow shocks precisely when the sensitivity

of average-Q to these shocks is lowest,i.e., in those periods when we observe positive cash

flow shocks that donot translate into largeQ-shocks.

The theory also suggests that variation in firm and industry characteristics will generate

predictable cross-sectional variation in the sensitivity of investment to cash flows. Firm

value is particularly insensitive to demand when demand is high in industries in which real

options are less important. Investment should appear more sensitive to cash flow in these

industries, because in these industriesQ does a particularly poor job proxying for demand.

Consequently, we would expect to see higher investment-cash flow sensitivities among high

cost producers and firms in slow growing industries, competitive industries, and industries

that employ irreversible capital.

A value premium also arises naturally, due to cross-sectional variation in firms’ sen-

sitivities to demand resulting from firms’ optimal investment behavior. Slow-growing in-

dustries, industries that employ irreversible capital, and high cost producers tend to be

more exposed, in equilibrium, to demand risk. But these types of firms also tend to have

lower market values. The market-to-book sorting procedure used to create “value” and

“growth” portfolios therefore tends to generate a value portfolio that is overweighted in

these firms, and therefore riskier. These are also the firms that we predict will exhibit

greater investment-cash flow sensitivity, suggesting expected returns are positively corre-
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lated with investment-cash flow sensitivity in the cross-section. This value premium is

countercyclical, because value firms selected by the market-to-book sorting procedure tend

to be riskier in recessions, and relatively less risky in expansions.

The fact that a value premium arises naturally in our analysis, in the context of what

is essentially a “real options” model, is somewhat surprising, because real options models

generally have a difficult time generating a value premium. In real options models, the mar-

ket value of “value” firms typically consists primarily of assets-in-place, while “growth”

firms have high market-to-books due to large real option components to firm value. Because

growth firms are more exposed to real options than value firms, the argument goes, gener-

ating a value premium requires that assets-in-place are riskier than real options. Because

real option values are more sensitive to demand than revenues from assets-in-place in these

models, another channel is required to make assets-in-place riskier than options. To this end

Carlson, Fisher and Giammarino (2004) introduce operating leverage, which increases the

sensitivity of assets-in-place to demand by reducing the assets’ value while maintaining its

risk exposure. While useful, especially for generating an intra-industry value premium, our

equilibrium analysis reveals limitations to the operating leverage hypothesis. In particular,

in equilibrium, firms’ investment behavior results in assets-in-place that are insensitive to

demand when demand is high, because valuations anticipate investment. This attenuates

the impact of demand shocks on prices when capacity is elastic. So while operating lever-

age can generate a value premium when demand is low, it never generates a value premium

when demand is high, regardless of the magnitude of the leverage.

Moreover, the real options literature has failed to recognize more generally that a value

premium does not actually require that assets-in-place are riskier than growth options.

An unacknowledged, implicit assumption in the argument that the value premium implies

assets-in-place are riskier is that all growth options are created equal. This is not the case.

In these models growth options are significantly riskier in slow growing industries than in

fast growing industries. Consequently, a value premium exists even when growth options

are riskier than assets-in-place. While growth options contribute more to firm value in
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fast growing, high market-to-book industries, firms in slow growing, low market-to-book

industries are riskier because the options to which they are exposed are much riskier.

These cross-sectional implications depend on meaningful variation across firms, both

within and across industries. This requires that we take strategic considerations seriously.

Firms’ investment decisions depend fundamentally on other firms’ investment decisions,

both current and past, but this fact has been largely ignored by traditional capital theory,

which has focused on monopoly and perfect competition, the two extremes of the competi-

tive spectrum. The bipartite focus reflects the fact that strategic firm interaction makes ana-

lyzing intermediate cases seemingly intractable. In general, each firm’s optimal investment

strategy is predicated on other firms’ behavior, significantly complicating the analysis, as

firms’ strategies must be determined simultaneously and jointly as part of an equilibrium.

Analyses that allow for strategic interactions, such as Grenadier (2002), typically restrict

attention to homogeneous firms and symmetric equilibrium. While these assumptions gen-

erate sufficient tractability to solve for firms’ behavior, and the resulting analyses yield

significant insights, the assumption of identical firms is itself severely restrictive, and the

assumed symmetric equilibrium obscures the economic forces driving firms’ investment

decisions.

This paper introduces a framework for analyzing the equilibrium investment behav-

ior of strategic, heterogeneous firms, while simultaneously relaxing standard assumptions

on firms’ production technologies. We show that heterogeneity in firms’ productivities,

in conjunction with competitive pressures, leads to a natural, equilibrium industrial orga-

nization, and that firms’ optimal investment strategies can be simply characterized in a

Q-theoretic framework in terms of the Herfindahl index associated with the endogenous

organization. In order to show this, we develop a general model of dynamic oligopoly,

with heterogeneous firms, costly production, and partially reversible investment. We solve

for the optimal equilibrium behavior of diverse firms that 1) differ in their unit costs of

production (i.e., their production efficiencies), and 2) can invest or disinvest, with a spread

between the purchase and sale prices of capital.
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The equilibrium investment and disinvestment strategies of firms are characterized as

aggregate industry average-Q rules in terms of extensively studied, observable economic

variables. Firms invest in new capacity when the market-to-book ratio of the industry’s

assets, in aggregate, reaches a critical level that is: 1) increasing in industrial concentra-

tion, as measured by the Herfindahl index; 2) decreasing in consumers’ price-elasticity of

demand for the good firms produce; and 3) decreasing in the industry’s capital intensity, as

measured by the ratio of the book value of capital to annual operating expenses. Firms dis-

invest when the market-to-book ratio of the industry’s assets reaches a lower critical level

that has the same dependence on industrial concentration, demand elasticity, and capital

intensity, but which is additionally increasing in the reversibility of capital.

The industry average-Q at which firms invest is increasing in industrial concentration,

and decreasing in the price-elasticity of demand, because the rents available to producers

are increasing in firms’ market power, which is greater when competition is limited or

demand is inelastic, and these rents represent a component of firm value not captured by

book measures.1 The industry average-Q at which firms invest is higher in less capital

intensive industries,i.e., in those that have high operating expenses relative to book capital,

because the economic surplus created by “intangible” factors (e.g.,human capital) increases

a firm’s market value without contributing to book value. Industries that employ high levels

of intangible assets will consequently exhibit higher market-to-book ratios,ceteris paribus.

The precise impact of capital intensity on an industry’s average-Q depends on the degree of

competition in the industry, and this interaction between asset intangibility and industrial

concentration provides one potential test of the model.

The equilibrium solution represents a Cournot outcome. Firms, when investing, balance

the benefit of new production against the costs. The cost of new capacity exceeds the direct

development cost, because new capacity imposes a negative externality on ongoing assets.

1 That firms invest at higher levels of average-Q in more concentrated industries may be interpreted
in a real-options context, deriving from less competitive pressure to invest. With less fear of investment
preemption firms can delay investment until it is more profitable, resulting in investment occuring when
prices, and consequently both real option premia and market values, are higher.
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New capacity, by increasing aggregate industry production, tends to lower the unit price of

firms’ output, decreasing the revenues from ongoing production. When choosing how much

to invest, a firm takes into account the adverse effect this investment has on the market price,

but only to the extent that it impacts its own output. That is, a firm internalizes the price

externality in proportion to its market share.2 A low cost producer invests more than a high

cost producer, simply because she produces more efficiently, but these higher investment

levels increase the low cost producer’s market share, and consequently the extent to which

she internalizes the price externality. The equilibrium outcome is market shares that equate

firms’ marginal values of capital. As a result, both high and low cost producers invest in

response to the same positive demand shocks. A similar phenomenon occurs on the down-

side. The low cost producer, because of her large market share, internalizes more of the

positiveexternality that accrues to ongoing assets when firms disinvest, and is therefore

willing to reduce production at the same time as the high cost producer, even though her

production is more efficient.3

Because competitive pressures naturally drive firms to market shares that equate firms’

marginal valuations of capital, the industry’s organization is determined by firms’ relative

production efficiencies. That is, the equilibrium organization is a consequence of firms’

relative unit costs of doing business.

We study this endogenous industrial organization in some detail. We show that the

cross-sectional regressions of average-Q on market power, or market share, which were

popular in the structure-performance literature, represent crude, “unconditional” tests of a

linear approximation to the cross-sectional distribution of average-Q derived in this pa-

per. While the results of this earlier empirical work are generally consistent with our

2Ghemawat and Nalebuff (1985) implicitly recognize that larger firms internalize more of the price ex-
ternality from altering capacity when arguing that high capacity firms should reduce capacity in declining
industries earlier than low capacity firms.

3 The fact that the equilibrium solution represents a Cournot outcome should perhaps not come as a
surprise. The model considered in this paper resembles a dynamic version of the investment game considered
by Kreps and Scheinkman (1983). In Kreps and Scheinkman, producers face Bertrand-like prices competition
in the goods market, but do so based on capacities that result from earlier investment decisions, and this yields
outcomes that are quite generally Cournot. In the dynamic model presented in this paper, prices are set in the
short-run while investment decisions have long-run consequences, and again the outcome is Cournot.
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predictions, failing to condition on the capital intensity or price elasticity of demand of

a firm’s industry should both bias these regressions and dramatically reduce their explana-

tory power.

Competitive pressures also place efficiency bounds on industry participation. We con-

sider these bounds, showing that industries that produce goods for which demand is inelas-

tic are more likely to tolerate inefficient production. This results because efficient firms

in these industries are reticent to compete vigorously on the quantity margin, as small in-

creases in aggregate capacity have large impacts on product prices.

Finally, we examine the impact of competition, demand elasticity, operating costs, and

capital reversibility on industry revenue dynamics, focusing particular attention on the po-

tential that optimal behavior has to generate “overcapacity,”i.e.,episodes of industry-wide

negative profitability, and on the industry characteristics that determine the frequency and

severity of these episodes. We show that these episodes are both more frequent and more se-

vere in industries that are more competitive, and in industries that produce goods for which

demand is price elastic. In competitive industries, less rents are available decreasing prof-

itability and increasing the likelihood of these episodes. In industries in which consumer

demand is elastic the price externality connected with increasing capacity is small, as is

the associated incentive to delay investment, so firms invest at lower prices, increasing the

likelihood of these episodes. We also show that these episodes are more frequent, but less

severe, in industries that have higher operating costs and in industries that employ more

reversible capital. High operating costs reduce revenues directly, making these episodes

more likely. Capital reversibility decreases the cost of reducing production, so disinvest-

ment, which supports prices, is more likely, mitigating the severity of the episodes. The

very fact that these negative revenue episodes are less severe, however, makes firms less

fearful of these episodes, which leads them to invest more, increasing the likelihood that

these episodes occur in the first place.

The rest of the paper is organized as follows. Section 2 presents the economic model,

with oligopolistic firms that differ in their unit costs of production. Section 3 derives firms’
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optimal behavior in the special case when operating capital is costless. Section 4 extends

the equilibrium to the general case, when operating entails costs. Section 5 considers the

time-series and cross-sectional variation in average-Q that results from firms’ equilibrium

behavior, and shows these generate both investment-cash flow sensitivity and a value pre-

mium. Section 6 examines the industry organization that arises endogenously as a result

of competition and heterogeneity in production costs. Section 7 considers industry rev-

enue dynamics, paying particular attention to the industry characteristics that govern the

frequency and duration of episodes of industry-wide negative profitability. Section 8 con-

cludes.

2 The Economy

The “industry” consists ofn competitive, heterogeneous firms, which are risk-neutral and

assumed to maximize the expected present value of cash flows discounted at the constant

risk-free rater . These firms employ capital, which may be bought at a price that we will,

without loss of generality, normalize to one, and may be sold outside the industry at a price

˛ < 1, to produce a flow of a non-storable good or service, which we will refer to as

the “industry good.”4 While we are assuming, for the sake of parsimony, that the cost of

capital is fixed, it is simple to extend the model to allow for a variable cost of capital, and

in particular to a cost of capital that is linked to the demand for capital. We will discuss

this extension further at the appropriate juncture.

A firm can produce a flow of the industry good proportional to the level of capital it

employs, but firms differ in the efficiency of their production technologies. In particular,

firms’ technologies may differ in the amount of capital required to produce a unit of the

good. At any time firmi can produce a quantity (or “supply”) of the goodS i
t D Ki

t=ci

whereKi
t is firm i’s capital andci is firm i’s capital requirement per unit of production

4In the case of complete irreversibility (i.e.,˛ D 0) we will still allow for the free disposal of capital. That
is, a firm can always “sell” capital and cease production, even if the firm receives no consideration from the
sale.
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(i.e., c�1
i is firm i’s capital productivity). Aggregate industry production is thenSt D

��� K t , whereK t D (K1
t , K2

t , ..., Kn
t )0 and��� D (c�1

1 , c�1
2 , ..., c�1

n ) denote the vectors of

firms’ capital stocks and firms’ capital productivities, respectively, and aggregate capital

employed in the industry isKt D 111111111K t where111111111 D (1, 1, ..., 1) is then-vector of ones.

The good may be sold in a competitive market at the market clearing pricePt . The

total instantaneous gross revenue generated by each unit of capital employed by firmi is

thereforePt =ci. The market clearing price for firms’ output is assumed to satisfy an inverse

demand function of a constant elasticity form,

Pt D
�

Xt

St

�

(1)

whereSt D ��� K t is the instantaneous aggregate supply of the good and�1= is the price

elasticity of demand.5 We will assume < n, which will assure that no firm can increase

its own revenues by decreasing output. We will also assume that the multiplicative demand

shockXt is a geometric Brownian process under the risk-neutral measure,i.e., that

dXt D �X Xtdt C �X Xt dBt

where�X < r and�X are known constants, andBt is a standard Wiener process.6,7

5 This formulation is equivalent to assuming that prices are set by market clearing, and that demand is
time varying at any given price, but has constant elasticity with respect to price

Dt D XtP
�1=
t .

The level of the demand shock,Xt , may then be thought of as the quantity that consumers would demand if
the good had unit price.

6 To support this we could assume, for example, thatX evolves as a geometric Brownian process under
the physical measure, with drift��

X
and volatility�X , and that a tradable assetz exist with a price that diffuses

according to

dzt D �zztdt C �zzt dBt,

in which case�X D ��
X � �X where�X D �X (�z � r ) =�z is the “market price of demand risk.”

7 It is sufficient, for the general form of the equilibrium solution, to assume that the multiplicative demand
shock follows a time-homogeneous diffusion process, but making an explicit evolutionary assumption allows
for an explicit characterization of firms’ behavior in terms of the price of the industry good. For a further
discussion of alternative specifications see Grenadier (2002).
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Production is also assumed to entail an operating cost. This operating cost, which is

non-discretionary, is assumed to be proportional to the level of capital employed, with a

unit cost per period per unit of capital employed of�. Firm i’s total operating costs are

thenKi
t�, so� is the ratio of a firm’s operating costs to its book value. An industry that

is capital-intensive will therefore be characterized by a small�, while an industry that is

labor-intensive,e.g.,an industry that relies extensively on skilled human capital, will be

characterized by a large�.

Firm i’s net revenues from production,i.e., gross revenues from production less oper-

ating costs, are then a function of the state variablesK t andXt , and are given by

Ri(K t , Xt ) D
Ki

t

ci

�
Xt

��� K t

�

� Ki
t �. (2)

Note that firmi producesS i
t D Ki

t=ci of the good at a cost, excluding investment, ofKi
t �,

so the firm’s unit cost of production,ci�, is proportional toci, which motivates our choice

of the notationc�1
i for the firm’s capital productivity. In general, ifci < cj we will refer

to firm i as the “lower cost” or “efficient” producer, and firmj as the “higher cost” or

“inefficient” producer.

Equation (2) implies

Ri(K t , Xt )

Ki
t

D c�1
i

�
Xt

��� K t

�

� �, (3)

or that firms’ unit operating profits are affine in the price of the industry good. This relaxes

the standard assumption in the literature, made for analytic tractability, that unit operat-

ing profits are linear in the price of the industry good. The standard linear specification

results from assuming capital is costless to operate, or from assuming a Cobb-Douglas

“putty-putty” production technology that allows firms to substitute into costless factors of

production when revenues decline. The generalization presented here, which allows for

the possibility of operating losses, results from assuming a “clay-clay” investment technol-

ogy, in which the capital/labor ratio is fixed (i.e.,a Leontief production function), so factor
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substitution is not possible.8

Finally, each firm’s capital stock changes over time for three reasons: depreciation,

investment, and disinvestment. In the absence of investment, the capital employed in pro-

duction has a natural tendency to decrease over time, due to depreciation. This depreciation

is assumed to occur at a constant rateı � 0. Firms may also increase or decrease the capital

employed in production by investing or disinvesting. That is, at any time firms may acquire

and deploy new capital within the industry, or sell capital that will be redeployed outside

the industry. Firms can purchase new capital at the constant unit price of one, and sell at

the unit pricę < 1. The constant̨ parameterizes the “reversibility” of capital. Capital is

more reversible when the parameter is high, fully reversible if˛ D 1, and completely irre-

versible˛ D 0.9 A round-trip sale-repurchase of capital entails a fractional loss of1 � ˛,

so we can interpret1 � ˛ as the transaction cost associated with buying and selling capital.

The change in a firm’s capital stock, due to depreciation, investment and disinvestment, can

be written asdKi
t D �ıKi

t C dU i
t � dLi

t , whereU i
t (respectively,Li

t ) denotes firmi’s

gross cumulative investment (respectively, disinvestment) up to timet .

3 The Optimal Investment Strategy

The value of a firm’s investment depends on the price of the industry good, and therefore

depends on the aggregate level of capital employed in the industry. As a consequence, the

value of a firm depends not only on how it invests, but also on how other firms invest.

Moreover, because each firm’s investment itself affects prices, any given firm’s investment

strategy affects the investment strategy employed by other firms.

8 Even more generally, the linear specification is consistent with multiple costly factors of production,
provided the level of these factors employed in production can be costlessly adjusted, and that there exists at
least one factor (e.g.,capital) that is costless to operate. The affine specification is consistent with multiple
costly factors of production, the level of which can be costlessly adjusted,all of which entail flow costs to
operate.

9 Alternatively, we can associatę with the cost of “laying-up,” or “mothballing,” production. With
this interpretation,̨ D 0 describes an industry where the productive capacity of capital is irrevocably lost if
production is ever halted, while larger˛s are associated with industries in which production may be suspended
and, at some cost, resumed.
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The equilibrium concept employed in this paper is Markov perfect. A Markov perfect

equilibrium is one in which both 1) the past only matters through its effect on the current

level of payoff relevant state variables, and 2) the strategies yield a Nash equilibrium in

every proper sub-game.10 For a further discussion of Markov perfect equilibria see, for

example, Fudenberg and Tirole (2000). Because every Markov perfect equilibrium is Nash

the casual reader may choose to interpret the equilibrium using that concept.

3.1 The Firm’s Optimization Problem

Firms are assumed to maximize discounted cash flows, so the value of firmi is given by

V i(K t , Xt ) D (4)

max
fdU i

tCs ,dLi
tCs g

Et

�Z 1

0

e�rs
�
Ri(K tCs, XtCs )ds�dU i

tCs C ˛dLi
tCs

�ˇ̌
fdU �i

tCs , dL�i
tCsg

�

wherefdU �i
t , dL�i

t g is used to denote other firms’ investment/disinvestment at timet , and

the expectation is with respect to the risk-neutral measure.11

3.2 Equilibrium

Initially we will restrict our attention to the case when there is no flow cost to operating

capital,i.e.,to the case when� D 0. This restriction does not result in any loss of generality,

10 We may further refine the equilibrium concept to exclude strategies that may be enforcable by punish-
ment strategies feasible in the infinite-horizon setting, such as that considered by Green and Porter (1984),
by restricting attention to equilibria that are limits of finite-horizon equilibria.

11 If we allow the purchase and sale prices of capital to follow the stochastic processeskt and˛kt, re-
spectively, thenV i(K t , Xt) given by equation (4) withRi(K tCs, XtCs)ds � dU i

tCs C ˛dLi
tCs replaced by

Ri(K tCs , XtCs)ds�ktCsdU i
tCs C˛ktCsdLi

tCs, is a linear, homogeneous function ofX

t andkt . It is trivial,

consequently, to extend the analysis in this paper to the case whenkt is a geometric Brownian process. The
analysis of the firms’ optimal behavior follows that presented here, with the multiplicative demand shockXt

replaced withYt D Xt=k
1=
t . We can then capture, in a reduced form, the fact that in general equilibrium the

cost of capital is linked to the demand for capital. If the cost of capital is positively correlated with demand
(i.e., if Cov(kt , Xt ) > 0), then both capital costs and operating costs (e.g.,labor costs) tend to be high when
demand and prices are high, and low when demand and prices are low. In this case it is more expensive to
add capacity in an expanding industry, and more difficult to profitably downsize in a contracting industry.
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as we will show in Section 4 that a simple isomorphism relates this case to the more general

case.

Before formally presenting the equilibrium argument we will first offer, in an effort to

simply convey the economic intuition driving firms’ behavior, a heuristic argument. We

will follow this heuristic argument with a formal demonstration of the equilibrium strategy.

3.2.1 The Marginal Value of Capital

Consider a hypothetical “marginal firm”, which will be the first to invest or disinvest, which

we will denote firmi. This firm will invest when the price of its output rises sufficiently

high, to a level we will denotePU , and disinvest when prices fall sufficiently low, to a level

we will denotePL. As in Abel and Eberly (1996), we expect that prices will not exceed

PU or fall below PL, as at these thresholds the very act of adding or removing capacity

prevents the price of firms’ output from pushing beyond these thresholds. Within this band

firms do not alter capacity, and prices change only due to demand shocks and the natural

depreciation of capital. Because our fictional “marginal firm” will be the first to invest or

disinvest, this firm will “determine” the location of the reflecting barriers that bound the

investment/disinvestment inaction region.

Motivated by the “myopic strategy” solution technique of Leahy (1993), we expect that

the firm’s marginal valuation of capital is the product of 1) its marginal revenue products

of capital and 2) the unit value of revenues given the equilibrium price process. That is, we

will guess thatqi(K t , Xt ) � V i
Ki

(K t , Xt ) may be written as

qi(K
i
t , Pt ) D Ri

Ki
(Ki

t , Pt ) �(Pt) (5)

whereRi(Ki
t , Pt ) D Ki

tPt =ci is the firm’s revenue and�(Pt) D E
hR1

0
e�(rCı)s PtCs

Pt
ds
i

is the unit value of revenue.

The firm’s revenue depends on its capital stock directly, because it uses the capital stock

to produce the revenue generating good, and indirectly, because the price of the industry
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good depends, partly, on the firm’s production. The firm’s marginal revenue product of

capital, differentiating firm revenueRi(K t , Xt ) D Ki
tPt=ci with respect toKi, is

Ri
K i(K

i
t , Pt ) D c�1

i Pt C c�1
i Ki

t
dPt

dK i
t

. (6)

We can then rewrite equation (5), the firm’s marginal value of capital, as

qi(K
i
t , Pt ) D c�1

i Pt �(Pt) C c�1
i Ki

t
dPt

dK i
t

�(Pt). (7)

The first term on the right hand side of the previous equation is the intrinsic value of new

capital. New capital adds to firmi’s value simply because new capital produces new rev-

enues. The second term is the portion of the price externality internalized by the firm.

New capital negatively impacts the revenues of the firm’s ongoing assets through its ef-

fect on prices. New production increases aggregate output, decreasing prices, and the firm

internalizes the negative price externality in proportion to its market share.

Differentiating the inverse demand functionPt D X

t S

�
t with respect toKi

t gives

dPt

dK i
t

D � Pt

ciSt
, and substituting this into the previous equation together withKi

t=ci D S i
t ,

and lettingsi
t D S i

t =St , yields

qi(K
i
t , Pt ) D c�1

i

�
1 �  si

t

�
Pt �(Pt), (8)

which reflects the fact that the firm internalizes the price externality in proportion to its

market share,si
t .

Now if
�

1 �  s
j
t

�
=cj D

�
1 �  si

t

�
=ci for some firmj , then firm j has the same

marginal valuation of capital as the hypothetical marginal firm, and consequently faces

the same investment/disinvestment problem. If
�
1 �  s

j
t

�
=cj D

�
1 �  si

t

�
=ci for any

j 2 f1, 2, ..., ng, then every firm faces the same problem as our fictional marginal firm, and

will invest or disinvest at the thresholdsPU andPL. Firms’ marginal valuations of capital
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equate, summing over firms, if and only if firms’ market shares satisfy

s
j
t D

c �
�
1 � 

n

�
cj

 c
(9)

where we have usedc � 1
n

Pn
kD1 ck to denote the equal-weighted industry average capital

requirement per unit of production.

Assuming firms’ market shares satisfy equation (9), we can rewrite a firm’s marginal

value of capital as

q(Pt) D
�

1� 
n

c

�
Pt �(Pt), (10)

where explicit dependence onj andK
j
t has been dropped becauseqj (K

j
t , Pt ) D qk(Kk

t , Pt )

for anyj andk.

Provided the thresholdsPU andPL satisfyE
�R1

0
e�(rCı)sPsds

ˇ̌
Pt D PU

�
D c= (1 � =n)

andE
�R1

0
e�(rCı)sPsds

ˇ̌
Pt D PL

�
D ˛c= (1 � =n), then

q(PU ) D 1 (11)

q(PL) D ˛, (12)

and all firms will be happy to invest at the investment threshold and disinvest at the disin-

vestment threshold.

Moreover, this equilibrium in which firms’ market shares equate their marginal valua-

tions of capital is globally stable, because if firms’ market shares deviate from the stable

distribution given in equation (9) in any way then any investment or disinvestment in the

industry brings firms’ market shares back toward the stable distribution. While formalizing

this must necessarily wait until the next section, after we have formally demonstrated that

the proposed strategy is an equilibrium strategy, the intuition behind this global stability is

quite simple.

If the distribution of firm capacities differs from the distribution implied by equation

15



(9), then as prices rise the firm with the most under-investment, and consequently the high-

est marginal valuation of capital, will be the first to invest. It will be the only firm to invest

until it captures market share sufficient that its marginal valuation of capital equals that of

the firm with the second greatest under-investment. At this point increasing demand will

elicit investment from both of these firms, but no others, until these firms’ marginal valua-

tion of capital equals that of the firm with the next greatest under-investment. Then these

firms will all invest, but no others, until their marginal valuation of capital equals that of the

firm with the next greatest under-investment, and so on. Eventually through this process,

when demand rises sufficiently high, all firms’ marginal valuations equate and the distribu-

tion of firms’ capital is the stable distribution. Alternatively, as demand falls disinvestment

brings the distribution of firms’ capital back to the stable distribution from the other end.

Initially only the firm with the most over-investment, and consequently the lowest marginal

valuation of capital, will disinvest. When it has cut production and ceded market share

sufficient that its marginal valuation of capital equals that of the firm with the second great-

est over-investment, then both these firms, and no others, will disinvest until their marginal

valuation of capital equals that of the firm with the next greatest over-investment, and so on.

Again, eventually through this process, when demand falls sufficiently, all firms’ marginal

valuations equate and the distribution of firm capital is the stable distribution.

3.2.2 The Equilibrium Strategy

At this point we will hypothesize explicitly the investment and disinvestment strategies that

firms will employ in equilibrium. It will be necessary, of course, to check that the hypoth-

esized strategies truly constitute an equilibrium. The conditions of the strategy hypothesis,

which follows, may at first glance seem somewhat onerous, but each has a simple, intu-

itive interpretation that will be provided following the complete statement of the strategy

hypothesis.
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The Strategy Hypothesis.Suppose that

1. Each firm’s production is “sufficiently efficient,” in that its capital requirement per

unit of production is not too high, satisfying

ci <
c

1 � 

n

(13)

wherec � 1
n

Pn
jD1 cj is the equal-weighted industry average capital requirement

per unit production,12

2. Firms’ capital stocks initially satisfy

Ki
0 D

 
cci �

�
1 � 

n

�
c2

i

c2 �
�
1 � 

n

�
c2

!
K0

n
(14)

for eachi, wherec2 � 1
n

Pn
iD1 c2

j , and

3. The initial price of the good is in the interval[PL, PU ], with

PU D
c�

1 � 

n

�
˘(��1)

(15)

PL D
c˛�

1 � 

n

�
˘(�)

, (16)

where

˘(x) D
�
1 � �2

2(rCı)

�
y0(1)�y0(x)

y(x)

�
x
�

�, (17)

for y(x) D x p̌ � xˇn , and p̌ D
q�

�

�2 � 1
2

�2C2(rCı)

�2 �
�

�

�2 � 1
2

�
, ˇn D �

�
�

�2 � 1
2

�
�q�

�

�2 � 1
2

�2C2(rCı)

�2 , � D 1
rCı��

, � D 
�
�X C ı C ( � 1)

�2
X

2

�
, � D �X , and

12 This first condition is satisfied trivially if, given the order set of firms’ unit costsc1 � c2 � ... � cM ,

we letn � max
n
i 2 f1, ..., Mgj ci < ci

1� 
i

o
whereci D 1

i

Pi
jD1 cj and restrict attention to the firstn firms.
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� > 1 satisfies

˘(�)

�˘(��1)
D ˛. (18)

Then all firms will invest in new capital wheneverPt reachesPU , and disinvest whenever

Pt reachesPL, in proportion to their existing capital.

The first condition of the strategy hypothesis is a participation constraint. It demands

that each firm’s production is sufficiently efficient that a profit maximizing firm will remain

in the industry. If equation (13) does not hold a firm’s capital cost per unit of production

is higher than the maximum the industry will support, and the firm will eventually exit the

industry.

The second and third conditions essentially demand that the current state of the market

is consistent with some history. In particular, the second condition requires that firms’

market shares are initially those that the competitive equilibrium will support, while the

third condition guarantees that no firm immediately finds it optimal to alter the level of its

capital stock. While the equations contained in these conditions are somewhat complicated,

they too have simple, intuitive interpretations.

In the second condition, equation (14) requires that firms’ relative productions are those

to which competitive pressures naturally drive them. It demands that each firm’s production

is proportional to its “cost wedge,” where the “cost wedge” is the difference between its

capital costs per unit of production and the maximum cost the industry will support. That

is, given any two firmsi andj their market shares have the ratio

S i
t

S
j
t

D
c

1� 
n

� ci

c
1� 

n

� cj

. (19)

The industrial organization implied by equation (19), which arises naturally in response to

competition, will be studied in greater detail in Section 6.

The third condition requires that the price of the industry good must be between the
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investment and disinvestment price thresholds given by equations (15) and (16). This is

natural, because the act of investing itself puts downward pressure on price, preventing

prices from rising abovePU in the natural course of business, while the act of disinvesting

supports prices and prevents them from falling belowPL. The threshold levels themselves

may also be interpreted intuitively. Equation (15) says that firms will invest when the

marginal value of a unit of production, accounting for both the value of new capital’s rev-

enues and the cost that new capital imposes on old capital’s revenues through the price

channel, equals the industry average (equal weighted) capital cost per unit of production.

Equation (16) says firms will disinvest when the marginal value of a unit of production

equals the industry average (equal weighted) sale price of capital per unit of production.

The factor� implicitly defined by equation (18) is unique, because the left hand side is

decreasing on the interval(0, 1), and takes the values1 as� goes to1 and0 as� goes to1.

Equation (18), in conjunction with equations (15) and (16), also implies that� D PU =PL.

Finally, the existing literature contains two important special cases of the model pre-

sented in this paper, and we should expect that the strategy here agrees with the known

strategies in these special cases. Grenadier (2002) solves for the special case when firms

are homogeneous, capital is completely irreversible and does not depreciate, and there is

no operating cost to production. Abel and Eberly (1996) solve for the special case of a

single monopolistic firm when there is no operating cost to production. The solutions in

these papers are special cases of the more general solution presented here, as described in

detail in the appendix (A.1, The Limiting Cases).

Now given the initial hypothesized distribution of firms’ capital stocks, firmi’s market

share is given by

si
t D

c �
�
1 � 

n

�
ciPn

jD1

�
c �

�
1 � 

n

�
cj

�

D
c �

�
1 � 

n

�
ci

 c
, (20)
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which satisfies equation (9), so themarginal value of capital equates across firms and is

given, in equation (10), byq(Pt) D (1 � =n) Pt �(Pt)=c.

In order to calculate the marginal value of capital at the hypothesized investment and

disinvestment thresholds explictly, we need an explicit formulation for the unit value of

revenue,�(P). Under the hypothesized strategyPt is a geometric Brownian process with

an upper reflecting barrier atPU and a lower reflecting barrier atPL, and wheneverPt 2

(PL, PU )

dPt

Pt

D
d

�
Xt

��� K t

�

�
Xt

��� K t

�

D 
�
�X � �2

X

2

�
dt C �dBt C  2�2

X

2
dt C  ıdt (21)

D �dt C �dBt

where� D 
�
�X C ı C ( � 1)�2

X =2
�
, and� D �X . The perpetuity factor for a geomet-

ric Brownian price process currently atP with reflecting barriers atPL � P andPU � P is

provided in the following proposition. For the sake of expositional convenience the proofs

of this and all propositions are left for the appendix (A.2, Proofs of Propositions).

Proposition 3.1. The perpetuity factor for a geometric Brownian process currently atx

with reflecting barriers ata � x andb � x, which we will denote�
b

a
(x), is a homogeneous

degree-zero function ofa, b, andx jointly, and

�
v

1
(u) D � C �

v

1
(u) u�1 (˘(v) � �) C �

v

1
(u) u�1v

�
˘(v�1) � �

�
(22)

where

�
v

1
(u) D

v p̌uˇn � vˇnu p̌

v p̌ � vˇn
(23)

�
v

1
(u) D

u p̌ � uˇn

v p̌ � vˇn
(24)

and�, ˘(x), p̌ , andˇn are given in the Strategy Hypothesis.
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In the preceding lemma, the factors�
v

1
(u) and�

v

1
(u) are the state prices for a geometric

Brownian process, which starts atu, hitting 1 beforev, and hittingv before1, respectively.

The factors̆ (v) and˘(v�1) are the perpetuity factors when the process is at the lower

and upper barriers, respectively.13 Note that with this interpretation of̆ (x), as the perpe-

tuity factor for a doubly reflected geometric Brownian process when the process is at one

barrier and the other barrier is atx times the current level, then the defining equation for

� in the strategy hypothesis, equation (18), also has an intuitive interpretation. With this

interpretation equation (18) says that the expected discounted values of the cash flows gen-

erated from a unit of capital at the investment and disinvestment thresholds have the same

ratio as the purchase and sale prices of capital.

At the investment and disinvestment thresholds we have, from the preceding lemma,

that�(PU ) D ˘(��1), �(PL) D ˘(�). Substituting these, along with the hypothesized

values forPU andPL given in equations (15) and (16), into firms’ marginal value of capital,

we then have thatq(PU ) D 1 andq(PL) D ˛. That is, if other firms follow the hypothe-

sized strategy then any given firm’s shadow price of capital is equal to 1) the cost of capital

at the hypothesized investment threshold, and 2) the sale price of capital at the hypothe-

sized disinvestment threshold. It is thus quite plausible that the hypothesized strategy is an

equilibrium strategy. The fact that it indeed is an equilibrium strategy is formalized in the

following proposition.

Proposition 3.2. Suppose the conditions of the strategy hypothesis hold. Then the hypoth-

esized strategy is an equilibrium strategy for every firm. Moreover, the strategy is globally

stable.

The equilibrium investment and disinvestment thresholds’ dependence on capital’s re-

versibility is shown below, in Figure 1. The thresholds are shown as a fraction of the invest-

ment threshold when capital is completely irreversible,P 0
U . As the value of disinvesting

falls to zero the investment threshold, as expected, approaches the investment threshold

when capital is fully irreversible, while the disinvestment threshold falls to zero. At the

13 Note that̆ (1) D 1=(r C ı), as it should.
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other extreme, and also as expected, as capital becomes fully reversible the investment and

disinvestment thresholds converge. The manner in which these thresholds diverge as the

cost of reversibility becomes non-zero is, however, quite surprising, as originally noted by

Abel and Eberly (1996).14 Interpreting1 � ˛, the loss associated with the round-trip sale-

repurchase of capital, as a transaction cost, then even small transaction costs lead to a sig-

nificant inaction region in which firms will neither invest or disinvest in response to demand

shocks. In Figure 1, for example, a seemingly insignificant ten basis point transaction cost

leads to an 18 percent spread between the investment and disinvestment thresholds. Adjust-

ment costs are not necessary for generating infrequent lumpy investment, as even a small

transaction friction generates a large region in which firm investment is non-responsive to

changes in average-Q.

0.2 0.4 0.6 0.8 1
Α

0.2

0.4

0.6

0.8

1

P�PU
0

Figure 1: Investment and Disinvestment Thresholds

The upper curve (bold) depicts the investment threshold, while the lower curve depicts the
disinvestment threshold, as a function of the reversibility of capital, and as a fraction of the
investment threshold when investment is irreversible. Parameters arer D 0.05, � D 0.03,
� D 0.20, ı D 0.02, andc D 1.

14 This divergence may be less surprising to readers familiar with the literature on portfolio choice. It is
well known that even tiny proportional transaction costs generate a significant wedge between the portfolio
“trigger weights” at which a constant relative risk aversion investor will rebalance her holdings between risky
and risk-free assets, a result very similar to that presented here. See, for example, Davis and Norman (1990).
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Firms’ marginal value of capital, as a function of the price of the industry good, is shown

below, in Figure 2. In the figure the sale price of capital is 60 percent of the purchase price

(˛ D 0.6) i.e., a 40 percent transaction cost, and there are ten equal sized competitors.

In equilibrium firms invest when the unit price of the industry good rises to 10.5 percent

of the purchase price of capital, and disinvest when it falls to 2.2 percent of the purchase

price. All the boundary values are satisfied, withq(PU ) D 1, q(PL) D .6 D ˛, and

q0(PL) D q0(PU ) D 0.

0.02 0.04 0.06 0.08 0.1
P0.6

0.7

0.8

0.9

1
q

Figure 2: Firms’ Marginal Value of Capital

The figure depicts firms’ marginal value of new capital, relative to its price, as a function of
the price of the industry good. Parameters arer D 0.05, � D 0.03, � D 0.20, ı D 0.02,
c D 1,  D 1, n D 10, and˛ D 0.60.

3.3 An Alternative Characterization of the Equilibrium Strategy

The equilibrium investment strategy has an alternative formulation, in which firms invest

and disinvest when the aggregate industry average-Q reaches trigger thresholds. The char-

acterization has two practical advantages: it is particularly simple and intuitive, and it is

given in terms of standard, observable economic variables.

23



The average-Q level that triggers investment in this alternative characterization of the

equilibrium strategy depends on two factors: 1) the price-elasticity of demand for the in-

dustry good, and 2) the Herfindahl index, a common measure of market concentration

calculated by summing the squared market shares of firms competing in the market.15 The

disinvestment threshold also depends on the price-elasticity and the Herfindahl index, as

well as on the reversibility of capital.

This alternative characterization will be simplified by introducing the industry “average

cost of production,” defined asC � Kt=St .16 Given the equilibrium distribution of firms’

capacities,C has the explicit formulation

C �
Pn

jD1 ccj �(1� 
n )c2

jPn
jD1 c�(1� 

n )cj

D n


�
c �

�
1 � 

n

�
c2

c

�
. (25)

The industry’s Herfindahl index, defined asH �
Pn

jD1(S
j
t =St)

2, given the equilibrium

distribution of firm capacities, is

H D
nX

jD1

�
c�(1� 

n )cjPn
kD1 c�(1� 

n )ck

�2

D
nX

jD1

c2�(1� 
n )ccj �(1� 

n )(ccj �(1� 
n )c2

j )
 2c2 (26)

D 1


�
1 �

�
1 � 

n

�
C
c

�
.

15 The U.S. Department of Justice and the Federal Trade Commission use this index extensively when
evaluating mergers and acquisitions for potential anti-trust concerns. Markets in whichH 2 [0.1, 0.18] are
considered to be moderately concentrated, and those in whichH > 0.18 are considered to be concentrated.
Transactions that increaseH by more than0.01 points in concentrated markets presumptively raise antitrust
concerns under the Horizontal Merger Guidelines issued by the DOJ and the FTC.

16 Industry operating costs per unit of production are�Kt=St D �C , which is linear inC , motivating
the term “average cost of production.” This interpretation ofC is problematic when� D 0. An alternative
interpretation that is valid even when� D 0, but we have eschewed because it is unwieldy, is thatC is the
industry’s production-weighted average capital cost per unit of production.
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Rearranging the previous equation yields

C D
�

1 � H

1 � 

n

�
c. (27)

That is, the average cost of production is proportional to the equal-weighted cost, and is

linearly decreasing in the Herfindahl index. It is also weakly less that the equal-weighted

cost, becauseH � 1=n.

This equation for the average cost of production allows for a particularly intuitive char-

acterization of firms’ optimal investment and disinvestment strategy. SubstitutingC =(1 �

H) for c=(1 � =n) in the equations for the equilibrium investment and disinvestment

thresholds, and using the fact thatSt D Kt=C , yields the following proposition on̋ , the

aggregate industry average-Q assets-in-place.

Proposition 3.3. Suppose that the conditions of the Strategy Hypothesis hold. Then the

investment and disinvestment thresholds satisfy

˝U D
StPU ˘(��1)

Kt

D
1

1 � H
(28)

˝L D
StPL˘(�)

Kt

D
˛

1 � H
. (29)

The left hand sides of equations (28) and (29) are the levels of aggregate industry

average-Q of deployed capital (i.e., assets-in-place) at the times firms choose to invest

and to disinvest, respectively. That is, these equations reveal that in equilibrium firms will

invest when aggregate industry average-Q of assets-in-place hits a constant that accounts

for oligopoly rents (i.e., the “average” extent to which firms internalize the price external-

ity of new capital), which is increasing in the Herfindahl index and decreasing in the price

elasticity of demand for the industry good. Firms will disinvest when industry average-Q

of assets-in-place falls to that same constant, adjusted for the reversibility of capital.17

17 Moreover, while the Strategy Hypothesis is predicated on the assumed geometric Brownian multiplica-
tive demand shock, this average-Q of assets-in-place characterization is independent of the particular speci-
fication of the time-homogeneous diffusion process underlying demand.
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While the characterization in terms of aggregate industry average-Q of assets-in-place

is particularly elegant conceptually, a characterization in terms ofobservableaverage-Q,

which includes the value of firms’ real options to adjust capacities, would be more use-

ful. We will provide a characterization in terms of observable average-Q, after we have

considered firms’ optimal investment / disinvestment strategies in the general case, which

includes a cost to operating capital.

4 The General Case

In the previous section we considered the equilibrium investment and disinvestment deci-

sions of competitive heterogeneous firms with no cost to operating capital. In this section

we consider the more general case, when production entails a non-zero operating cost,�,

per unit of capital per period.

Calculating the equilibrium strategy in the more general case is isomorphic to the prob-

lem we solved in the previous section. Firms will again invest only when the marginal value

of capital equals the “cost” of new capital, and will disinvest when the marginal value of

capital equals the “value” of uninstalling capital. With operating costs, however, the “cost”

of new capital and the “value” of uninstalling capital are not simply the purchase and sale

prices. When investing in new capital firms account for the future operating expense the

purchase entails, and when disinvesting they account for the future cost savings the sale

generates. Consequently, a firm will invest only when the marginal value of capital equals

the purchase price plus the expected cost of operating the new capital discounted at the Jor-

gensonian user cost, and will disinvest when the marginal value of capital equals the sale

price plus the expected discounted gains of no longer operating the capital,i.e.,will invest

atPU , and disinvest atPL, where

q(PU ) D 1 C � (30)

q(PL) D ˛ C � (31)
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where� D �

rCı
is the capitalized cost of operating capital in perpetuity. This is exactly

the problem solved in the previous section, when firms faced no operating costs, but with

capitaleffectivelymore expensive, but also more reversible, than implied directly by the

purchase and sale prices of capital. That is, firms face the same problem they would if

operating costs were zero, but where the “effective” cost and the “effective” reversibility of

capital are given by

Ok D 1 C � (32)

Ǫ D
˛ C �

1 C �
. (33)

This immediately implies the equilibrium strategy for arbitrary operating costs to operating

capital, which is given in the following proposition.

Proposition 4.1. Suppose that the first two conditions of the strategy hypothesis hold, and

that the initial price of the good is in the interval[PL, PU ], where

PU D
C (1 C �)

(1 � H) ˘(��1)
, (34)

PL D
C (˛ C �)

(1 � H) ˘(�)
(35)

and� > 1 satisfies

˘(�)

�˘(��1)
D

˛ C �

1 C �
. (36)

Then all firms will invest in new capital wheneverPt reachesPU , and disinvest whenever

Pt reachesPL, in proportion to their existing capital.

4.1 The Alternative Characterization in the General Case

We can again produce an intuitive “alternative characterization” of the investment and dis-

investment strategies,i.e., a positive operating cost analogue of the characterization given
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in Proposition 3.3. Firms will again invest and disinvest when industry average-Q of assets-

in-place reaches trigger thresholds. When production entails operating costs, however, the

investment and disinvestment thresholds are slightly more complicated than they were in

the case when operating costs were zero. With operating costs the investment and disin-

vestment thresholds will, in addition to accounting for oligopoly rents, now depend on the

capital intensity of the industry,i.e., on the “tangibility” of the capital employed in pro-

duction. Importantly, the characterization will still depend only on standard, observable

economic variables.

Multiplying both the numerators and denominators of the right hand sides of equations

(34) and (35) byKt , rearranging usingc= (1 � =n) D C =(1 � H) andSt D Kt =C , and

subtracting expected discounted operating costs divided by book value from both sides, and

letting L D H , yields the following proposition.

Proposition 4.2. Suppose that the conditions of Proposition 4.1 hold. Then the investment

and disinvestment thresholds satisfy

˝U D
StPU ˘(��1) � �Kt

Kt

D
1 C �L

1 � L
(37)

˝L D
StPL˘(�) � �Kt

Kt

D
˛ C �L

1 � L
. (38)

In the previous equationsL is used to denoteH becauseH is the market Lerner

index (fraction by which output-weighted average marginal cost falls below price in the

goods market) in the standard Cournot model. Care should be taken, however, as the market

power index in this economy, in which capital is costly and not completely reversible, does

not equalL. The market power index in this economy is, however, increasing inL, and we

will consequently refer toL as firms’ “pseudo market power.”18

The left hand sides of equations (37) and (38) are the levels of aggregate industry

18 In the case of fully reversible capital, and if we follow Pindyck (1987) and calculate the market power
index asL� D (P � FMC )=P whereFMC is the “full marginal cost” of production, which includes the
Jorgensonian user cost of capital, thenL� D L. A more general consideration of the relation betweenL�

andL is left for the appendix, in section A.3.
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average-Q of deployed capital at the time firms choose to invest and at the time firms

choose to disinvest, respectively. Firms will invest when the industry average-Q of assets-

in-place hits a constant that accounts for oligopoly rents and the capital intensity of the

industry, which is increasing in firms’ pseudo-market power,L, and decreasing in the ratio

of operating costs to the book value,�. Firms will disinvest when industry average-Q of

assets-in-place falls to a similar constant, which additionally accounts for the reversibility

of capital.

This characterization is consistent with the observation that market-to-book ratios tend

to be higher,ipso facto,in industries in which firms have market power, and in industries

characterized by a high level of intangible assets,i.e.,high levels of assets that do not appear

on the books but that require ongoing cash outlays to maintain, such as human capital. That

is, the ratio of average-Q to marginal-q is higher in industries that have high operating

costs relative to their capital, because any rents that accrue to operating costs increase

market value without increasing book value. The equilibrium characterization provided in

Proposition 4.2 suggests that the critical market-to-book thresholds’ dependence on market

power should be stronger in industries that are labor-intensive or characterized by intangible

assets.

4.2 The Cross-Section of Average-Q of Assets-in-Place

Proposition 4.2 can be generalized to relate an arbitrary firm’s average-Q of assets-in-place

to its marginal-q at any time (i.e.,not just at the investment and disinvestment thresholds),

as given in the following proposition.

Proposition 4.3. A firm’s average-Q of assets-in-place is affine in its marginal-q, and

given by

˝i
t D qt C �i (qt C �) . (39)

where�i D C=(1�L)

ci
� 1 is firm i’s “excess productivity,” i.e., the fraction by which the
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firm’s productivity exceeds the minimum productivity that supports industry participation.

Note that aggregating the previous equation over firms on a capital-weighted basis, and

evaluating at the investment and disinvestment thresholds, yields the alternative equilibrium

characterization given in Proposition 4.2.

The relationship given in equation (39) may be characterized, alternatively, as

˝i
t C � D

�
C =(1�L)

ci

�
(qt C �) . (40)

That is, the ratio of a firm’s “revenue average-Q” to its “revenue marginal-q,” where these

are the average and marginal values of deployed capitalignoring operating costs,is equal

to the ratio of its productivity,1=ci, to the minimum productivity the industry will tolerate,

(1 � L)=C .

Aggregating equation (40) over firms, we have that the ratio of aggregate industry “rev-

enue average-Q” to “revenue marginal-q” is simply 1=(1�L). That is, including the value

of “pre-paying” operating costs in the cost of capital (i.e., adding in the expected cost of

operating in perpetuity, discounted at the Jorgensonian user costr C ı), the ratio of the

average and marginal values of assets-in-place in the general case agrees exactly with the

special case in which operating capital is costless, given in Proposition 3.3.

5 Average-Q

While proposition 4.2 provides a simple, intuitive characterization of the equilibrium in-

vestment/disinvestment strategy, it is in terms of unobservable average-Q of assets-in-

place. We will now provide a more natural characterization, in terms of actual, observable

average-Q, the ratio of market value to the replacement cost of capital. We will also relate

variation in firm and industry characteristics to cross-sectional variation in average-Q.

This cross-sectional characterization of average-Q potentially provides a unified expla-

nation for both 1) observed investment-cash flow sensitivity, even after controlling forQ,
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and 2) the “value premium” observed in the cross-section of expected returns.

Investment-cash flow sensitivity arises becauseQ is less sensitive to demand, in equi-

librium, when demand is high. When demand is high firms are more likely to invest, and

this endogenous supply response absorbs some of the impact of demand shocks, attenuat-

ing the impact of demand shocks on firm value. Consequently investment, which occurs

in response to rising demand when demand is already high, coincides with large posi-

tive cash flow shocks, caused by large positive demand shocks, but only when these cash

flow/demand shocks comewithoutcorrespondingly largeQ-shocks, becauseQ is insensi-

tive to demand when demand is already high. Conversely, large positive cash flow shocks

coincident with correspondingly largeQ-shocks are not associated with investment, be-

cause largeQ-shocks are only observed when demand is low.

The value premium arises because sorting on market-to-book generates a growth port-

folio that tends to contain firms in fast growing, concentrated, labor intensive industries that

employ reversible capital, while the value portfolio tends to contain firms in slow growing,

competitive, capital intensive industries that employ irreversible capital. This can generate

the value premium because 1) slow growing industries tend to be more exposed to demand

risk than fast growing industries; 2) industries that employ irreversible capital tend to be

more exposed to demand risk than industries that employ more reversible capital; 3) con-

centration is relatively uncorrelated with exposure to demand risk, unconditionally; and 4)

while labor intensive industries tend to be more exposed to demand risk than capital inten-

sive industries, within labor intensive industries low market-to-book, high cost producers

tend to be more exposed to demand risk than high market-to-book, low cost producers. The

value premium that arises is countercyclical, because the sorting procedure generates more

variation is risk exposure between value and growth portfolios when demand is low.

5.1 Cross-Section of Average-Q and Equilibrium Investment Strategy

The value of a firm is not just the value of its assets-in-place. Firm value includes economic

rents expected to accrue to capital that will be deployed in future “good times,” which will
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be bought at a price below the value of the revenues it is expected to generate. It also

accounts for the costs associated with reducing capacity to support prices in “bad times,”

when capital will be sold at a price below the revenues it could have been expected to

generate.

Firm i’s value satisfies the standard differential equation,�PVP C �2

2
P 2VPP D (r C

ı)V , which implies

Qi
t D ˝i

t C ai
n

�
Pt

PL

�ˇn

C ai
p

�
Pt

PU

�
p̌

(41)

for someai
n andai

p . This, taken with the differentiability of firm value at the investment

and disinvestment boundaries, implies the following proposition.

Proposition 5.1. Average-Q for firm i is given, as a function of the price of the industry

good, by

Qi
t D qt C �i

 
(qt C �) C an

�
Pt

PL

�ˇn

C ap

�
Pt

PU

�
p̌

!
(42)

where�i D C=(1�L)

ci
� 1 is firm i’s ”excess productivity” and

an D
(1 C �) � � p̌(˛ C �)

(ˇn � 1)
�
�ˇn � � p̌

� (43)

ap D
(˛ C �) � ��ˇn(1 C �)�
 p̌ � 1

� �
�� p̌ � ��ˇn

� . (44)

Industry average-Q is the capital-weighted average of individual firm average-Q’s,

Q D V =K D
P

i KiQi=
P

i Ki, so aggregate industry average-Q is given by

Qt D qt C
�

L

1 � L

� 
(qt C �) C an

�
Pt

PL

�ˇn

C ap

�
Pt

PU

�
p̌

!
. (45)

Evaluating at the investment and disinvestment thresholds then gives the investment thresh-

olds in terms of aggregate industry average-Q, provided in the following proposition.
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Proposition 5.2. Suppose that the conditions of Proposition 4.1 hold. Then the investment

and disinvestment thresholds satisfy

QU D 1 C
�

L

1 � L

��
1 C � C an�ˇn C ap

�
(46)

QL D ˛ C
�

L

1 � L

��
˛ C � C an C ap�� p̌

�
. (47)

Equation (46) says the market value of capital exceeds the book value by
�

L
1�L

�
(1 C

�), the value of the oligopoly rents expected to accrue to capital currently deployed, plus
�

L
1�L

� �
an�ˇn C ap

�
, the value of the firm’s ability to alter the level of its capital stock in

the future. The equation for the disinvestment threshold may be interpreted similarly.

Also note that the investment threshold reduces, in the case of completely irreversible

capital, toQU D 1 C
�

L
1�L

� �
p̌

p̌�1=

�
(1 C �). In this case we can also easily quan-

tify the relative contributions of oligopoly rents to assets-in-place and real options to firm

value. The value of oligopoly rents to assets-in-place, per unit of capital, is˝U � 1 D
�

L
1�L

�
(1 C �). The value of real options, per unit of capital, isQU �˝U D

�
L

1�L

� �
1

 p̌�1

�

(1 C �). The ratio of the values of real options to oligopoly rents is therefore1

ˇX
p �1

, where

ˇX
p D  p̌ is the positive root of

�
�X � �2

X =2
�

X C �2
X X 2=2 D (r C ı). Real options are

consequently unimportant drivers of firm value, relative to rents to assets-in-place, in slow

growing industries with steady demand (i.e., for small�X and�X , in which casě X
p � 1),

but are much more important than rents to assets-in-place in fast growing industries (i.e., if

�X � r C ı, in which casě X
p � 1).19

5.2 Investment-cash flow Sensitivity

The sensitivity of average-Q to demand falls toward the investment boundary, because

average-Q of assets-in-place is insensitive to demand shocks at the boundary. The sensi-

19 If we were to allow for endogenous entry, and assumed fixed costs of entry uncorrelated with growth
rates across industries, this would lead to greater competition (as opposed to greater average-Q) in fast
growing industries.
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tivity of firm value to the price of the industry good is the value-weighted average of the

sensitivities of the components to firm value given in equation (42). The contribution of

assets-in-place to the sensitivity of firm value to demand goes to zero at both the investment

and disinvestment thresholds, resulting in an overall sensitivity that is hump-shaped in the

price of the industry good. The hump is more pronounced when assets-in-place are a large

component of overall firm value: for high cost producers, in competitive industries, and

in industries in which demand growth is slow and steady. This hump shape is apparent in

figure 3, which shows average-Q (top) and the sensitivity of firm value to changes in cash

flows (bottom) as a function of the price of the industry good. This hump shape is more

pronounced in the left panel, which depicts a highly competitive industry (H D 0.01) than

in the right panel, which depicts a moderately concentrated industry (H D 0.10). In both

pictures the hump shape is more pronounced for high-cost producers (dotted lines) than for

average cost producers (dashed lines) or low cost producers (solid lines). These qualitative

features are robust to the choice of other parameters.

The falling sensitivity of value to demand risk at the investment threshold generates

investment-cash flow sensitivity,i.e., implies cash flows should “explain” investment even

after controlling forQ.20 Regressions of investment ontoQ and cash flow that measure

the sensitivity ofchangesin the left-hand side variable to changes in the right-hand side

variables, either explicitly (e.g., regressions that use first-differences) or implicitly (e.g.,

regressions in levels that include fixed effects), will always find an explanatory role for

cash flows after controlling forQ. This is true even if the proximate cause of investment

is the shadow cost of capital reaching its price,i.e., even if firms invest when and because

marginal-q equals one.

This results because the ultimate cause of investment is rising demand and, because of

the falling sensitivity of firm value to demand shocks, changes inQ are a poor proxy for

20 Kogan (2004) uses the fact that firm value becomes less sensitive to demand risk near investment to argue
that market-to-book should theoretically be inversely correlated with risk, and consequently expected returns,
in the time-series. In a perfectly competitive environment, which precludes real options, he shows that firms
are less exposed to demand risk when supply is elastic,i.e., when demand and consequently market-to-book
are high, generating a temporal value premium.
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Figure 3: Average-Q and the Sensitivity of Value to Changes in Cash Flow

The top panels show Average-Q, and the bottom panels show the sensitivity of firm value
to changes in the price of firms’ output, for three different firms in a single industry, as a
function of price in the product market relative to the disinvestment and investment thresh-
olds. The dotted line represents a marginal producer that has a cost of capital as high as the
industry will tolerate,c D C =(1 � L). The dashed line is an average producer that has a
unit cost of production equal to the industry average,c D C . The solid line is an efficient
producer, one that is as efficient relative to the industry average as the industry average is to
a high cost producer, withc D (1 � L)C . Left hand panels show a highly competitive in-
dustry, with a Herfindahl ofH D 0.01. Right hand panels show a moderately concentrated
industry, with a Herfindahl ofH D 0.10. Other parameters arer D 0.05, �X D 0.03,
�X D 0.20, ˛ D 0.5,  D 1 and� D 0.1.

changes in demand when demand is high. Investment is associated with positive demand

shocks, which translate directly into prices and consequently cash flows, but have an at-

tenuated impact onQ because of the falling sensitivity ofQ to demand near investment.

Investment will consequently be associated with positive cash flow shocks precisely when

Q is insensitive to demand, and thus associated more strongly with cash flow shocks than

Q shocks. Large positive concurrent shocks to cash flows andQ are associated with large
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positive demand shocks when demand is moderate and investment unlikely, while large

positive cash flow shocks that come with smallQ shocks are associated with large positive

demand shocks when demand is high and investment likely.

This suggests an alternative empirical strategy. Investment occurs in response to posi-

tive demand shocks when demand is already high. Cash flow shocks provide a proxy for

demand shocks, but common empirical specifications do a poor job identifying the level of

demand. The fact that the sensitivity ofQ to demand falls with demand suggests identi-

fying the level of demand using the relative magnitude ofQ shocks to cash flow shocks.

That is, we should see investment in response to positive cash flow shocks when cash flow

shocks are large relative toQ shocks, but not in response to cash flow shocks when cash

flow shocks come with largeQ shocks.

Finally, we can make cross-sectional predictions regarding which firm and industry

characteristics will be associated with higher investment-cash flows sensitivities. Firm

value is particularly insensitive to demand when demand is high in industries in which

real options are less important. Consequently,Q will be a worse proxy for demand, and

cash flows will have greater explanatory power, in these industries. We would therefore ex-

pect to see higher investment-cash flow sensitivities among high cost producers and firms

in slow growing industries, competitive industries, and industries that employ irreversible

capital.

5.3 The Cross-Section of Average-Q and Expected Returns

Equation (42) specifies average-Q as a function of firm and industry characteristics and

can be used to calculate the sensitivity of firm value to demand, providing a means to

study the relationship between market-to-book and expected returns. This relationship has

been studied extensively in the finance literature, in which it is now common practice to

include Fama and French’s (1993) adjustment to expected returns to account for the “value

premium.”

While the finance literature has generally looked at this relationship unconditionally,
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it makes economic sense to consider the relationship within an industry distinctly from

the relationship across industries. One great advantage of an analysis using heterogenous

agents is that it allows us to do so. Within an industry firms differ primitively in their

production efficiencies, but face the same basic economic environment. As a result, the

intra-industry implications are relatively clean.

More care must be taken evaluating cross-industry results. Comparative statics that

consider changes in one industry characteristic while holding all others constant implicitly

fail to recognize that industries organize endogenously in response to these characteristics.

For example, if we consider two industries that are identical in all respects except that one

is concentrated and the other is competitive, we should consider what differences outside

the model lead to the different organizational outcome. In practice, moreover, mundane

issues such as systematic biases in measurement (arising, for example, from differences

in standard industry accounting practices), make cross-industry implications more difficult

to interpret. Nevertheless, it is still useful to consider the inter-industry cross-sectional

relation between market-to-book and expected returns, provided we do not lose sight of the

confounding issues.

5.3.1 The Cross-Section of Intra-Industry Average-Q and Expected Returns

Real options models typically have a difficult time generating a value premium, as the op-

tion to add new capacity is a “levered” position in the underlying risk, in the sense that the

elasticity of the option value with respect to demand is higher than the elasticity of revenues

to assets-in-place with respect to demand. Carlson, Fisher and Giammarino (2004) intro-

duce “operating leverage” as a plausible explanation for the observed value premium. If

the demand beta of revenues is higher than the demand beta of costs, then falling demand is

associated with lower market values, and therefore lowerQs, which increases the effective

leverage of assets-in-place increasing their overall sensitivity to demand.

In equilibrium, however, average-Q of assets-in-place is insensitive to demand shocks

at the investment boundary, irrespective of operating leverage, and this puts restrictions
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on the operating leverage hypothesis. Because the endogenous supply response insulates

assets-in-place from demand shocks when demand is high, assets-in-place are always less

risky than growth options at the investment threshold. That is, in good times equilibrium

concerns dictate that, within an industry, “value” is less risky.

Even so, it is not difficult to generate an unconditional intra-industry value premium, but

it does requires several elements. First, and not surprisingly, the value premium is related

to the magnitude of operating costs. High operating costs increase the effective leverage

of assets-in-place, making them at least potentially more risky. The value premium also

requires that the revenue betas of assets-in-place are significantly higher than their cost

betas. Irreversibility consequently plays a fundamental role in generating an intra-industry

value premium, a point stressed by Zhang (2006). Because firms reduce production at the

disinvestment boundary, the cost beta is high when demand is sufficiently low, resulting in

assets-in-place values that are again insensitive to demand. With even a moderate degree of

irreversibility, the fact that in equilibrium the sensitivity of assets-in-place is pinned at zero

at the disinvestment threshold severely limits the potential for a significant value premium.

Figure 4 shows the importance of both high operating leverage and a high degree of

irreversibility for generating a value premium. The top panels show low operating leverage

(� D 0.1), and the bottom panels show high operating leverage (� D 2), while the left

hand panels show a moderate degree of reversibility (˛D 0.5), and the right hand panels

show a high degree of irreversibility (˛ D 0.1). Only in the bottom right, when operating

costs are high and capital is largely irreversible, do we see an unconditional value premium.

Even with high costs and irreversibility value is less risky when demand is high. The value

premium is countercyclical, with a greater difference in expected returns between value

and growth when demand is low, and turns negative when demand is sufficiently high.

5.3.2 The Cross-Section of Inter-Industry Average-Q and Expected Returns

Sorting firms on market-to-book is not a simple sort on any one particular industry char-

acteristic, but a complicated sort that confounds difference between industries in multiple

38



0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

1.
2.
3.
4.
5.
6.
7.

Labor Intensive, Some Reversibility

0 0.2 0.4 0.6 0.8 1

-7.5
-5
-2.5

0
2.5

5
7.5

1.
2.
3.
4.
5.
6.
7.

Labor Intensive, Little Reversibility

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

0.5

1.

1.5

2.

2.5

Capital Intensive, Some Reversibility

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

3

0.5

1.

1.5

2.

2.5

Capital Intensive, Little Reversibility

Figure 4: ˇ and Average-Q within an Industry

Each panel of the figure shows the sensitivity of firm value to changes in demand (top
curves, left hand scale) and Average-Q (bottom curves, right hand scale) for three different
firms in a single industry, as a function of(P � PL)=(PU � PL), price in the product
market relative to the disinvestment and investment thresholds. The dotted line represents
a marginal producer that has a cost of capital as high as the industry will tolerate,c D
C =(1 � L). The dashed line is an average producer that has a unit cost of production equal
to the industry average,c D C . The solid line is an efficient producer, one that is as efficient
relative to the industry average as the industry average is to a high cost producer, with
c D (1�L)C . The top left shows a capital intensive industry with some capital reversibility,
� D 0.1 and˛ D 0.5. The top right shows a capital intensive industry that employs largely
irreversible capital,� D 0.1 and˛ D 0.1. The bottom left shows a labor intensive industry
with some capital reversibility,� D 2 and˛ D 0.5. The bottom right shows a labor intensive
industry that employs largely irreversible capital,� D 2 and˛ D 0.1. Other parameters are
r D 0.05, �X D 0.03, �X D 0.20,  D 1, H D 0.01

dimensions. Sorting firms on market-to-book does tend, however, to induce a sort on any

particular dimension, holding all else equal. While we have previously discussed the cau-

tion that must be employed holding “all else equal,” given that firms organize endogenously

in response to the economic environment in all its dimensions, it is nevertheless worthwhile

39



to consider in which dimensions the induced sort tends to produce a value premium, and in

which dimensions it produces a growth premium.

Sorting on market-to-book induces a sort on capital reversibility that tends to gener-

ates a value premium. The top left panel of figure 5 shows demand betas (top curves,

right hand scale) and industry average-Q (bottom curves, left hand scale) for three indus-

tries that differ only in the reversibility of capital employed, with the solid lines depicting

largely reversible capital (̨ D 0.9), the dashed lines depicting moderately irreversible cap-

ital (˛ D 0.5), and the dotted lines depicting largely irreversible capital (˛ D 0.1). Holding

all else equal, industries that employ reversible capital tend to have higher average-Qs, but

are less exposed to demand risk, than those that employ irreversible capital, because re-

versibility puts a high lower bound on firm value, raisingQ and lowering operating lever-

age. Moreover, unlike the intra-industry value premium, which required high operating

costs in addition to irreversibility, the value premium that arises across industries from het-

erogeneity in the reversibility of the capital they employ does not require high operating

leverage.

Sorting on operating costs generates an unconditional growth premium, robust to pa-

rameter specification. That is, high operating costs, which were necessary to generate an

intra-industry value premium, tend to work against aninter-industry value premium, ob-

servable in the top right panel of figure 5. The figure shows three industries that differ only

in their ratios of annual operating costs to book capital, with the solid line depicting high

operating costs (� D 1), the dashed line depicting moderate operating costs (� D 0.5), and

the dotted line depicting low operating costs (� D 0.1). Higher operating costs tend to

generate higherQs, because the rents expected to accrue to operating costs increase firm

value while the capitalized operating costs do not count as book capital, and high operating

costs tend to increase the sensitivity of a firm’s value to demand risk, because they increase

operating leverage.

Sorting by concentration generates a growth premium when demand is high, but a value

premium when demand is lower, as noted by Aguerrevere (2006), and observable in the
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Figure 5: ˇ and Average-Q Across Industries

Each panel of the figure shows the sensitivity of firm value to changes in demand (top
curves, left hand scale) and Average-Q (bottom curves, right hand scale) for three different
industries that differ on a single dimension, as a function of(P � PL)=(PU � PL), price
in the product market relative to the disinvestment and investment thresholds. In the top
left panel the industries differ only in the reversibility of employed capital, with the solid
line depicting largely reversible capital (˛ D 0.9), the dashed lines depicting moderately
irreversible capital (̨ D 0.5), and the dotted lines depicting largely irreversible capital
(˛ D 0.1). In the top right panel the industries differ only in operating costs, with the solid
line depicting high operating costs (� D 1), the dashed line depicting moderate operating
costs (� D 0.5), and the dotted line depicting low operating costs (� D 0.1). In the bottom
left panel the industries differ only in the degree of concentration, with the solid line depict-
ing high a moderately concentrated industry (H D 0.10), the dashed line depicting moder-
ately competitive industry (H D 0.03), and the dotted line depicting a highly competitive
industry (H D 0.01). In the bottom right panel the industries differ only in their long-run
average (risk-adjusted) growth rates of employed capital, with the solid line depicting high
growth (�X D 0.03), the dashed line depicting moderate growth (�X D 0.015), and the
dotted line depicting low growth (�X D 0). Default parameters arer D 0.05, �X D 0.03,
�X D 0.20, ı D 0.02, ˛ D 0.10,  D 1, H D 0.01, and� D 1.

lower left panel of figure 5. The figure shows three industries that differ only in the degree

of concentration, with the solid line depicting high a moderately concentrated industry
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(H D 0.10), the dashed line depicting moderately competitive industry (H D 0.03), and

the dotted line depicting a highly competitive industry (H D 0.01). Concentrated indus-

tries, which have higherQs because firms collect more rents, are riskier than competitive

industries when demand is high because they are more exposed to growth options. In

competitive industries, the value on the industry is due almost completely to the value of

assets-in-place, and the value of assets-in-place is insensitive to demand when demand is

high, regardless of the level of operating costs. Competitive industries can be riskier when

demand is low, however, due to the operating leverage effect. Generating an unconditional

value premium requires high operating costs and largely irreversible capital.

Perhaps most interesting, sorting on industry growth generates a value premium, ob-

servable in the bottom right panel of figure 5. The figure shows three industries that differ

only in their long-run average (risk-adjusted) growth rates of employed capital, with the

solid line depicting high growth (�X D 0.03), the dashed line depicting moderate growth

(�X D 0.015), and the dotted line depicting low growth (�X D 0). As expected, high

growth industries have higherQs. More surprisingly, high growth industries, which are

more exposed to growth options, have lower sensitivities to demand risk. This occurs for

two reasons. The first is the standard operating leverage channel. When assets-in-place

are riskier than growth options due to operating leverage, then the slow growth, low-Q in-

dustries are riskier because they are predominately assets-in-place, while a greater fraction

of high growth, high-Q industries’ value is due to growth options. Interestingly, however,

even when the operating leverage hypothesis fails and assets-in-place are less risky than

options, low growth, low-Q industries, which are less exposed to growth options, are still

riskier. This results because while low growth industries are less exposed to growth op-

tions, the growth options to which they are exposed are significantly riskier. The extent

to which growth options are a levered claim on demand is related to the growth rate of

demand: when demand growth is high, then the growth options are hardly levered, and

not significantly riskier than assets-in-place, but when demand growth is slow, then growth

options are extremely sensitive to changes in demand. So while high growth industries
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have higherQs, because of the larger contribution of options to firm value, they are less

risky because even though a greater fraction of their value is contributed by options, these

options are significantly less risky.

Sorting on market-to-book generates a sort on elasticity (not depicted) that can produce

either a value premium or a growth premium, depending on the level of demand.21 Perhaps

not surprisingly, because demand elasticity in the product market together with concentra-

tion determine firms’ market power, the sort on elasticity generates results similar to the

sort on concentration. During periods of high demand, the sort on elasticity tends to gen-

erate a growth premium, but when demand is low the sort can generate a value premium,

especially when operating costs are high and investment is irreversible.

The magnitude of the value premium generated by the market-to-book sorting proce-

dure is countercyclical. Each sort on characteristics induced by sorting on market-to-book

depends on the level of demand, and the tendency to generate a value premium is higher

when demand is low. The induced sorts on capital reversibility and industry growth rates,

the two characteristics that primarily drive the inter-industry value premium, generate a

greater dispersion in risk exposure between value and growth when demand is low. The in-

duced sorts on concentration and elasticity, which tend to sort for a growth premium when

demand is sufficiently high, sort for a value premium when demand is low. Even the sort on

capital intensities, which sorts unconditionally against the value premium, can help gener-

ate a value premium if demand is sufficiently low. This all tends to increase the difference

in risk exposure between value and growth portfolios in “bad” times.22

21 The comparative static on demand elasticity depends on whether one holds fixed the growth rate and
volatility of 1) demand or 2) “natural” price growth in the product market. The macro literature tends to
specify the inverse pricing function asP D (X=Q) , as we have done in this paper, while the finance
literature tends to useP D X=Q . An interesting implication of the latter specification is that while market
power, and consequently oligopoly rents, are lower when demand is elastic, market values and average-Q are
increasing in demand elasticity, provided the market is not too concentrated. This results because the ability
to add new capacity is more valuable when new capacity has little impact on prices. The fact that firms are
able to add capacity faster when demand is inelastic imposes a seldom discussed constraint on the natural
growth rate of prices in the product market.

22 Implicitly we are assuming that “bad” times are correlated across industries, an assumption which is
supported empirically. It also arises naturally in the model, provided that industry specific multiplicative de-
mand shocks are positively correlated, because investment/disinvestment tends to synchronize demand (i.e.,
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The countercyclical nature of the value premium also suggests that value firms should

exhibit stronger investment-cash flow sensitivities. While value firms tend to be more sen-

sitive to demand unconditionally, they are relatively less sensitive conditional on high de-

mand. Demand shocks that elicit investment are therefore particularly attenuated in the

Q-series of value firms, making their investment appear more sensitive to cash flows.

Finally, it is worth noting that firm size plays a distinct role from market-to-book in

helping to quantify firms’ exposures to risk. That is, after sorting on market-to-book, sort-

ing on size is not redundant, because size contains information above and beyond that con-

tained in market-to-book. The size and market-to-book sorts consequently generate differ-

ent portfolios. While the sorts they induce on any given characteristic tend to be correlated,

the weights they put on each induced sort differ. The size sort puts more weight on produc-

tion efficiency than does the market-to-booksort. High cost producers, in addition to having

lower market-to-book ratios than their lower cost competitors, invest less. The market-to-

book difference between low cost and high cost producers is consequently magnified in the

difference between these firms’ values. Similarly, the size sort puts more weight on industry

growth rates. Slow growing industries, in addition to having lower market-to-book ratios,

employ less capital, resulting in still lower market values. The weight that the size sort puts

on concentration is ambiguous. It tends to sort in the same direction as the market-to-book

sort, because competition reduces oligopoly rents and consequently both firm values and

average-Qs. Two additional, confounding factors work in opposite directions, however, as

competition increases the level of capital employed in the industry, but reduces the aver-

age claim each firm has to that capital,i.e., each firm gets a smaller piece of a bigger pie.

The net effect depends on the level of concentration, relative to demand elasticity. In most

industries, increasing competition is associated with a decreases in the amount of capital

each firm holds, though in “sufficiently concentrated” industries, in whichH > 1=2 , the

the marginal propensity to invest) across industries. Explicitly allowing for cross-industry differences in de-
mand opens another channel through which a value premium arises, as firms in high demand industries have
higherQs, but are less exposed to demand risk, than firms in low demand industries. It also generates addi-
tional dynamics, which depend on the history of demand growth, because demand is more highly correlated
across-industries after prolonged episodes of strong aggregate growth.
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opposite is true. Lastly, sorting on size does not sort on capital reversibility or operating

costs, holding all else equal, because capital reversibility and operating costs primarily im-

pact book, not market, values. Consequently, sorting on size generates a “small” portfolio

overweighted, relative to the “value” portfolio, in high cost producers and firms from slow

growing, labor intensive and highly competitive industries, and underweighted in firms

from industries that employ irreversible capital.

6 Production Efficiency and Industrial Organization

Competitive pressures drive firms to invest in a manner such that each firm’s market share

is proportional to its “cost wedge,” where, again, the cost wedge is the difference between

its capital costs per unit of production and the maximum cost the industry will support.

More explicitly, firm i’s market share, given in equation (9), using the definition ofC and

L D H , is

si D
C � (1 � L) ci

 C
. (48)

As we have seen previously, this implies a constraint on industry participation. In partic-

ular, the previous equation, taken with equation (27), the industry’s average unit cost of

production, implies

ci <
C

1 � L
. (49)

This implies a simple bound on any two firmsrelativeproduction efficiencies, given in the

following proposition.

Proposition 6.1. Given < 1 and any two firmsi andj , the firms’ relative unit costs of
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production must satisfy

1 �  <
ci

cj

<
1

1 � 
. (50)

When  is close to zero,i.e., when demand is elastic, the constraint is relatively tight,

and high cost producers cannot be much less efficient than low cost producers. That is,

industries which produce goods for which demand is elastic will not tolerate inefficient

production. In these industries the negative price externality from new capacity is small,

so assets in place provides a poor deterrence against new investment. Efficient firms invest

more aggressively, consequently, and capture more of the market share, pushing out the

less efficient. Conversely, industries that produce goods for which demand is inelastic are

more forgiving of high cost production. When demand is inelastic low cost producers are

reluctant to compete on quantity, because small changes in quantity produce relatively large

changes in the demand price. The reluctance of low cost producers to compete on quantity

prevents them from capturing the entire market share, allowing higher cost producers to

continue producing. We should expect, therefore, to see more variability in production

efficiency, and consequently more inefficient production, in industries in which demand is

relatively inelastic. These ideas can be illustrated with a simple example.

Consider, the simplest possible economy in which the industrial organization is non-

trivial: the duopoly economy. Given , a single parameter completely determines the

equilibrium organization of a duopolistic industry. The firms’ relative market shares depend

on the firms’ relative unit cost of production,ci=ce, whereci (respectively,ce) is the high

cost (respectively, low cost) producers unit cost of production. Substituting forci andce in

equation (48), the efficient firms market share is given by

se D
ci=ce C (ci=ce � 1)=

1 C ci=ce

. (51)

Figure 6 shows the two firms’ market shares, as a function of the firms’ relative unit

costs of production. We can see graphically that competition is less forgiving of inefficient
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production when demand for the good is relatively elastic with respect to prices,i.e.,when

 is close to zero.
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Figure 6: Market Shares in the Duopoly Economy

The figure shows the market shares of the two producers in the duopoly economy, as a func-
tion of the two firms relative production efficiencies, for four different demand elasticities.
In each graph the upper curve depicts the low cost producers market share, while the lower
curve depicts the high cost producers market share. The first graph (upper left) shows the
case when demand is highly elastic, with D .05. The last graph (lower right) shows
the case when demand is relatively inelastic, with D .95. In between the graphs depict
intermediate cases: in the upper right D .35, while in the lower left D .65.

6.1 Relation to the Empirical Literature

The characterization of average-Q given in proposition 5.1 has cross-sectional implica-

tions, both within and across industries. Within an industry, equation (42 describes the

relationship between firms’ average-Qs and productivities. Across industries, it describes

the relationship between average-Q, capital intensity, and market power. While no stud-

ies have considered the full range of these implications, several studies have tested some

“unconditional” implications of proposition 4.3, without exploiting the cross-industry vari-

ation.
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Lindenberg and Ross (1981) report a positive correlation between a firm’s average-Q

and it’s Lerner index. This is consistent with the cross-section of average-Q implied by

equation (39). Provided that the Lerner index,L�, is a good proxy forL D H , something

we will argue in appendix A.3, then equation (39) may be approximately expressed in terms

of L�
i,j , the Lerner index for firmj in industryi, as

Qi,j �
qi C �iL

�
i,j

1 � L�
i,j

, (52)

where we have used(1�L�
i,j)=(1�L�

i ) D ci,j =C i, whereL�
i andC i denote the Lerner in-

dex and average cost of production in industryi, respectively, and�i � �iCai
n

�
P i=P i

L

�ˇi
nC

ai
p

�
P i=P i

U

�ˇi
p is the option-adjusted, capitalized unit cost of operating. The first-order lin-

ear approximation aroundL�
i is

Qi,j � ai
0 C ai

1L�
i,j (53)

with

ai
0 D qi � (qi C �i)

�
L�

i

1�L�
i

�2

(54)

ai
1 D

qi C �i

1 � L�
i

. (55)

This is a refinement of the specification tested by Lindenberg and Ross (1981), who

regress average-Q on the Lerner index without conditioning on the capital intensity of

the industry,i.e., testQi,j D a0 C a1L�
i,j across alli without regard forj . Lindenberg

and Ross report an intercept of 1.03 and a slope 3.10,. These findings are consistent with

equation (53), provided that marginal-q is generally close to one and that variable costs

contribute twice as much as the user cost of capital, on average, to the full marginal cost

of production. Equation (53) additionally suggests, however, that the sensitivity of firmQ

to market concentration is inversely related to the capital intensity of the industry, and in
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particular that the slope-intercept difference estimated industry by industry should satisfy

the relationOai
1 � Oai

0 D �i C (qi C �i) L�
i =
�
1 � L�

i

�2
. Because the average Lerner index

is small, this says that the estimated slope-intercept difference in an industry should be

roughly proportional to the ratio of operating costs to the user cost of capital in the industry.

Lindenberg and Ross also run the regression including the four-firm concentration ratio

as an explanatory variable, and find that it has no statistically significant explanatory power.

That is, after controlling for market power, industry concentration does not explain varia-

tion in average-Q. This is also consistent with the cross-sectional predictions provided in

proposition 4.3, and more generally with the equilibrium in this paper, in which firms earn

“natural” (Ricardian) rents form oligopoly, but not collusive rents.

Smirlock, Gilligan and Williams (1984) report a positive correlation between a firm’s

average-Q and its market share. Again, this correlation is consistent with the cross-section

of average-Q implied by equation (39). Using the market share relation provided by equa-

tion (9), that firmj ’s market share issj D (1 � (1 � L)cj =C )= , equation (39) may be

expressed in terms of market share

Q
j
t D

q(Pt ) C  sj �

1 �  sj
, (56)

which, to a first-order linear approximation aroundsi, the mean market share in industryi,

is

Qi,j � bi
0 C bi

1s
j
i (57)

with

bi
0 D qi � (qi C �i)

�
isi

1�isi

�2

(58)

bi
1 D

i (qi C �i)

1 � isi

(59)

where1=i is the price-elasticity of demand for the industry good ands
j
i is the market
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share of firmj in industryi.

This is a refinement of the specification tested by Smirlock, Gilligan and Williams

(1984), who regress average-Q on the market share and controls without conditioning on

demand elasticity for the industry good or the capital intensity of the industry,i.e., test

Qi,j D b0 C b1s
j
i across alli without regard forj , and report a slope 6.1.23 This slope is

large, given the predicted relationship provided in equation (59) and the fact thati is typi-

cally less than one. The result could be driven by outliers, however, as the exact specifica-

tion provided in equation (56) is non-linear and extremely sensitive toisi that are not close

to zero, and the predicted slope coefficient in industries for which demand is inelastic (e.g.,

tobacco, petroleum) can be an order of magnitude higher than the coefficient they report.

We can test for this, again, by considering the slope-intercept difference, estimated industry

by industry, which should satisfy the relationshipObi
1� Obi

0 D �iC(qi C �i) isi= (1 � isi)
2.

Smirlock, Gilligan and Williams also report that industry concentration does not explain

variation in average-Q, after controlling for market power, again consistent with firms

earning Ricardian, but not collusive, oligopoly rents.

7 Industry Revenues and “Overcapacity”

In this section we consider the aggregate industry revenue dynamics, paying particular

attention to times when aggregate industry operating profits are negative,i.e., to “episodes

of negative profitability.” These episodes are often considered periods of “overcapacity” in

an industry, a characterization that seems to suggest sub-optimal behavior on the part of

some or all of the firms involved in the industry. We will show that these episodes can

actually be the inevitable consequence of firms’ optimal value maximizing behavior.

Aggregate industry revenues are given by

R(K t , Xt ) D
�

Xt

��� K t

�

��� K t � �k 111111111K t . (60)

23 The intercept they report is difficult to interpret, as they do not report the means of all their controls.
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Again lettingKt D 111K t denote the aggregate level of capital employed in the industry and

C D (111111111K t=��� K t) be the industry average cost of production, aggregate industry revenues

may be written as

R(Kt , Pt ) D Kt

C
Pt � �Kt . (61)

Note that while the investment and disinvestment price triggers, given in equations (34) and

(35), depend on competition only through the number of firms, the previous equation im-

plies that aggregate industry revenues depend more explicitly, throughC , on the industry’s

organization.

From equation (61) it is clear that aggregate industry operating profits are negative

wheneverPt < C �k, so the industry will experience money losing episodes if and only if

PL < C �. (62)

Substituting forPL andC in equation (62), we then have that the industry will experience

money losing episodes if and only if

˛ C �

�
< (1 � L) ˘(�). (63)

That is, episodes of negative profitability are more likely when operating cost are high

(large�), when capital is less reversible (small˛), and in competitive industries (smallH )

that produce goods for which demand is elastic (small ). High operating costs reduce

revenues directly, making these episodes more likely. Capital irreversibility increases the

cost of reducing production, so disinvestment, which supports prices, is less likely, and this

increases the likelihood of these episodes of negative profitability. In competitive industries

less rents are available, which decreases profitability and increases the likelihood of these

episodes. In industries in which consumer demand is elastic the price externality, and

the associated incentive to delay investment, are small, so firms invest at lower prices,
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increasing the likelihood of these episodes.

The expected duration of these episodes is longest when prices are lowest,i.e., at the

disinvestment threshold. The expected duration may be calculated by inverting the Laplace

transform of the stopping time for the first passage of the price process from the disinvest-

ment threshold to the zero-revenue threshold,i.e.,by differentiating the “depreciated state

price” (i.e., the state price at the discount rater C ı) for the first passage time, with respect

to the discount rate, and evaluating atr C ı D 0. The expected time until industry revenues

turn positive at the disinvestment threshold is given explicitly in the following proposition.

Proposition 7.1.LetPT D C �k denote the zero-revenue price threshold, and� D minft >

0jPt D PT g. Then ifPT > PL the industry will experience episodes of negative profitabil-

ity, which will have a maximum forward-looking expected duration given by

EPL
�
�

PT

�
D

ln PT � ln PL

� � �2

2

�
1�

�
PT
PL

�1�2�=�2

2
� �

�
� �

2

�2 . (64)

The first term in equation (64), the geometric distance between the zero-revenue thresh-

old and the disinvestment threshold divided by the log-drift of the price process, is the

expected time it would take a geometric Brownian price process to travel from the disin-

vestment threshold to the zero-revenue threshold. The second term corrects for the fact that

disinvestment supports prices, reducing the expected duration of these episodes of negative

profitability.

While the statistic from the preceding proposition is useful, it also has limitations.

In particular, while the statistic correctly characterizes the maximal expected duration of

episodes of negative profitability, it fails to account for the frequency of these episodes.

A complementary statistic, which accounts for both the frequency and duration of

episodes of negative profitability, is the long-run fraction of time aggregate industry op-

erating profits are negative,i.e., the amount of time, on average, the industry is losing

money. This statistic is provided in the following proposition.
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Proposition 7.2. If PL < PT then the expected fraction of time the industry will experience

negative operating profits,N � lim t!1 t�1
R t

0
11[PL,PT ](Ps)ds where11A(!) D 1 if ! 2 A

and11A(!) D 0 otherwise, is given by

N D
ln � C 1

��� sinh�(�) cosh�
�
(�)

ln � C 1
��� sinh�(�)

(65)

where� D PU

PL
, as is the strategy hypothesis,� D PT

PL
, � D

�
�

�2 � 1
2

�
, and sinha(b) �

sinh(b ln a) (respectively,cosha(b) � cosh(b ln a)) is the base-a hyperbolic sine (respec-

tively, base-a hyperbolic cosine) ofb.

Figure 7 illustrates the role of capital reversibility in these episodes of negative prof-

itability. The figure shows the fraction of time an industry loses money (top figures), and the

expected time until revenues turn positive at the disinvestment threshold (bottom figures),

as a function of capital reversibility. The left hand side shows a capital intensive industry,

in which the book value of a firm’s capital stock exceeds its annual operating costs by a

factor of ten,� D 0.1. The right hand side shows a labor intensive industry, in which the

book value of a firm’s capital stock equals its annual operating costs,� D 1. While the

fraction of time a capital intensive industry spends with negative profits is comparable to

that of a labor intensive industry, the frequency and severity of these episodes are quite

different. In the capital intensive industry firms are reluctant to reduce capacity. Operat-

ing costs are low, relative to total capital costs, so operating at a loss through the episode

may be cheaper than suffering the transaction cost associated with disinvesting and adding

the capacity back in the future. The fact that firms are loath to reduce capacity increases

the duration of the episodes, because the “overcapacity” is not alleviated by disinvestment.

Firms, understanding this, are more reluctant to invest, which leads to infrequent periods

of “overcapacity” and negative industry profits. In the labor intensive industry, firms are

much more willing to reduce capacity, even at the expense of abandoning capital in the

case when capital is completely irreversible, because they know that the expense of adding

new capital in the future is small relative to the overall cost of doing business. As a result,
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the severity of the episodes of negative profitability is greatly mitigated in labor intensive

industries, but this itself leads firms to invest more aggressively, and makes these episodes

more likely.
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Figure 7: Episodes of Negative Profitability and Capital Reversibility

The fraction of time an industry loses money (top figures), and the expected time until rev-
enues turn positive at the disinvestment threshold (bottom figures), as a function of capital
reversibility. The left hand side shows� D 0.1, and the right hand side shows� D 1. Other
parameters arer D 0.05, � D 0.03, � D 0.20, ı D 0, C D 1,  D 1 andH D 0.01.

Figure 8 illustrates the role of operating costs for these episodes of negative profitabil-

ity. The figure shows the fraction of time an industry loses money (top figures), and the

expected time until revenues turn positive at the disinvestment threshold (bottom figures),

as a function of the operating cost of production. The left hand side shows an industry

where capital is largely irreversible, with̨ D 0.1. The right hand side shows an industry

where capital is moderately reversible, with˛ D 0.5. High operating costs increase the

“effective” reversibility of capital, so high operating cost industries, like industries where

capital is highly reversible, are generally associated with more frequent, but less severe,

episodes of negative profitability.

Finally, Figure 9 illustrates the critical role competition plays in these episodes of nega-

tive profitability, which stems from the fact that competition swiftly erodes oligopoly rents,
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Figure 8: Episodes of Negative Profitability and the Cost of Production

The fraction of time an industry loses money (top figures), and the expected time until
revenues turn positive at the disinvestment threshold (bottom figures), as a function of the
operating cost of operating capital. The left hand side shows˛ D 0.1, while the right hand
side shows̨ D 0.5. Other parameters arer D 0.05, � D 0.03, � D 0.20, ı D 0, C D 1,
 D 1 andH D 0.01.

a point emphasized by Grenadier (2002). The figure shows the expected fraction of time an

industry loses money, as a function of capital reversibility, for three different industrial or-

ganizations. The lowest line shows a highly concentrated industry (H D 0.20), the middle

line shows a moderately concentrated industry (H D 0.10), while the top shows a highly

competitive industry (H D 0.01). The highly concentrated industry always generates pos-

itive profits when˛ > 1=2, and seldom looses money even when capital is completely

irreversible. More competition, however, dramatically increases the chances that the indus-

try is losing money at any given time. This results because competitive pressures lead firms

to invest, in some sense, “too early,” and, just as importantly, to disinvest “too late.” Firms,

failing to fully internalize the cost their investment imposes on ongoing assets, invest more

than they would if they were able to commit to the best cooperative outcome. Firms also

fail to fully internalize the benefit that accrues to ongoing assets when they disinvest, so

disinvest too little.
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Figure 9: Episodes of Negative Profitability and Competition

The expected fraction of time an industry will be losing money as a function of capital
reversibility. The lowest line shows a highly concentrated industry (H D 0.20), the middle
line a moderately concentrated industry (H D 0.10), and the top shows a competitive
(industryH D 0.01). Other parameters arer D 0.05, � D 0.03, � D 0.20, ı D 0.02,
C D 1,  D 1, and� D 1.

8 Conclusion

This paper helps to explain two seemingly unrelated economic puzzles, by showing that

firms’ equilibrium investment behavior generates both investment-cash flow sensitivity and

a countercyclical value premium. The investment-cash flow sensitivity results from firms’

time-varying, business cycle-dependent sensitivity to fundamental risks. Firms’ endoge-

nous supply response insulates them from demand when demand is high, which makes it

impossible to identify demand shocks that elicit investment in theQ-series, conferring ex-

planatory power on cash flows. The value premium arises from endogenous cross-sectional

variation in firms’ exposures to fundamental risk. Average-Q is negatively correlated

with exposure to fundamental risks, in equilibrium, especially when demand is low. This

yields a countercyclical value premium. Moreover, the two puzzles are linked directly,

because investment-cash flow sensitivity should be negatively correlated with average-Q

in the cross-section, suggesting that firms that exhibit high investment-cash flow sensi-
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tivities should generate high average returns, and that value firms should exhibit greater

investment-cash flow sensitivities.

Our analysis also highlights the importance of heterogeneity, operating costs and partial

reversibility for firm behavior, industry organization, and aggregate industry revenue dy-

namics. It shows that heterogeneous firms’ optimal investment and disinvestment strategies

may be characterized in a simple, intuitive manner in terms of common, observable eco-

nomic variables. It also demonstrates how competition and heterogeneity together shape

the structure of an industry, and place limits on industry participation. Finally, we find that

so-called “overcapacity,”i.e., episodes when an industry’s aggregate operating profits are

negative, can be an inevitable consequence of optimal competitive behavior, and identifies

the types of industries for which these periods of overcapacity are more likely.

A Appendix

A.1 The Limiting Cases

The existing literature contains two important special cases of the model presented in this paper.

Grenadier (2002) considers the irreversible investment discussion of homogeneous competitive

agents when operating costs are zero and capital does not depreciate, while Abel and Eberly (1996)

solves for the optimal investment and disinvestment decisions of a monopolist when operating costs

are zero. In this section we will show that the solutions presented in these papers are indeed spe-

cial cases of the solution to the more general problem. That is, we will show that the solution to

the optimal investment/disinvestment problem with heterogeneous competitive firms and costly re-

versibility, presented in this paper, reduces to the solutions presented in these earlier papers in the

special cases when 1) firms are homogeneous and capital is irreversible, and 2) when there is a

single monopolistic firm.

A.1.1 homogeneous Firms and Irreversible Investment

It is easy to see that the equilibrium strategy here reduces to that found in Grenadier (2002) in the

special case when 1) firms are homogeneous, withci D 1 for any i 2 f1, 2, ..., ng, 2) capital is

completely irreversible,̨ D 0, 3) capital does not depreciate,ı D 0, and 4) there is no operating

cost to production,� D 0. The optimal investment rule, given in Grenadier (2002) in equation (21),
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on page 703, says, in the notation of this paper24, that firms will invest when the demand process

reaches a capital-dependent multiplicative demand shock thresholdX �(S) that satisfies

X �(S)
 D

�
p̌

p̌ � 1

� n


n


� 1

!
(r � �)S . (66)

The previous equation may be rewritten as

�
X �(S)

S

�

D
1�

1 � n


� �
p̌�1

p̌

��
1

r��

� . (67)

Finally, lettingP� D (X �(S)=S) and using the fact that̆ (0) D p̌�1

p̌
� and� D 1

r��
when

ı D 0, the previous equation says

P� D
1�

1 � n


�
˘(0)

, (68)

which is the investment price threshold implied by equation (15) whenc D 1 and˛ D 0. That is,

the investment price threshold implied in Grenadier (2002) agrees with the special case here.

A.1.2 The Monopolist

To see that the solution presented in this paper reduces, in the case of a single monopolistic firm with

zero production costs, to that found in Abel and Eberly (1996), requires more work. This will be

simplified by first producing an alternative expression for the equilibrium marginal value of capital,

equation (10). We have, from proposition 3.1 that

P�
PU

PL
(P) D P� C �

PU

PL
(P) PL(˘(�) � �) C �

PU

PL
(P) PU

�
˘(��1) � �

�
. (69)

Substituting for̆ (�), �
PU

PL
(P), and�

PU

PL
(P) using equations (17), (23) and (24), and grouping terms

of equalP -orders, yields

P�
PU

PL
(P) D P� �

� p̌ � �

ˇn

�
� p̌ � �ˇn

�PL

�
P

PL

�ˇn

�
� � �ˇn

p̌

�
� p̌ � �ˇn

�PL

�
P

PL

�
p̌

. (70)

24 This biggest notational differences are that: 1) Grenadier (2002) usesQ to denote supply (i.e., “quan-
tity”), whereas we useS (reservingQ for Tobin’sQ); 2) Grenadier uses for the price-elasticity of demand,
whereas in this paper this elasticity is1= ; and 3) Grenadier usesX to denote directly the stochastic variation
in prices, whereas in this paperX denotes the stochastic variation in quantity demanded at any given price.
That is, letting subscriptG denote parameters in Grenadier (2002),QG D S , G D 1= andXG D X  .
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Then letting

˝(x) �
x p̌ � x

x p̌ � xˇn
(71)

firms’ marginal value of capital, given in equation (10) asq(P) D
�
1 � 

n

�
Pt �

PU

PL
(P)=c , becomes

q(P) D

 
1 � 

n

c

!�
P �

˝(�)

ˇn
P

1�ˇn

L Pˇn �
1 � ˝(�)

p̌
P

1� p̌

L P p̌

�
�. (72)

The solution in Abel and Eberly (1996) is that the firm will optimally invest or disinvest when-

every � X=K hits an upper thresholdyU or a lower threshold valueyL, respectively, whereyL

andyU are defined implicitly byq(yL) D ˛ andq(yU ) D 1, where

q(y) D Hy �
H

˛N
˝(G )y

 �˛N

L
y˛N �

H

˛P
(1 � ˝(G ))y

 �˛P

L
y˛P , (73)

˛P and˛N are the positive and negative roots, respectively, of

�(�) D ��2
X

2
�2 �

�
�X � �2

X

2
C ı

�
� C (r C ı) D 0, (74)

H is given by

H D
1 � 

c�( )
, (75)

andG satisfies

�(G)

G �(G�1)
D ˛ (76)

for

�(x) D
H

1 � 

�
1 �



˛N
˝(x ) �



˛P

�
1 � ˝(x )

��
. (77)

Now y D (X=K) D P , so lettingPL denotey
L

andPU denotey

U

, and using

˛P D  p̌ (78)

˛N D ˇn (79)

�( ) D r C ı � �, (80)
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where� D 
�
�X C ı C ( � 1)�2

X
=2
�
, equation (73) becomes

q(P) D
�

1 � 

c

��
P �

˝(G )

ˇn
P

1�ˇn

L
Pˇn �

1 � ˝(G )

p̌
P

1� p̌

L
P p̌

�
�, (81)

which looks exactly like equation (72), our alternative characterization ofq, with n D 1, provided

G D �. To see thatG is indeed�, note that

�(x) D
�
1 � 1

ˇn
˝(x ) � 1

p̌

�
1 � ˝(x )

��
�

D
�

1 � p̌(x p̌�x )�ˇn(xˇn�x )
p̌ˇn(x p̌�xˇn)

�
�

D ˘(x ), (82)

so equation (76) says ˘(G )
G ˘(G� )

D ˛, and this, withG D �, is the defining equation for� from the

strategy hypothesis. So the monopolist solution of Abel and Eberly (1996) agrees with the solution

in this paper withn D 1 and� D 0.

A.2 Proofs of Propositions

Proof of Proposition 3.1

Lemma A.1. SupposeX (1,v)
t is a drifted geometric Brownian process between an upper reflecting

barrier at v and lower reflecting barrier at 1, and letTv D minft > 0jX (1,v)
t D vg and T1 D

minft > 0jX (1,v)
t D 1g denote the first passage times to the upper and lower barriers, respectively.

Then

Eu[e�(rCı)T1 I T1 < Tv ] D
v p̌ uˇn � vˇnu p̌

v p̌ � vˇn
(83)

Eu[e�(rCı)Tv I Tv < T1] D
u p̌ � uˇn

v p̌ � vˇn
(84)

whereEx[f (Xt)] � E [f (Xt) jX0 D x] andE [�(!)I A] � E [�(!)11A(!)] for 11A(!) D 1 if ! 2 A

and 11A(!) D 0 otherwise.

Proof of lemma: The state prices, discounting atr C ı, for the first passage of the process to the

upper and lower barriers may be written as

Eu
h
e�(rCı)Tv

i
D Eu

h
e�(rCı)Tv I Tv < T1

i
C Eu

h
e�(rCı)T1 I T1 < Tv

i
E1
h
e�(rCı)Tv

i
(85)

Eu
h
e�(rCı)T1

i
D Eu

h
e�(rCı)T1 I T1 < Tv

i
C Eu

h
e�(rCı)Tv I Tv < T1

i
Ev
h
e�(rCı)T1

i
.(86)
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Simultaneously solving the preceding equations, forEu
h
e�(rCı)Tv I Tv < T1

i
and for

Eu
h
e�(rCı)T1 I T1 < Tv

i
, usingEu

h
e�(rCı)Tv

i
D
�

u
v

�
p̌ andEu

h
e�(rCı)T1

i
D uˇn yields the

lemma. �

Proof of the proposition: SupposeX (1,v)
0

D u 2 [1, v], whereX
(1,v)
t is a geometric Brownian

process between an upper reflecting barrier atv and lower reflecting barrier at1. Then the value of

the cash flowe�ıtX
(1,v)
t discounted atr and starting att D 0 is

u�
v

1
(u) D Eu

�Z 1

0

e�(rCı)tX
(1,v)
t dt

�

D Eu

"Z T1_Tv

0

e�(rCı)tX
(1,v)
t dt

#
C E1

�Z 1

T1

e�(rCı)tX
(1,v)
t dt I T1 < Tv

�

CEv

�Z 1

Tv

e�(rCı)tX
(1,v)
t dt I Tv < T1

�
(87)

D
�
u � Eu[e�(rCı)T1 I T1 < Tv ] � Eu[e�(rCı)Tv I Tv < T1] v

�
�

C Eu[e�(rCı)T1 I T1 < Tv] ˘(v) C Eu[e�(rCı)Tv I Tv < T1] v˘(v�1)

where� D 1
rCı��

is the perpetuity factor for a geometric Brownian process discounted atr C ı,

and

˘(v) � E1

�Z 1

0

e�(rCı)tX
(1,v)
t dt

�

˘(v�1) � v�1Ev

�Z 1

0

e�(rCı)tX
(1,v)
t dt

�

are the perpetuity factors for the reflected process when it is at the lower and upper barriers, respec-

tively.

Then defining

�
v

1
(u) � Eu[e�(rCı)T1 I T1 < Tv ]

�
v

1
(u) � Eu[e�(rCı)Tv I Tv < T1]

completes the proof of the proposition, except for the explicit functional form for˘(v) and˘(v�1).

To get the explicit functional form for̆ (v) and˘(v�1), note that the smooth pasting condition

implies

d
du

u�
v

1
(u)
ˇ̌
ˇ
uD1

D 0 (88)

d
du

u�
v

1
(u)
ˇ̌
ˇ
uDv

D 0, (89)
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or

� C

�
ˇnv p̌ � p̌vˇn

�
(˘(v) � �) C

�
p̌ � ˇn

�
v
�
˘(v�1) � �

�

v p̌ � vˇn
D 0 (90)

� C

�
ˇn � p̌

�
v p̌Cˇn�1 (˘(v) � �) C

�
p̌v p̌ � ˇnvˇn

� �
˘(v�1) � �

�

v p̌ � vˇn
D 0. (91)

Solving the previous equations simultaneously yields the explicit values for˘(v) and˘(v�1). �

Proof of Proposition 3.2
Proof of the proposition: The Bellman equation corresponding to firmi’s optimization problem

(equation (4)) is

rV i(K , X) D Ri(K , X) � ı K � rKV i(K , X)

C�X XV i
X (K , X) C 1

2
�2

X X 2V i
XX (K , X). (92)

This equation essentially demands that the required return on the firm at each instant equals the

expected return (cash flows and capital gains). It holds identically inKi, so taking partial derivatives

of the left and right hand sides with respect toKi yields

(r C ı)V i
K i (K , X) D Ri

K i (K , X) � ı K � rK V i
K i (K , X)

C�X XV i
XK i (K , X) C 1

2
�2

X X 2V i
XXK i (K , X). (93)

Then using thatV i(K , X) is homogeneous degree one inK and inX , soqi(K , X) � V i
Ki

(K , X)

is homogeneous degree zero inK andX , and that� D 
�
�X C ı C ( � 1)�2

X =2
�

and� D �X ,

we can rewrite the previous equation as

(r C ı)qi(P) D
�

1� 
n

c

�
P C �Pq0

i(P) C 1
2
�2P2q00

i (P). (94)

It is then simple to check that the hypothesizedqi(P) satisfies this differential equation. For

every firm we hypothesizedqi(P) D q(P) D (1 � =n) Pt �
PU

PL
(Pt )=c so, dividing both the left

and right hand sides of the previous equation by(1 � =n) =c, we have thatq(P) satisfies the

differential equation (94) if and only if

(r C ı)P�(P) D P C �P d
dP

(P�(P)) C 1
2
�2P2 d2

dP2 (P�(P)) (95)

where we have, for notational convenience, suppressed the superscript(PL, PU ) on the annuity
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factor. The previous equation must hold for allP , so using the fact that

P�(P) D �P C aPˇn C bP p̌ (96)

for somea andb (see, for example, equation (70)) and, matching terms of equalP -orders on the

left and right hand sides of equation (95), we then have that equation (94) holds if and only if

(r C ı � �)� D 1

(r C ı) � (� C �2

2
)ˇn � �2

2
ˇ2

n D 0

(r C ı) � (� C �2

2
) p̌ � �2

2
ˇ2

p D 0.

The previous equation all do hold, which is easily seen by substituting for� , p̌ andˇn, so the

hypothesizedq(P) satisfies the differential equation (94).

The boundary conditionsq(PU ) D k andq(PL) D ˛k were previously verified, equations (11)

and (12). Thatq(Pt ) satisfies the smooth pasting condition at both boundaries,i.e., thatq0
i(PU ) D

q0
i(PL) D 0, follows immediately from equation (10) and the construction of�

PU

PL
(Pt ).

As a technical point, while any constant multiple of the hypothesized marginal value of capital,

Oq(P) D �q(P), satisfies the differential equation given in equation (94), and the value matching

and smooth pasting conditions at the boundariesOPU D ��1PU and OPL D ��1PL. However, only

the hypothesizedq(P) goes to(1 � =n) Pt �=c in the limit as in the limit ask ! 1 and˛k ! 0.

That is, the hypothesizedq(P) is the only one that equals the present value of expected marginal

revenue products of capital if firms are unable to invest or disinvest (i.e., satisfies the boundary

condition in the limit as capital becomes expensive, and irreversible).

That firms invest/disinvest in proportion to their existing capital follows directly from the fact

that a firm internalize more of the price externality investment or disinvestment entails when it has

a bigger market share, soqi(P) is decreasing inKi=K, i.e., a firm’s value is strictly convex in its

capital share.

Global stability follows from continuity of the multiplicative demand shock and the lack of

bounds on the investment and disinvestment rates, which together guarantee that marginal-q will

never exceed one, or fall below̨, for any firm. Moreover, the time to convergence to the stable

distribution of firms’ capital stocks has finite expectation. We will limit our argument to growing

industries (i.e.,those in which prices “tend to rise”, with�X C( �1)�2
X =2Cı > 0), as a completely

analogous argument holds for declining industries.

Suppose no firms disinvest. Demand eventually increases, without bound and on average faster

than depreciation, so aggregate capacity must also eventually grow or the price of firms’ output,

and consequently firms’ marginal valuations of capital, would itself grow without bound. That is,

lim t!1 St D 1. Moreover, each firm eventually invests. If firmi never invests it will eventually

have a market share less than its market share in the stable distribution, and then some firmj in the
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set of those firms that continue to invest must have a market share greater than its share from the

stable distribution. In this case, however, eventuallyqRatio
ij
t > 1, whereqRatio

ij
t � qi

t =q
j
t D

c�1
i (1 �  si

t)=c�1
j (1 �  s

j
t ), which contradicts the assumption that firmi never invests while firm

j continues to do so.

When the last firm invest its marginal valuation of capital must equal one, and is weakly less

than that of firms that invested earlier. An investing firm must be among those firms with the highest

marginal valuation of capital, because no firm can have a marginal valuation of capital greater than

one. Any firm that has ever invested is then always among those firms with the highest marginal

valuation of capital, if firms never disinvestment, because depreciation does not affectqRatio
ij
t .

Consequently, at the time the last firm invests all firms’ marginal valuation of capital must equal

one, and at this time the distribution of firms’ capital has achieved the stationary distribution.

Moreover, this convergence to the stationary distribution happens in finite time. LetT de-

note the stopping time for achieving the stationary distribution, and letTi D minft > 0jSt D
 e�ı t Si

0

1�(1�=n)ci =c
g for eachi 2 f1, 2, ..., ng. Now suppose firm-i is among the last to invest. When ag-

gregate capacity reachesSTi
the market share of firm-i has fallen to its market share in the stationary

distribution. Firm-i must have a marginal valuation of one at this point, as we know the stable dis-

tribution is reached at the moment firm-i begins investing and further investment by other firms can

only reduce firm-i’s market share. At this point the conditions of the Strategy Hypothesis are met,

and every firms’ marginal valuation of capital is one, soPTi
D PU , which impliesXTi

D P
1=
U

STi
.

Some firm is the last to invest, soE[T ] � maxi E[Ti ] D maxi ln(XTi
=X0)=

�
� � �2=2

�
< 1.

Finally, allowing for disinvestment increases the rate of convergence to the stationary distribu-

tion. Only firms with the lowest marginal valuation of capital will disinvest. But disinvestment by

low marginal valuation firms moves the distribution of firms’ capital closer to the stationary dis-

tribution, i.e., d
�dKm

t
qRatio

jm
t < 0 wherem 2 argmini2f1,2,...,ng c�1

i (1 � S i=S) andj 6D m.

Any disinvestment by lowq firms consequently decreases the amount of investment by highq firms

required to achieve the stationary distribution.

Proof of Proposition 4.3

Investment and disinvestment occur when the marginal value of capital equals the purchase and

sale prices of capital, respectively, so the value of a firm is the expected discounted revenue of its

currently installed capital, less the discounted cost of operating the capital in perpetuity,

Vi D SiP�(P) � Ki
�

rCı
. (97)

Substituting this into the equation for a firm’s average-Q, Qi D Vi

kKi
, and using the equilibrium

condition

q(P) D
�

1�H

C

�
P�(P) � �

rCı
, (98)
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yields the proposition. �

Proof of Proposition 5.1

Away from the boundary capacity is insensitive to changes in the multiplicative demand shock,

so

dVi

dX

ˇ̌
ˇ̌
X DX �

U

D Ki

�
dP

dX

�
d

dP

 
˝i C ai

n

�
P

PL

�ˇn

C ai
p

�
P

PU

�
p̌

! ˇ̌
ˇ̌
X DX �

U

D
Ki

X �

�
ˇnai

n�ˇn C p̌ai
p

�
(99)

where we have used the facts that average-Q of deployed capital is insensitive to changes inX at

the development boundary anddP
dX

D P=X .

At the boundary, homogeneity of the value function impliesd
dX

Vi

Ki

ˇ̌
X DX

C
U

D 0, and the supply

response ensures the price never exceedsPU so d ln Ki

d ln X

ˇ̌
X DX C

U

D 1, so

d (Vi � Ki)

dX

ˇ̌
ˇ̌
X DX C

U

D
�

Vi

Ki
� 1

�
dKi

dX

ˇ̌
ˇ̌
X DX C

U

D
V �

i � Ki

X � (100)

The value function is differentiable at the boundary,d
dX

Vi

ˇ̌
X DX �

U
D d

dX
(Vi � Ki)

ˇ̌
X DX C

U
,

which, using the results of the previous two equations, yields


�
ˇnai

n�ˇn C p̌ai
p

�
D Qi

U � 1, (101)

or, rearranging using the fact that̋i
U

D 1 C �i(1 C �) where�i D C =(1�L)
ci

� 1, that

(ˇn � 1) ai
n�ˇn C

�
 p̌ � 1

�
ai

p D �i(1 C �). (102)

A completely analogous calculation at the disinvestment boundary implies

(ˇn � 1) ai
n C

�
 p̌ � 1

�
ai

p�� p̌ D �i(˛ C �). (103)

Solving the previous two equations simultaneously yields

ai
n

�i
D

(1 C �) � � p̌(˛ C �)

(ˇn � 1)
�
�ˇn � � p̌

� (104)

ai
p

�i
D

(˛ C �) � ��ˇn(1 C �)�
 p̌ � 1

� �
�� p̌ � ��ˇn

� . � (105)
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Proof of Proposition 6.1

Equation (13), the unit cost condition from the strategy hypothesis, says(1 � =n)ci < c for

all i. Summing both sides over alli 6D j and multiplying byn=(n � 1) gives

nc > (n �  ) c�j (106)

wherec�j D 1
n�1

P
i 6Dj ci . Then subtracting(n � 1)c�j from each side gives

cj > (1 �  ) c�j . (107)

Then adding(1 �  )cj =(n � 1) to each side and dividing by(n �  )=(n � 1) yields

cj > (1 �  )
c

1 � 
n

(108)

for anyj . For anyi, ci < c=(1 � =n) socj > (1 �  )ci , and becausei andj were arbitrary we

also haveci > (1 �  )cj . Taken together these imply the proposition. �

Proof of Proposition 7.1

Lemma A.2. SupposeXt is a geometric Brownian process with a lower reflecting barrier at1, with

drift � and volatility� . Then ifX0 D 1 < y � z the Laplace transform of the occupation time of

Xt in the region[1, y] over the time interval[0, �z D minft > 0jXt D zg] is given by

E1

�
exp

�
�(r C ı)

Z �z

0

11[1,y]Xsds

��
D

8
<
:

F(y, z) if � � �2

2
> 0

F
�

1
y

, 1
z

�
if � � �2

2
< 0

(109)

where

F(u, v) D p̌ � ˇn

p̌uˇn � ˇnu p̌ C rCı

�� �2

2

�
1 �

�
u
v

� 2

�2

�
�� �2

2

���
u p̌ � uˇn

� . (110)

Proof of lemma: Suppose� � �2

2
> 0. Then the Laplace transform of the occupation time ofXt

in the region[1, y] up until the stopping time�z may be obtained by recognizing that it is equal,

because of the Markovian nature of Brownian motion, to the Laplace transform of the occupation

time in the same region of an unreflected process with the same drift and volatility. That is,

E1

�
exp

�
�Or

Z �z

0

11[1,y]Xsds

��
D E1

�
exp

�
�Or

Z �z

0

11[1,y]Ysds

��
(111)
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whereYt is an unreflected geometric Brownian process with drift� and volatility� starting at one.

The Laplace transform of the occupation time of a drifted Brownian process is known (see, for

example, Borodin and Salminen (2002)), and if� � 0 andb > 0 is given by

E0

�
exp

�
�Or
Z �b

0

11[0,a]W
(�)
s ds

��
D

� e�a

� cosh(� a) C
�
� C Or

�

�
1 � e2�(a�b)

��
sinh(� a)

(112)

whereW
(�)
s is a Brownian process with drift� and unit volatility,i.e., W

(�)
t D Bt C �t whereBt

is the canonical undrifted Brownian process with unit volatility, and� D
p

�2 C 2 Or .

Then using the fact that

ln Yt D �W
(�)
t (113)

where� D
�

�
�

� �
2

�
we can solve for the Laplace transform for the occupation time by substituting

� D
�

�
�

� �
2

�
, Or D r Cı, a D ��1 ln y, andb D ��1 ln z into the right hand side of equation (112).

After simplification this yields the first case of the lemma, when� > �2=2.

When� < �2=2 we have, again by the Markovian nature of Brownian motion, that

E1

�
exp

�
�Or

Z �z

0

11[1,y]Xsds

��
D

E1

�
exp

�
�Or

Z �z

0

11[1,y]Ysds

�
I �z < 1

�
(114)

C E1

�
exp

�
�Or

Z �z

0

11[1,y]Ysds

�
I �z D 1

�
E1

�
exp

�
�Or

Z �z

0

11[1,y]Xsds

��
,

or, after rearranging, that

E1

�
exp

�
�Or

Z �z

0

11[1,y]Xsds

��
D

E1
�
exp

�
�Or

R �z

0 11[1,y]Ysds
�

I �z < 1
�

1 � E1
�
exp

�
�Or

R �z

0
11[1,y]Ysds

�
I �z D 1

� . (115)

Then using the facts (again, Borodin and Salminen (2002)) that

E1

�
exp

�
�Or

Z �z

0

11[1,y]Ysds

�
I �z < 1

�
D

� e�(2b�a)

� cosh(� a) �
�
� C Or

�

�
1 � e2�b

��
sinh(� a)

(116)

1 � E1

�
exp

�
�Or

Z �z

0

11[1,y]Ysds

�
I �z D 1

�
D

e2�(b�a)
�
� cosh(� a) C

�
� � Or

�

�
1 � e2�b

��
sinh(� a)

�

� cosh(� a) �
�
� C Or

�

�
1 � e2�(b�a)

��
sinh(� a)

, (117)

and substituting� D
�

�
�

� �
2

�
, Or D r C ı, a D ��1 ln y, andb D ��1 ln z, yields the second case
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of the lemma.

Lemma A.3. SupposeXt is a geometric Brownian process with a lower reflecting barrier at1, with

drift � and volatility� . Then ifX0 D 1 < y � z the occupation time ofXt in the region[1, y] over

the time interval[0, �z D minft > 0jXt D zg] is given by

E1

�Z �z

0

11[1,y]Xsds

�
D

8
<
:

G(y, z) if � � �2

2
> 0

G
�

1
y

, 1
z

�
if � � �2

2
< 0

(118)

where

G(u, v) D
ln y

� � �2

2

�
�2

2
�
� � �2

2

�2

 
y2�=�2�1 � 1

z2�=�2�1

!
, (119)

Proof of lemma: The occupation time may be recovered by inverting the Laplace transform for

the occupation time, given in Lemma A.2. So defineG(u, v) � � d
d(rCı)

F(u, v)
ˇ̌
ˇ
(rCı)D0

, where

F(u, v) is as in Lemma A.2. Then differentiatingF(u, v) using

p̌

ˇ̌
(rCı)D0

D d
d(rCı)

X p̌

ˇ̌
ˇ
(rCı)D0

D 0

ˇnj(rCı)D0 D � 2
�2

�
� � �2

2

�

d
d(rCı) p̌

ˇ̌
ˇ
(rCı)D0

D � d
d(rCı)

ˇn

ˇ̌
ˇ
(rCı)D0

D 1

�� �2

2

d
d(rCı)

X ˇn

ˇ̌
ˇ
(rCı)D0

D ln X

�� �2

2

,

and simplifying, yields the lemma.

Proof of the proposition:The expected value of the stopping time follows directly from the preced-

ing Lemma,

EPL [� ] D G
�

PT

PL
, PT

PL

�
. (120)

Substituting forG(u, v) using the functional form provided in Lemma A.3 and simplifying yields

the proposition.

Proof of Proposition 7.2

SupposeXt is a geometric Brownian process with drift� and volatility� , and a lower reflecting

barrier at1 and an upper reflecting barrier atz. Let �z D minft > 0jXt D zg, and let��
1 D minft >
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�zjXt D 1g. If X0 D 1, then by the Markov property for anyt > 0

Xt
dD X��

1 Ct (121)

where
dD is used to denote equal in distribution. So ify 2 [1, z]

lim
t!1

t�1E1

�Z t

0

11[1,y]Xsds

�
D

E1
hR ��

1

0 11[1,y]Xsds
i

E1
�
��

1

� (122)

D
E1
�R �z

0
11[1,y]Xsds

�
C
�
Ez
hR ��

1

�z
11[1,z]Xsds

i
� Ez

hR ��
1

�z
11[y,z]Xsds

i�

E1
�R �z

0 11[1,z]Xsds
�

C Ez
hR ��

1

�z
11[1,z]Xsds

i .

Let Yt D zX �1
t . ThenYt is a geometric Brownian process with drift�2 � � and volatility� and

reflecting barriers at one andz. So for anyx 2 [1, z]

Ez

"Z ��
1

�z

11[x,z]Xsds

#
D E1

"Z O��
z

O�1

11h
1,

z
x

iYsds

#
(123)

whereO�1 D minft > 0jYt D 1g and letO��
z D minft > O�zjXt D 1g. Then substituting the right hand

side of the previous equation into the proceeding equation withx D 1 andx D y, and employing

Lemma A.3, yields

lim
t!1

t�1E1

�Z t

0

11[1,y]Xsds

�
D

G�,�(y, z) C G�2��,�

�
1
z
, 1

z

�
� G�2��,�

�
y
z

, 1
z

�

G�,� (z, z) C G�2��,�

�
1
z
, 1

z

� . (124)

Finally, substituting forG using the explicit functional form given in Lemma A.3, where subscripts

are used to make explicit the fact that the process drifts toward one barrier and away from the other,

and lettingy D PT =PL andz D PU =PL , proves the proposition.

A.3 The Relation Between Market Power and Pseudo-Market Power

The Lerner (market power) index, adjusted along the lines of Pindyck (1987) to account for the “full

marginal cost” of production, which includes the Jorgensonian user cost of capital, depends on the

price of the good and is given by

L�(Pt) D 1 � rCıC�

Pt =C
. (125)

So the observed user cost-adjusted Lerner index is increasing in price, andL�(Pt ) 2
�
L�

L, L�
U

�
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where

L�
U D L�(PU )

D 1 � (1 � L)(r C ı)˘(1=�) � L (126)

L�
L D L�(PL)

D 1 � (1 � L)(r C ı)˘(�)
�

1C�
˛C�

�
� L, (127)

where the first inequality follows from̆ (1=�) � r C ı and the second from̆ (�) � r C ı. That

is, the user cost-adjusted Lerner index is “pro-cyclical,” in that it is increasing in demand, and lies

in an interval that includesL D H .
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