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Abstract

We quantify the impact of perceived environmental health risk on property values and

neighborhood composition using a widely-advertised re-classification of chemical carcino-

genicity. Focusing on plants that were previously emitting the chemicals, we estimate

a 2% decline in property values for houses closer to the plant relative to those farther

away. Our analysis also reveals a shift towards a higher presence of minority households

in houses closer to the plant. This evidence of granular changes in neighborhood compo-

sition in the wake of a change in perceived environmental health risk informs the debate

on environmental justice and health inequities.
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1 Introduction

In the United States every year 1.9 million individuals are newly diagnosed with cancer and

609 thousand die of it, with minority groups disproportionately affected. Cancer is the sec-

ond leading cause of mortality in the US with spending on cancer care exceeding $200 billion

in 2020.1 A crucial question for academics and policymakers is the value individuals place

on reducing environmental health risks, specifically cancer risk, a value that is not directly

observable and challenging to estimate. In this paper, we use house prices to quantify the

dollar amount households attribute to changes in perceived environmental health risk. Using

transaction-level house price data combined with carcinogenic chemical re-classification events

we find that, around these events, prices within a 3-mile radius of a toxic plant exhibit a relative

1-2% drop compared to prices between 3 and 5 miles.

Our empirical strategy is designed to isolate the effect of environmental health risks from

other factors such as economic factors, on house prices. To this end, we focus on already-existing

plants that reported emitting carcinogenic chemicals for the first time due to the widely ad-

vertised national re-classification of chemical carcinogenicity by the National Toxicology Pro-

gram’s Report on Carcinogens (RoC ). These re-classification events are salient information

events (Gormley and Matsa, 2011), which we show to be unrelated to changes in plant-level

employment and sales for the affected plants. Moreover, following the recent literature (e.g.,

Currie, Davis, Greenstone, and Walker, 2015, Diamond and McQuade, 2019), we compare price

changes for properties within a 3-mile radius of the plants (treated group) to price changes

for properties within a 3-to-5-mile radius (control group) around these re-classification events.

Our identifying assumption is that, while, after the event, perceived environmental health risks

are higher for properties closest to the toxic plants, all properties within a 5-mile radius are

similarly affected by other factors influencing local house prices.

We restrict the sample to properties that were transacted both in the year before or in

the year of the re-classification event and in the year after. This allows us to a) keep the

same composition of properties before and after the event, and b) use property fixed effects

and estimate within-property changes to housing values, which is important since properties

are heterogeneous across many unobservable dimensions. We also include plant times sale-year

fixed effects to control for other time-varying changes in the 5-mile ring around the plant. The

RoC events, the small ring size, the short time window, and the stringent fixed effects that we

1A cross-country comparison of cancer-related spending and mortality rates can be found here.
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include in the empirical specification all help us better identify the value households assign to

changes in environmental health risks as captured by changes in house values. We show that

the above-mentioned estimates (1-2%) are robust to longer event windows (from year -2 to year

+2 around the event).

We then consider a set of plant-year events that include all existing plants that reported

emitting carcinogenic toxins for the first time to the Environmental Protection Agency (EPA)

under the Toxics Release Inventory (TRI) program. These reporting events consist of both

the re-classification of chemicals as well as reporting in response to changes to the plants’

production decisions. The latter are likely to be less salient than the RoC events. In this case,

the estimated decrease in property values halves to approximately 1%.

Another contribution of this paper is to study changes in neighborhood composition in

the wake of a change in perceived environmental health risk. We examine a) the heterogeneous

response of properties based on their price, b) the ethnicity of buyers, and c) the creditworthiness

of buyers. To study the heterogeneous response of properties based on their price, we divide

properties into those with a below- and an above-median price (based on the ex-ante price

distribution), and then estimate the effects of the reporting events for each of these two groups.

We find that above-median-price properties in the area are the ones most affected by the re-

classification events, experiencing a house price drop of over 4%.2 Overall, we find that the

drop between house price changes in the treated relative to the control group is larger for

above-median price properties. To the extent that the more expensive properties are owned by

households with higher incomes, these results provide evidence of an income channel through

which sorting may occur.

Next, we focus on the ethnicity of buyers, which requires data on the characteristics of

individuals living in the vicinity of the plants. Our dataset includes the names of the buyers

in the property transactions. This allows us to use the classification algorithm of Sood (2017)

and Laohaprapanon, Sood, and Naji (2022) to predict the race and ethnicity of those involved

in each transaction. The estimates show a relative increase of 1 percentage point in minority

(Hispanic or African-American) home buyers in the vicinity of the treated plant in the year

after the events, compared to the control group and the pre-event period. Finally, for a subset

of home buyers in our sample, we observe their FICO score. The estimates show that the

2However, not all estimated differences are statistically significant, which may be due to the lower number
of observations. We require three transactions for the same property so as to sort it into an above and below
median price using an observation other than the two that we use to measure price changes.

2



FICO scores in the post-event treated group are lower than that of home buyers in the control

group, and when compared to the pre-event period. These results provide the first evidence of

granular changes in neighborhood composition around carcinogenic plants towards minorities

and higher credit-risk households.

Finally, we present a stylized model to rationalize our findings. We assume agents have

different income levels and freely choose where to reside. There are two regions with differing

levels of carcinogenic risk, and the residential choice leads to differences in agents’ life ex-

pectancy. The model replicates the empirical results and sheds light on the mechanisms behind

our estimates: households sort into areas of different environmental quality on the basis of their

income. The model also sheds light on the importance of information rigidities and how they

interact with income. We abstract from the possibility that high-income households are better

informed than low-income households about the higher carcinogenic risk in the area close to the

toxic plant and show that despite this assumption high-income households already exhibit a

stronger response to the news. This optimal behavior leads to a migration pattern that mirrors

the one documented in the empirical analysis. Our theoretical framework does illustrate that

while differential salience of the events may certainly exist across income groups, the model

does not require such a feature to fit the observed pattern in the data.

The rest of the paper is organized as follows. Section 2 discusses our contribution relative to

the existing literature. Section 3 describes the data and the identification. Section 4 shows the

estimated house value effects as well as several robustness tests. Section 5 studies neighborhood

composition. In section 6 we develop a stylized heterogeneous agent model that replicates the

estimated effects, and sheds light on the mechanisms behind the empirical estimates. The last

section concludes.

2 Related literature

Our paper contributes to existing works that have documented changes in property values

coming from changes in air quality (Bayer, Keohane, and Timmins, 2009, Chay and Green-

stone, 2005, Smith and Huang, 1995), lead remediation (Gazze, 2021, Billings and Schnepel,

2017), hazardous waste remediation (Gamper-Rabindran and Timmins, 2013, Greenstone and

Gallagher, 2008), toxic plant openings and closings (Currie, Davis, Greenstone, and Walker,

2015) and power plant openings (Davis, 2011). Our dataset and institutional setting allow us
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to identify the impact of carcinogenic risk on property values.

A contribution of our paper is the use of the re-classification of carcinogenicity of industrial

chemicals by the RoC to estimate effects on house values. This is motivated by recent work

by Gormley and Matsa (2011) who study firm-level responses to these events in the context

of corporate liability risk management. Households may have imperfect information about

hazardous emissions (Hausman and Stolper, 2021) or they may not possess the ability to fully

process this complex information (Bui and Mayer, 2003). Using the widely advertised RoC -

related events we find estimates that are twice as large as when we include the wider set of

events in which plants first report the emission of carcinogenic toxins. This finding suggests

the importance of information and salience for measuring the value that households attribute

to environmental health risks.

Our findings also relate to a large literature providing evidence of information rigidities for

households and professionals in a variety of settings (Mankiw and Reis, 2002, Carroll, 2003,

Coibion and Gorodnichenko, 2012, 2015) as well as to a literature documenting the importance

of information frictions regarding the impact of climate risk on the value of real estate assets

(Bernstein, Gustafson, and Lewis, 2019, Ortega and Taspinar, 2018, Baldauf, Garlappi, and

Yannelis, 2020, Murfin and Spiegel, 2020, Giglio, Maggiori, Krishna, Stroebel, and Weber,

2021, among others).

Finally, our paper contributes to the literature on environmental justice (Banzhaf, Ma,

and Timmins, 2019, Burda and Harding, 2014, Shapiro and Walker, 2021). Prior work has

documented disproportionate pollution exposure for low-income and disadvantaged households

(Agyeman, Schlosberg, Craven, and Matthews, 2016, Mohai, Pellow, and Roberts, 2009, Tes-

sum, Paolella, Chambliss, Apte, Hill, and Marshall, 2021) and neighborhood demographic

changes in response to air quality changes (Gamper-Rabindran and Timmins, 2013, Banzhaf

and Walsh, 2008, Currie, 2011). We add to this literature by showing a shift towards a higher

presence of minority and higher credit-risk households in houses closer to carcinogenic plants.

Our model rationalizes this finding; even when low- and high-income households are equally

informed, high-income households respond more strongly to the news leading to a migration

pattern mirroring the empirical observations.
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3 Data and methodology

3.1 Data sources

Toxics Release Inventory. Our first data source is the TRI data from the EPA. Firms that

satisfy the following criteria must report their emissions to the EPA: (i) the number of employees

has to be 10 or larger; (ii) the industry sector in which the plant operates has a covered NAICS

code; (iii) firms manufacture with, or use TRI-listed chemicals in the production process; and

(iv) the plant exceeds at least one of the thresholds for a chemical or a chemical category.

When these four criteria are met, the plant must report its emissions of chemicals covered by

the EPA. The list of TRI chemicals includes the carcinogenic ones on which we focus.3

The timing of the data reporting is as follows. From January to June, the plants prepare

and submit reporting forms for the previous calendar year. In mid-July a preliminary dataset

becomes available, and after some ongoing processing and data analysis, a complete national

dataset becomes available in October. We use these complete datasets in our analysis covering

the period from 2000 to 2020.4 To determine which plant reports the emission of carcinogenic

toxins for the first time due to the re-classification of chemical carcinogenicity at the national

level, we proceed in two steps. First, we select plants that report for the first time the emission

of carcinogenic toxins to the EPA. Then, among these plants, we select the ones that were

already using non-carcinogenic chemicals, which were later re-classified as carcinogens by the

NTP’s RoC.

We first identify plant-years that reported for the first time the emission of carcinogenic

toxins to the EPA. Plants that already satisfied our event definition in the year 2000 (the start

date of our sample) are excluded, since we do not know whether this is the first year in which

criteria were satisfied. For each subsequent calendar year, we construct an indicator variable for

those plants and the year in which they first report emitting pollutants that are known human

carcinogens at the time of the report. More precisely, the treated plants are those with flags

for the emission of carcinogenic toxins included in the Clean Air Act.

Our paper uses variation introduced by plants’ reporting for the first time their release of

3The carcinogenicity classification for each chemical follows three agencies: 1) the International Agency for
Research on Cancer (IARC); 2) the National Toxicology Program (NTP); 3) Occupational Safety and Health
Administration (OSHA) 29 CFR part 1910 Subpart Z.

4Further details are available here.
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known human carcinogens into the environment.5 We emphasize the word known since the

RoC re-classification events focus on plants that were emitting a carcinogen in the year that

the chemical became known as such (and were not previously emitting any other carcinogenic

chemical). We define the event-year as the one in which the chemical became known as a

carcinogen according to the RoC.

The overall set of plants that report emitting carcinogenic toxins for the first time during

the sample period consists of 14,787 unique plants. This set includes both plants that because

of their production decisions started reporting to the EPA (the event year is the reporting year)

and those that were previously emitting chemicals that were later on re-classified as carcinogenic

(the event year is the re-classification year).

National Establishment Time-Series. A second data source we use is the National Estab-

lishment Time-Series (NETS) dataset provided by Walls & Associates and Dun and Bradstreet,

which, as Rossi-Hansberg, Sarte, and Trachter (2021) show, compares favorably with Census

data in terms of quality and coverage. The NETS data includes annual revenues and employ-

ment information at the plant level (from 1990 to 2020). When merged with TRI data, it allows

us to test for the potential relation between the events and plants’ economic activities.

The NETS data has an additional use in the analysis of the first-time reporting of car-

cinogenic toxins sample. A potential confounder in this sample comes from those plants that

both open and meet the EPA’s reporting criteria in the same year, making it unclear whether

observed effects stem from the plant’s opening or from the reporting of carcinogenic toxins.

The opening of new plants could affect nearby property values through factors like aesthet-

ics. The NETS data includes the year of the plant opening, which we use to exclude those

plants that opened and met the EPA’s reporting criteria in the same year (3,226 plants). This

leaves us with 11,561 plants that first reported carcinogen emissions in years distinct from their

opening. Appendix Figure D.1 plots the location of these plants, distinguishing between RoC

and non-RoC events. There is significant geographical overlap between the two. Appendix

Table D.1 reports the industry coverage and the most frequent chemicals for our sample of

11,561 plant-year events (lead is responsible for 47% of the plant-events followed by nickel with

5That is, a given plant may have previously reported the emission of non-carcinogenic chemicals; the event
is the first time that the plant reports exceeding the threshold of a known carcinogen. There may be less
measurement error in the reporting flag than in the estimated amounts of emissions which reflect differences in
companies’ estimation methodologies both over time and in the cross-section.
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17%, whereas the largest proportion of plants are in manufacturing, 88%).6

It is important to clarify that in our sample of 11,561 plant-events, 4,589 (approximately

40%) met our event criteria within the same year they initially reported emissions to the EPA.7

The other 60% of our sample consists of plants that had already reported non-carcinogenic

emissions, which allows us to capture the impact of newly reported carcinogenic emissions.

Corelogic Deed & Tax Records. To measure values of residential properties, we use the

Corelogic Deed & Tax record data on housing transactions between 2000 and 2020. We restrict

the sample to single-family residences, residential condominiums, duplexes, and apartments.

For our granular analysis, the property’s exact location is of utmost importance. Therefore,

we exclude observations with missing block-level latitude and longitude data.8 For each of the

plants, we merge the location information from TRI data with the property transactions data

to calculate the distance between each plant and all residential properties using the Vincenty

(1975)’s formula. Furthermore, we exclude those observations with missing information on the

sale amount or year in which the property was built. Finally, we only keep transactions in

which Corelogic records that the buyer purchased the property in cash or via a mortgage, thus

excluding non-arm’s length inter-family transactions or investor-recorded purchases.

Despite the geographical overlap, it still is the case that among the 11,561 plant-events that

we previously identified, there are 1,140 for which there are no property transactions in the

5-mile radius of the plant. This leaves us with 10,421 plant-events. Furthermore, there are

several instances of plants located close to each other, with events happening in different or

even the same year. In these cases, and to avoid including observations with multiple events,

we include only property observations corresponding to the first event and we link them to the

plant closest to it. This reduces the number of plant-events to 7,801.

Finally, to reduce the impact of outliers, we eliminate transactions at the extreme ends

of the price spectrum, specifically those below $30,000 (5th percentile of the distribution) and

6This larger sample includes plants that may be meeting the TRI reporting criteria for the first time because
of increased production levels with positive effects on the wages of plant workers and the local economy, which
in turn has implications for local house prices. We use the NETS data to investigate this hypothesis.

7For this 40% of plant-events, our estimates will capture the combined effect of reporting to the EPA and of
reporting the emission of carcinogenic chemicals.

8Block-level geographic coordinates specify the north-south and east-west position of a point based on the
United States Postal Service address data for each parcel. These coordinates capture the most accurate property
location instead of parcel-level centroid geographic coordinates which take into account the land area when
computing the property location.
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above $700,000 (95th percentile), and focus on repeated property transactions, which leaves us

with 6,405 plant-events for the analysis of house price effects. In the Appendix, we show the

robustness of our results to a less stringent definition of outliers and consider dropping only

houses with a value above $2.57 million (99th percentile of the distribution), which leads to

larger price drop estimates.

Identifying changes in the carcinogenic status of chemicals. We hand-collect infor-

mation on changes in the carcinogenic status of chemicals using the NTP’s RoC, following

Gormley and Matsa (2011). The report is published by the US Department of Health and

Human Services under a mandate by the Congress introduced in 1978. The first two reports

were published in 1980 and 1981, and the subsequent reports have been updated approximately

biannually since then. These reports provide information on scientific discoveries related to

chemical-specific carcinogenicity and the associated timing. Each report provides informa-

tion on new carcinogens and changes in the status of chemicals identified in previous reports.

Therefore, any change to the status or addition of chemicals to the report are indicative of the

scientific consensus that these chemicals are likely to be carcinogenic.

We focus on reports published during the sample period that include the years 2002, 2004,

2011, 2014, and 2016.9 In our analyses, we use chemicals that are newly identified as carcino-

gens, or are reasonably anticipated to be human carcinogens (RAHC ) as defined by the NTP.

Based on these criteria, we match these chemicals to plants that use them (as we know from the

TRI reports). We require these firms to already report the usage of these chemicals in the year

before the change in their status and to continue reporting their usage in the year after. This

reduces the possibility of changes in the plant activity that may affect house prices directly.

The Chemical Abstract Service (CAS) Registry Number unique to chemicals allows us to link

the information across the two datasets.10 We merge this list with the plant data mentioned

above and find a total of 1,585 unique plant-events impacted by the re-classification.

9In Appendix Figure D.3 we present an excerpt from the Washington Post discussing the case of Styrene, a
toxic chemical in our dataset.

10The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 1980)
enacted by the US Congress aids in the identification of the designated hazardous substances by providing the
CAS Registry Numbers. These are unique numeric identifiers associated with designated hazardous substances
and are provided for the convenience of the regulated community and the public (see, 40 CFR 302.4).
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RSEI Geographic Microdata. The EPA uses the TRI data to construct Risk-Screening

Environmental Indicators (RSEI) that measure potential risks to human health and the en-

vironment. The data draw on information from the TRI program on chemical releases into

air, water, and soil (media) and model their potential location-based health impacts on the

population exposed to these chemicals. We use these indicators to measure cancer risk in the

vicinity of the plants (intensive margin) and how it varies with distance. This evidence informs

the definition of the ring size in our empirical strategy.

We use data at the most granular spatial unit - grid cells of dimension 810m × 810m. The

data includes toxic concentrations of chemicals for release by spatial unit and media (air, water,

or soil), and the number of people in the grid cell who are potentially exposed. We use two

measures of cancer risk. First, we rely on model estimates of cancer risk by the EPA, namely,

RSEI cancer scores. They offer a unitless measure computed for each chemical and media as a

product of the estimated dosage released by that specific toxic plant, the toxic concentrations,

and the potentially exposed population. The RSEI cancer scores do not directly translate to the

probability of a lifetime cancer diagnosis.11 We scale the RSEI cancer scores by the exposed

population, so as to obtain at the chemical-grid cell-media level a measure of the estimated

dosage multiplied by the toxicity of the chemical.12 We sum the so-computed-cancer-risk scores

at the grid level.

As an illustrative example, Figure 1 plots the heatmap by grid cells (810m × 810m grids) for

the computed cancer risk scores surrounding Arch Wood Protection Inc., Conley, GA 30288, in

2004, one of the plant-years included in our event sample. The darker-colored grid cells show a

higher cancer risk in the vicinity of the plant. The rings show locations within a 3- and 5-mile

radius of the plant.

Figure 2a presents a binscatter plot of the relation between the cancer-risk scores and

distance (up to a 5-mile radius) for RoC plant-event-years for which we are able to compute

cancer-risk scores. The data indicate cancer risk is highest in the immediate vicinity of the

plant and declines with distance, without significant changes beyond 3 miles from the plant.

11To the best of our knowledge, the only paper linking RSEI scores to cancer risk is Boyle, Ward, Cerhan,
Rothman, and Wheeler (2023), which however focuses on a specific type of cancer —Non-Hodgkins Lymphoma
—for 4 cities in the US.

12It is important to scale the RSEI cancer scores by exposed population who live in a particular grid to obtain
for each chemical-grid cell-media the product of concentration times toxicity weight for cancer effects. Not
scaling will lead to lower RSEI cancer values as we shrink the ring closer to the plant: this is the mechanical
result of fewer individuals living in treated areas that are smaller.
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Second, for a subset of chemicals, we observe the oral cancer slope factor. This factor

quantifies the incremental lifetime cancer risk from oral exposure to a particular chemical and

provides an estimate for the rate at which cancer risk increases with the dosage in the low-dose

region for carcinogens. We compute the lifetime probability of a cancer diagnosis by combining

these TRI-reported oral slope factors (Q∗) with chemical air releases. For each chemical, we

use the following relationship:

(1)Lifetime Cancer Probabilityc = Concentrationc ×
IR× ED

BW× AT
×Q∗

c ,

where Lifetime Cancer Probabilityc is the additional lifetime cancer probability due to expo-

sure to chemical c, Concentrationc is the concentration of the chemical in the contaminated

environmental medium (air) to which the person is exposed (measured in µg/m3) multiplied by

1000 for consistency of measurement units, IR is the intake rate of contaminated air (measured

in m3/day), ED is the exposure duration (measured in number of days), BW is the body weight

of the exposed person (measured in kilograms), AT is the average length of time over which

the average dose is calculated (measured in days), and Q∗
c is the oral slope factor expressed as

risk per mg/kg-day.

We follow the EPA’s assumptions of people breathing 20m3 of air every day. Relative to the

EPA’s assumption of a 70-kilogram body weight, we make a more conservative assumption of

the average person weighing 84 kilograms. We follow Health Canada (2004), Li, Iwayemi, Li,

Komives, and Chakrabarti (2022) and calculate an upper-bound to lifetime cancer risk under

continuous exposure to contaminated air in a particular grid (ED/AT equal to 1). Since we are

able to compute this measure at the chemical-grid level, we aggregate the estimated values of

lifetime cancer probabilities at the grid-level.

Figure 2b repeats the binscatter plot using the lifetime cancer probability from air emissions

for RoC plant-event-years included in our sample that release any of the chemicals for which the

EPA provides the estimates of the oral cancer slope factor. Again, the data indicate cancer risk

is highest in the immediate vicinity of the plant and declines with distance, without significant

changes beyond 3 miles from the plant. In the next subsection, we use this and other evidence

to define ring sizes, that are central to our empirical strategy.
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3.2 Empirical strategy

Our empirical strategy is designed to isolate the effect of environmental health risks from other

factors, such as economic factors, on house prices. To achieve this, we proceed in two steps.

First, we use chemicals that are newly identified as carcinogens by the NTP’s RoC. To hold

constant plant production decisions, we require plants to already report the usage of these

chemicals in the year before the change in their status, and to continue reporting their usage in

the year after. Consistently, we show that these events are unrelated to changes in employment

and sales at the affected plants. We then introduce the ring methodology, which compares

housing transactions close and farther away from these plants and uses this comparison to

identify environmental-health-risk effects on house values. The identifying assumption is that,

while, after the event, perceived environmental health risks are higher for properties closest

to the toxic plants, all properties within a 5-mile radius are similarly affected by other factors

influencing local house prices.

3.2.1 No change in economic activity around the RoC events

We use the NETS data to analyse changes in plant-level sales and employment around the RoC

events, using a matched sample empirical approach. Specifically, for each plant j in our sample,

we find control plants within the same state, and industry in the same event year. We assign

the same event-year as a pseudo event-year to the matched control plant. We allow for our

effects to be estimated within each pair of treated and control plants.

Let n be the 6-digit NAICS code, s the state and t the year. We estimate changes in plant-

level employment and sales within a 5-year window around the event (from year -2 to year +2)

using the following empirical specification:

log(y)jnst = α + βPost×Treated × Postjt × Treatedjt + γj + γnt + γst + ϵjt, (2)

where the dependent variable y can be either plant-level employment or sales for plant j, and the

variable Postjt takes the value of 1 for observations after the event year, and zero otherwise. We

include plant fixed effects so that the estimates capture within-plant changes in employment.

We also control for time-varying industry and state characteristics through industry × year and

state × year fixed effects. Thus, our estimates measure changes in economic activity associated

with the plant, beyond those reflected in industry and state fixed effects.
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Table 1 shows the estimates for plant-level employment and sales. The estimated coefficients

are not significantly different from zero: changes in the carcinogenic status of chemicals are not

associated with increased production levels at the plants emitting those chemicals.

3.2.2 Ring methodology

Even though the RoC events are not associated with changes in plant-level economic activity,

there may be other sources of local economic activity influencing the evolution of house prices in

the same year as the events. We address this identification challenge by exploiting the location

of plants and properties at a granular level. For each plant, we identify the houses within its

immediate vicinity, namely those within a 3-mile ring around the plant and those in a ring

between 3 and 5 miles around the same plant. The former set of houses is our treated group,

and the latter is the control group. The idea is that emissions and the RoC information event

have more of an impact on properties located closest to the toxic plant, whereas all properties

located within the 5-mile radius are exposed to the same changes in local economic activity

(or other factors affecting house values). Several recent papers use this “ring” method for

identification purposes (Butts, 2022, Diamond and McQuade, 2019, Ganduri and Maturana,

2022, LaPoint, 2022).

Our choice of a benchmark ring size of 3 miles for the treated group is based on three

observations. First, the environmental justice and medical research literature have used radii

ranging from 100 yards (Sheppard, Leitner, McMaster, and Tian, 1999) to 3 miles (Perlin,

Wong, and Sexton, 2001, Mohai and Saha, 2006).13 Second, Figure 2 plots the relationship

between the computed probability of cancer diagnosis (cancer-risk score) and distance from

the plant. The figure shows a higher incidence of such risks manifesting within the 3-mile ring

compared to the 3-to-5-mile ring in the year of the event. The same figure shows that, within

the 3-mile radius, cancer risk declines with distance, so we will consider smaller ring sizes for

the treated group while keeping the control group the same. Third, in Online Appendix B, we

show that air quality is significantly worse near the plants up to 1.5 miles.

Next, we test whether, around the re-classification events, plants mitigate/modify their

emissions of carcinogenic chemicals. For each plant j and grid-cell location l within 5 miles of

the plant, we compute the incidence of cancer risk, as measured by a) the lifetime probability

13For instance, Whitworth, Symanski, and Coker (2008) have shown that children who resided within a
distance of 2 miles from the Houston ship channel were at a 56 percent increased risk of developing acute
lymphocytic leukemia when compared to children living more than 10 miles from the channel.
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of a cancer diagnosis, and b) the RSEI cancer score scaled by the exposed population.

In this context, it is important to note that the RoC events are simply information events.

After all, the plants were producing the carcinogenic chemicals before the re-classification and

continued their production afterward. Furthermore, after the re-classification the cancer scores

are updated and back-filled, so that the data will reflect actual changes in cancer risk with the

benefit of hindsight.

We estimate changes in cancer risk in the year after the RoC events relative to the year

before. To avoid including observations with multiple events, we include only grid-cell observa-

tions corresponding to the first event-year and link them to the plant closest to it. Therefore,

we define an indicator variable Postlt that takes the value of one if the cancer score corresponds

to a year t in the event year and zero otherwise. For distance, we define five treatment rings

based on the grid’s distance from the toxic plant. Specifically, 1
Distancelj<Xmiles

lj takes a value

of one if the centroid of grid l is within X miles of plant j, where X is 3, 2, 1.5, 1.25, or 1

mile, and zero for grids with centroid between 3 and 5 miles of the same plant. The dependent

variable in the regressions is the level of cancer risk at the 810m×810m grid level. The empirical

specification is as follows:

Cancer Riskljt = α + βPost×Distance × Postlt × 1
Distancelj<Xmiles

lj + γjt + γl + ϵljt. (3)

The above equation includes plant× year fixed effects (γjt) and grid fixed effects (γl). Therefore,

we estimate within-grid changes in cancer risk around our events controlling for time-varying

characteristics of the plant. Standard errors are double-clustered at the plant and year levels.

Table 2 reports the estimated relative increase in lifetime cancer probability (βPost×Distance).

The estimated coefficients are positive, but economically very small (between 0.2 and 0.3 basis

points) and mostly statistically insignificant. This is consistent with firms not adjusting their

production plans around the re-classification events.

3.2.3 Identifying environmental-health-risk effects on house values

Next, we present the empirical specification that we use to estimate house price effects. Let j

be the toxic establishment matched to property i, and t the year of the property transaction.

The dependent variable is the logarithm of the property sale amount and the equation that we
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estimate is:

log(Sale amount)ijt = α + βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γjt + γi + ϵijt, (4)

where Postit is an indicator variable taking a value of one for transactions of property i that

take place in year t after the event year (year +1) and zero otherwise (transactions in years 0

and -1).14 The indicator 1
Distanceij<Xmiles
ij takes a value of one if property i is within X miles of

plant j, where X is 3, 2, 1.5, 1.25, or 1 mile, and zero for properties located between 3 and 5

miles of the same plant.

The above specification includes plant×property-sale-year fixed effects (γjt) that control for

time-varying economic conditions in the area around the plant where the property is located

and property fixed effects (γi) that control for time-invariant property characteristics. The

parameter of interest βPost × Distance measures the within-property relative changes in the sale

amount from one year before to one year after.

The use of a repeated-sale approach over a narrow time window helps with the identifica-

tion of house price effects, but introduces selection in the properties included in the sample.

Specifically, the sample includes properties that are transacted at least twice in a window of

three years, including at least once in year +1. This sample of properties may over-sample

transactions by flippers, i.e. buyers who acquire run-down properties, fix them up, and then

sell them in a short period of time.15 Moreover, for this subset of properties, increases in prices

may at least partially reflect the value from associated improvements. While our data does

not allow us to measure such improvements, we try to (at least partially) address the issue by

dropping properties that are transacted twice in the same year. To further address selection,

we also provide estimates for a wider window of five years around the event (from year -2 to

year +2) and find similar results.

14We first focus on transactions that took place in the calendar year before the event (year -1), in the calendar
year of the reporting event (year 0), and in the year after (year +1), but later on we expand the event window
to [-2,+2].

15Appendix Figure D.2 compares the distributions of sale prices for all transactions and for repeated transac-
tions (roughly 17% of the total sample). The shapes of the distributions are similar, but the sample of repeated
transactions has a slightly larger proportion of properties transacted below the median prices.
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4 Environmental-health-risk effects on house values

4.1 Baseline estimates

Panel A of Table 3 presents our baseline results. The different columns present estimates for

different treatment ring sizes. The estimated coefficient on the interaction term between post

and distance in column (1) is negative and statistically significant: prices of properties within

the 3-mile radius decrease by 1% relative to those between 3 and 5 miles after the event. In

the remaining columns of the table, we decrease the size of the ring of the treated group from

3 to 1 mile from the reporting plant. The estimated decline in house values increases to 2.3%

for a treated ring radius of 2 miles, before declining slightly as we decrease ring size further.

Naturally, as we do so, the number of transactions included in the regression declines. The main

result from the table is that the estimated declines in the value of treated properties relative

to the control group are significant and relatively stable at around 2%.16

In order to provide evidence of the significance of our estimates, we carry out a placebo test

of 1,000 bootstrap estimates of βPost × Distance. We generate bootstrapped samples by randomly

drawing the distance between a property and its nearest toxic plant from a uniform distribution

of between 0 and 5 miles. We then use this bootstrapped sample to estimate equation (4) for

a treated ring of 1 mile. Figure 3a plots the empirical distribution of the estimated house price

effects in the bootstrapped samples. The vertical line denotes the estimates reported from panel

A of column 5 in Table 3. The p-value for the null hypothesis from this empirical cumulative

distribution is 0.001, confirming the significance of our estimate.

The estimates of Table 3 panel A are for a tight window around the event (from year -1

to year +1), which helps with the identification of the effects of the re-classification on house

prices, but also reduces the number of properties in our regression sample. To estimate within-

property changes, we need properties to be transacted at least twice in the event window, once

before (in years -1 or 0) and once after the event (year +1). With such a narrow event window,

property fixed effects control for all the property features that remain constant in these 3 years.

To assess the sensitivity to our choice of the event window, in Table 3 panel B we repeat

the analysis expanding the window to [-2,+2]. That is, we now use properties that are trans-

16In Appendix Table D.3 we estimate regressions similar to those that we estimate for house prices, but with
the number of property transactions as the dependent variable. The results show a significant decrease in the
number of transactions after the event in the treated relative to the control group.
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acted at least once before the event and once in the two years after.17 The estimated effects

are statistically significant, albeit slightly smaller in economic magnitude than those in panel

A. Interestingly, unlike the [-1,+1] event window, the relative house value declines are now

monotonically larger for smaller ring sizes.

We further investigate the importance of distance from the plant for the estimates by con-

structing separate dummy variables for properties in the treated group based on their distance.

Specifically, 1Distanceij∈(m0,m1] are dummy variables that take a value of one if property i is be-

tween m0 and m1 miles, and zero otherwise. The control group is the same as before (properties

between 3 and 5 miles of the plant). The empirical specification is as follows:

(5)
log(Sale amount)ijt = α + β1 × Postit × 1

Distanceij∈(0,1]
ij + β2 × Postit × 1

Distanceij∈(1,2]
ij

+ β3 × Postit × 1
Distanceij∈(2,3]
ij + γi + γjt + ϵijt,

where, as before, we include property and plant × sale-year fixed effects and standard errors

are clustered at the property level. Figure 4 plots the coefficient estimates (β1, β2, β3) and the

corresponding 95% confidence intervals, for event windows [-1,+1] and [-2,+2]. Both figures

show that the effects are driven by properties closer to the plants, with the effects for those

between 2 and 3 miles not significantly different from the control group.

Next, we explore the changes in house values year-by-year. Figure 5 plots the coefficients

on event-time dummies and their corresponding 95% confidence intervals for the treated and

control groups separately. We focus on a window of 7 years around the RoC events and,

given the just-mentioned results from Figure 4, define properties that are transacted within a

2-mile radius of a toxic plant as the treated group. Properties transacted within 3-to-5 miles

of the plant form our control group. The estimates are normalized to time zero, relative to the

event year. Further, the empirical specification includes property fixed effects to control for

time-invariant property characteristics. Standard errors are clustered at the property level.

As evident from the figure, there is a significant increase in house prices in our window

of 7 years around the RoC events for both the treated and control groups.18 Specifically, we

see that, relative to time zero, before the event, the estimated coefficients are negative and

increase over time for both treated and control groups. Importantly, the difference between the

17For all properties that are transacted more than two times in the two years before the event, we include all
the observed transactions in the regressions.

18We observe substantial increases in house prices, also because a large fraction of the RoC events are
concentrated in the year 2004, a period that saw significant house price growth in the US.
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groups is neither economically nor statistically significant. At the same time, after the event,

the estimated coefficients increase for both groups but less so for properties in the treated

group. However, the difference between the two groups (approximately 3%) is economically

and statistically significant.

In the appendix, we present estimates from additional robustness exercises for our main

specification in Table 3. In the first, we restrict the sample to those events for which we have at

least two hundred housing transactions per toxic plant. This means an average of at least fifty

transactions in both the treated and control groups in the pre/post periods. Appendix Table D.4

shows that the results are robust with estimated house price effects of similar magnitude and

around 2%. In the second robustness exercise, we show results when using house prices in levels

rather than in logs. Estimates are presented in Appendix Table D.5. We observe house price

declines between 5 and 13 thousand dollars, relative to an average price of around $210,000,
depending on the size of the treated ring and the event window. The larger magnitude of the

estimates compared to the benchmark values in Table 3 is due to the large skewness of the

distribution of house price levels. Lastly, in Appendix Table D.6 we show that our baseline

estimates are robust and larger in magnitude when we drop only the top 1% of the price

distribution, namely, properties whose price exceeds $2.57 million.

4.2 First-time reporting of carcinogenic toxins

In this section we present results for the sample that includes all the events for the first-time

reporting of carcinogenic toxins. This is a larger sample than the one focusing on the re-

classification events. The additional events in this larger sample are likely to be less salient and

coincide with changes in plant-level economic activity.19

Table 4 shows the house price effects, with statistically significant declines in the price of

properties in the treated group compared to those in the control group. In terms of economic

magnitude, the decline in the value of treated properties is around 1%. This decline is roughly

half of the previous estimates focused on the RoC events. Figure 3b plots the results of a

placebo test with randomized distance between properties and plants, similar to the one that

we have previously described. The figure shows that the estimated house price change in

19Table D.2 shows the results for the larger sample of first time reporting of carcinogenic toxins. Plant-level
employment and sales are on average 5% higher after the event than before relative to the control group. This
confirms the hypothesis that in general there may be plant-level changes in economic activity associated with
pollution reporting events.
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the treated group of -1% is significantly lower than the values obtained for the samples with

randomized distance. The vertical line denotes the estimates reported from panel A of column 5

in Table 4. The p-value for the null hypothesis from this empirical cumulative distribution is

0.002, confirming the significance of our estimate.

In Appendix C, we provide a back-of-the-envelope calculation that uses our estimates of

house price drops and increases in cancer probability for this broader sample to estimate the

value of 1 additional year of statistical life. Our estimates imply a value ranging from $28k to

$87k per additional year of statistical life.

5 Neighborhood composition

We study changes in neighborhood composition in the narrow geographical areas around the

carcinogenic plants. To do so, we examine a) the heterogeneous response of properties based

on their price, b) the ethnicity of buyers, and c) the creditworthiness of buyers.

5.1 Heterogeneity by property prices

We begin by focusing on the heterogeneous effects depending on how expensive the properties

are. To the extent that the more expensive properties are owned by households with higher

incomes, such an analysis is informative of an income channel through which sorting occurs.

In our empirical approach, we define expensive properties as follows. To avoid using the

same price observations for separating properties and estimating house price effects, for each

event-plant j, we separate properties into above-median and below-median values based on

their sale value between years -5 and -3 (relative to event year 0).20 This naturally requires

that we observe a transaction for the property in this period. We create a dummy variable

Aboveij equal to one if the property i was transacted in [-5,-3] years before the event for a price

above the median property price by plant-year, and zero otherwise.

We then estimate regressions of changes in housing values around two years before and after

the event year by interacting the Post dummy with the indicator for the distance from the

plant and the indicator for the above-median price level. Specifically, we estimate the following

empirical specification:

20This choice has implications in terms of the number of observations available and the properties that are
selected.
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log(Sale amount)ijt = α + βDistance × 1
Distanceij<Xmiles
ij + βPost × Postit + βAbove × Aboveij

+ βAbove×Distance × Aboveij × 1
Distanceij<Xmiles
ij + βPost×Distance

× Postit × 1
Distanceij<Xmiles
ij + βPost×Above × Postit × Aboveij

+βPost×Distance×Above×Postit×1
Distanceij<Xmiles
ij ×Aboveij +γi+γjt+ ϵijt.

(6)

Panel A of Table 5 shows the results for the RoC sample. Panel B of Table 5 shows the

results for the sample of first-time reporting of carcinogenic toxins. From the table, we see that

above-median-price (expensive) properties are the ones experiencing a drop of 4−6% and among

the expensive properties, those in the vicinity of a toxic plant are estimated to have a larger

house price drop compared to expensive properties that are farther away from the toxic plant.

Moreover, the bottom two rows of panel B show that differences between the treatment and

control groups are more significant, both statistically and economically, for above- compared

to below-median-price properties. The drop in estimated house values for above-median-price

properties in the treatment relative to the control ring varies between 70 basis points (for a

treated ring size of 3 miles) and 107 basis points (for a 1-mile ring size). Taken together, if

more expensive (above-median-price) properties are purchased by higher-income households,

these results suggest that these households value environmental health risks more significantly

(or are better informed about them).

5.2 Changes in minorities and household creditworthiness

Next, we aim to shed light on granular changes in neighborhood composition by focusing on the

ethnicity of the buyers. The existing census data is too coarse for this purpose. However, the

Corelogic data includes the names of the buyers in property transactions. To classify race and

ethnicity using names, we rely on the algorithm proposed by Sood (2017) and Laohaprapanon,

Sood, and Naji (2022). They use the 2017 Florida Voter Registration data as training and

testing data and propose a classification algorithm for predicting the race and ethnicity of

individuals from their first and last name.21

More precisely, we first use their algorithm to predict the likelihood that the buyer is of

Hispanic or African-American origin. We then construct a dummy variable, 1(Minority), that

21The Florida Voter Registration data has information on nearly 15 million voters along with their self-reported
race, and treats race and ethnicity as one dimension with Hispanics treated as one group.
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takes the value one when the individual is predicted to be of Hispanic or African-American

origin (and zero otherwise). We focus on Hispanics and African-Americans since the algorithm

can identify individuals belonging to these groups with a higher degree of precision. However,

within these two groups, Hispanics can be better identified than African-Americans.

Out of all buyers, 14.61% and 4.05% are classified as Hispanic and African-American origin,

respectively. As a comparison, we have obtained US homeownership data by race and ethnicity

from the 2020 US Census: 10.5% of homeowners are identified as Hispanic and 7.9% as African-

American.22 Therefore, our sample of homebuyers has a higher proportion of Hispanics and a

lower proportion of African-American than the proportion of houses owned by these two groups

as a whole. A potential reason is that the areas where the events take place are different than

the US as a whole. In our regression analysis, we take the differences in race and ethnicity of

buyers within the same area and compare their incidence before and after the event.

The dependent variable 1(Minority)ijt is the minority indicator variable referring to the

buyer of property i near plant j in year t. The equation we estimate is:

(7)1(Minority)ijt = α + βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γjt + γi + ϵijt,

where the set of fixed effects is similar to before. The event window is [-2,+2] to maximize

the number of observations available for the analysis. Our focus is on the identity of buyers in

the post-event period and in the treated areas, relative to the pre-event period and the control

group, as measured by the estimated βPost×Distance. We focus on the buyers since the seller in the

post-event property transaction is the buyer in the pre-event transaction of the same property,

so our estimates already speak to the identity of the seller in the post-event transaction. In

other words, we compare buyers and sellers in the post-event transactions relative to before

and as a function of distance to the toxic plant.

Panel A of Table 6 examines changes in buyer ethnicity for the RoC sample. The estimated

positive coefficient on the Post× 1
Distance< X miles in column (1) shows a relative increase of 0.9

percentage points in minority home buyers in the vicinity of the treated plant in the period after

the re-classification of the chemicals compared to the control group. The estimated coefficients

remain at this level and are statistically significant as we decrease the treated ring size up to

1.25 miles. Panel B reports the estimates for the sample of first-time reporting of carcinogenic

toxins. The estimated changes are slightly smaller, consistent with the events being overall less

22The US Census Bureau released an interactive map illustrating 2020 Census data about homeownership by
the age, race, and ethnicity of the householder which can be found here.
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salient, but they still are positive and statistically significant (up to 1.25 miles).

Finally, for a small proportion of the buyers in our sample, we observe their FICO scores

from the CoreLogic Loan Level Market Analytics data.23 The average FICO score of buyers is

703, which is below the average FICO score in the US population of 715 (Experian), and the

average FICO score of 746 in the Fannie Mae Single-Family Loan Acquisition and Performance

Data.24 The Experian data on FICO scores include both homeowners and renters, whereas

our data is for house purchasers only, who tend to have higher FICO scores. Despite this, the

average FICO score in our data is lower, reflecting the fact that the sample of individuals who

live near the carcinogenic plants is not representative of the US population.25

We estimate (7) using the level of the FICO score of home buyers as the dependent variable.

In Appendix Table D.7, we present the results. In Panel A we show the estimates for FICO

score changes around the RoC events. The coefficients are almost always negative, but not

statistically significant. The lack of statistical significance may be due to the small number of

borrowers for which we observe credit scores. In Panel B we report estimates for the sample

of first-time reporting of carcinogenic toxins for which the sample is larger. The estimates are

more significant both statistically and economically. They increase in economic magnitude and

reach −8 points as we decrease the size of the treated ring to 1.25 miles.

Overall, the results in this section provide the first evidence of granular changes in neigh-

borhood composition around the carcinogenic plants towards minorities and higher credit-risk

households.

6 A stylized model

In this section, we develop a stylized heterogeneous agent model that replicates the estimated

effects. The goal of this model is to provide evidence of the economic mechanisms behind the

empirical estimates via comparative statics.

23It contains detailed loan data, including loan origination, loan performance, and FICO scores for buyers
who purchase their properties with a mortgage in the US.

24Data from the first quarter of 2000 to the third quarter of 2021.
25It would be interesting to study the effects of the event on rents, which capture the value of using the prop-

erties and are likely to reflect the demand for it by the lower-income segment of the population. Unfortunately,
we were not able to obtain data on rents with the granularity needed for the identification.
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6.1 Model setup

There is a continuum of agents who supply one unit of labour inelastically and two types of

workers with low and high wages w and w, respectively. Workers are equally distributed across

the two types. There are two regions: N is near to a toxic plant and F is farther away. The

two regions differ in the amenities that they have, providing agents with utility AN and AF ,

respectively. Furthermore, the two areas differ in the exposure to cancer risk. Let P (c | r)
represent the subjective probability of dying of cancer for agents residing in region r (with

r = N,F ), with P (c | N) > P (c | F ) for all agents without loss of generality.

Agent i living in region r derives utility from the consumption of a freely-tradable homoge-

neous good (xi) and housing services (hi) according to:

Ui|r = log (xi) + γ log (hir) + Ar, (8)

where γ denotes the weight of housing in the utility function. Agents choose the region they

live in, as well as the quantity of non-durable consumption and housing services. The price

of non-durable consumption is normalized to 1, and pr denotes the per-unit price of housing

services. Each agent i solves the following optimization problem:

Vit = max
xit,hit,r

Ui|r + ε̃ir + (1− P (c | r))Vi,t+1 (9)

s.t. wi = xi + prhir, (10)

taking as given the wage and the price of housing services in each of the regions. To simplify,

we abstract from discounting other than through the effects of the survival probabilities. The

random term ε̃ir ≡ P (c | r)εir represents worker i’s idiosyncratic preferences for region r. We

scale the random draw ε by P (c | r) so that the results are not a direct result of the preference

shock specification. We assume that εiF − εiN ∼ U [−s, s] and identically and independently

distributed across types.

The constant elasticity structure implies that agents spend constant shares 1
1+γ

and γ
1+γ

of

their income on the tradable good and housing, respectively, so the demand functions are given

22



by:

x∗
i =

wi

1 + γ
(11)

h∗
ir =

wiγ

1 + γ

1

pr
. (12)

Define Ũi = log
(

wi

1+γ

)
+ γ log

(
wiγ
1+γ

)
. The value for agent i of choosing location r is

Vir =
Ũi − γ log (pr) + Ar

P (c | r)
+ εir. (13)

Agent i chooses N rather than F if and only if:

Ũi − γ log (pN) + AN

P (c | N)
− Ũi − γ log (pF ) + AF

P (c | F )
> εiF − εiN . (14)

To close our stylized model, we assume that agents who die are replaced by new agents of

the same type. We also assume that in each region housing supply is fixed and equal to H,

which we normalize to 1. In equilibrium, the price of housing services adjusts so that in each

region demand is equal to supply:∫
h∗
iNdΦN(i) =

∫
h∗
iFdΦF (i) = 1 (15)

where the integral is taken over the demand of agents living in the region.

We model the information event as an increase δ in the probability of dying of cancer if

agents choose to reside in region N . So the new probability in region N becomes P (c | N) + δ.

We capture information rigidities by assuming that not all agents are informed about this

increase. A fraction λ of households of each type is uninformed and believes the probability

didn’t change, whereas a fraction 1− λ obtains the new information about the state of cancer

in the area and correctly perceives the new probability to be P (c | N) + δ. Information is

independently and identically distributed across worker types. We exclude that households can

learn over time. We solve for the new equilibrium steady state and compare it to the previous

one.
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6.2 Calibration

Define the set of parameters Θ as

Θ = {w,w, γ, s, AF , AN , P (c | F ), P (c | N), δ}. (16)

The model is calibrated at an annual frequency. Table 7 lists the calibrated parameters.

For the values of high and low income, {w,w}, we use the FICO scores in the mortgage

origination data for the years before the reporting events and divide individuals between above

and below median. The above(below)-median FICO scores have a median value of 760 (655)

points. To map this into income, we use the Fannie Mae origination sample from 2000Q1 to

2021Q3 and estimate a linear relationship between FICO and income. We obtain an estimate

for w of $51k and for w of $38k.
We assume that P (c | F ) is equal to the 2021 unconditional annual mortality rate in the

US of 1.05%. To estimate the P (c | N) and δ, we use the values for the back-of-the-envelope

calculation for the first-time-reporting sample used in Appendix C, that is 41.19% and 41.45%

lifetime cancer probability in the pre- and post-event, respectively. We convert these values into

annual probabilities using a 70-year lifetime and assume that half of those individuals impacted

by cancer die.

We set the parameter γ = 0.3477 so that the model matches the fraction of income that

individuals spend on housing from 2022 Bureau of Labor Statistics (BLS) data (0.258). The

parameter determining the support of the idiosyncratic preferences s is calibrated to match the

pre-event proportion of individuals in F who were high-income. The value of amenities in region

F helps us capture the ratio of average prices in the control and treated areas in the pre-event,

that is, 1.08. We normalize AN to 0. The model also matches the pre-event proportion of

individuals in N who were high-income (48.1% in the data and 48.35% in the model).

6.3 Comparative statics

Our comparative statics involves varying the degree of information rigidity λ. Figure 6 shows

the relative house price change as we increase the proportion of informed households. Compared

to the baseline pre-event scenario, an increase in the fraction of informed individuals leads to

larger relative drop in house prices in the N area. More specifically, given that housing services

in each region are in fixed supply, as a larger fraction of agents become aware of the increased
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cancer risk, house prices in F go up, whereas house prices in N decline. Agents opting to

reside in N are implicitly choosing a shorter expected lifespan. The response in Figure 6 can

be attributed to the agents’ preference in the model for a longer lifespan.

We have assumed that the fraction λ of households who are uninformed is the same in each

income group. Despite this assumption, the model predicts a larger decline in the demand

among high-income than low-income households. This response prompts a migration pattern,

depicted in Figure 7. Notably, for a larger proportion of informed individuals, the proportion of

high-income individuals residing in F is larger than before the event. It follows that the average

FICO score declines more in region N compared to region F. Assuming high-income individuals

have a FICO score of 760 and low-income individuals have a score of 655—consistent with the

values used for model calibration—the resulting relative decrease in FICO scores is lower than

observed in actual data. Specifically, the maximum relative drop in FICO score is −1.47 for

λ equal to 0, which is less pronounced than the changes reported in the data. One possible

reason is that the model only has migration across regions, but not inflows from and to other

areas. The model overall matches the patterns documented in the empirical section shedding

light on the importance of the income channel as well as of information rigidities.

7 Conclusion

We offer novel empirical evidence on the value that households attribute to environmental health

risks by focusing on plants that emitted chemicals initially deemed to be non-carcinogenic,

which were later re-classified as carcinogens by the National Toxicology Program’s Report on

Carcinogens. The re-classification is a significant information event that, as we show, is not

related to the plants’ economic activity in the year of re-classification. Focusing on a narrow

window around the time of re-classification, we estimate a decline in property values of around

-2% for houses closer to the plant relative to houses farther from the plant. The decline is

roughly double the one we estimate for a larger sample that includes plants that first report

the emission of known carcinogenic toxins to the EPA. The latter set of events is less salient,

so that our results reveal the importance of information for the measurement of the value that

households attribute to environmental health risks.

Finally, our paper studies the implications of these toxic events on neighborhood compo-

sition, revealing meaningful heterogeneity in the estimates as well as a shift towards a higher
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presence of minority and higher credit-risk households in affected areas. We show that more ex-

pensive properties are more sensitive to the reporting event. Moreover, we document an inflow

of minority and higher credit-risk households in affected areas, thereby providing important

evidence on the social dynamics at play in the wake of a change in the perceived environmental

hazards and contributing to the ongoing discussion on environmental justice.
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Figure 1: Heatmap of RSEI Cancer score by grid cells for Arch Wood Protection Inc.,
Conley, GA.
Notes: The figure shows the heatmap by grid cells (810m × 810m grids) for the RSEI cancer scores
aggregated for toxic chemicals released by Arch Wood Protection Inc., Conley, GA 30288, in 2004. We
obtained disaggregated geographic microdata from the Risk-Screening Environmental Indicators (RSEI).
These EPA models the impact of chemical releases from toxic plants on grid cells using estimated dosage,
its toxic concentrations, and potentially exposed populations and provides a unitless score (RSEI Cancer
score) to capture the effect of chemical releases on cancer. Please see the text for more details. The
light blue marker identifies the plant, and darker-colored grid cells show a higher cancer risk. The red
circle defines an area with a three-mile radius of the plant, whereas the blue circle defines an area with a
five-mile radius of the plant. The red area around the plant represents cancer score values above 1.866;
the orange area represents values between 1.08 and 1.866; the yellow area represents values between
0.673 and 1.08; the light-yellow area between 0.496 and 0.673; values below 0.496 are not shown. The
figure has been produced using the Folium Python Library and Leaflet maps (http://leafletjs.com/).
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(b) Lifetime cancer risk.

Figure 2: The effect of toxic plants on lifetime cancer risk and modeled cancer
risk.
Notes: Panel A shows the binscatter plot for modeled cancer risk for 810m× 810m grid cells as a
function of their distance from a toxic plant. Specifically, we obtained disaggregated geographic
microdata from the Risk-Screening Environmental Indicators (RSEI) from the EPA. The EPA
models the impact of chemical releases from toxic plants on grid cells (810m× 810m grids) using
estimated dosage, its toxic concentrations, and potentially exposed populations and provides a
unitless score (RSEI Cancer score) that captures the effect of chemical releases on cancer. We
scale the level of the RSEI cancer scores by the number of exposed population for each grid cell
and compute cancer risk at the grid level. Panel B shows the binscatter plot for lifetime cancer
probability for 810m × 810m grid cells as a function of their distance from a toxic plant. For
the subset of chemicals, we observe the oral cancer slope factor, that quantifies the incremental
lifetime risk of cancer from oral exposure to a chemical and provides an estimate for the rate at
which cancer risk increases with dose in the low-dose region for carcinogens. We compute the
lifetime probability of a cancer diagnosis by combining these TRI-reported oral slope factors
(Q∗) with chemical air releases. We follow the EPA’s assumption of people breathing 20m3 of
air every day, and assume the average person in the area weighs 84 kilograms. Please see the
text for more details.
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Figure 3: Distribution of bootstrap estimates.
Notes: The figure plots the distribution of 1,000 bootstrap estimates of the βPost×Distance from Equa-
tion (4). In each bootstrap sample, we randomly draw the distance between a property and its nearest
toxic plant from a uniform distribution from 0 to 5 miles and re-estimate Equation (4) in the boot-
strap sample. Panel (a) utilizes the National Toxicology Program’s Report on Carcinogens (RoC ) to
determine when chemicals were identified as known or reasonably anticipated human carcinogens and
uses the year of the RoC as the event year. Panel (b) focuses on changes within one year of a plant’s
first report of carcinogenic emissions to the EPA’s TRI program. In panel (a), the vertical line shows
the treatment effect from column 5 in Table 3 panel A while in panel (b), the vertical line shows the
treatment effect from column 5 in Table 4 panel A.
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Figure 4: Empirical estimates as a function of distance.
This figure reports the coefficient estimates (β1, β2, β3) and the corresponding 95% confidence intervals.
Specifically, the dependent variable is the natural logarithm of the sale amount of a property, Log (sale
amount). The independent variables are indicator variables taking a value of one if property i is sold in
the year t after the event year and zero otherwise. We define five rings based on the property’s distance
from the nearest toxic plant. Specifically, 1Distanceij takes a value of one if property i is between 0 and 1
mile, 1 to 2 miles, 2 to 3 miles, and zero for properties between 3 and 5 miles of the same plant (control
ring). The empirical specification is as follows:

log(Sale amount)ijt = α+ β1 × Postit × 1
Distanceij∈(0,1]miles
ij + β2 × Postit × 1

Distanceij∈(1,2]miles
ij

+ β3 × Postit × 1
Distanceij∈(2,3]miles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the
property level.
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Figure 5: Changes in housing values around the events.
Notes: The figure plots the coefficient on µk and the corresponding 95% confidence interval for the
treated and control groups separately. We define properties that are transacted within a 2-mile radius
of a toxic plant as the treated group while properties transacted within 3-to-5 miles of a toxic plant
form our control group. Specifically, for each group, we estimate the following dynamic equation:

Log (sale amount)ijt = α+

−1∑
k=−3

µk +

3∑
k=1

µk + γi + ϵijt

We plot, µk, which are coefficients on event-time dummies and normalized to time zero. The sample
is restricted to repeated transactions within 5 miles of a plant. The estimates are for an event window
of [-3,3] years relative to the event year. We utilize the National Toxicology Program’s Report on
Carcinogens (RoC ) to determine when chemicals were identified as known or reasonably anticipated
human carcinogens and use the year of the RoC as the event year. The regression includes property
(γi) fixed effects. Standard errors are clustered at the property level.
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Figure 6: Model-implied price changes.
Notes: Our comparative static involves varying the degree of information rigidity λ. The figure shows
model-implied price changes as we vary the fraction of informed households. The model is described in
Section 6.
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Figure 7: Model-implied migration.
Notes: Our comparative static involves varying the degree of information rigidity λ. The figure shows
the model-implied proportion of high-income households choosing to locate near the toxic plant and the
proportion of high-income households choosing to locate far from the toxic plant as we vary the fraction
of informed households. The model is described in Section 6.
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Table 1: Employment and sales around changes in the carcinogenic status of chemicals, Plant-
level evidence using matched sample

This table presents regression estimates of changes in plant-level employment and sales within a two year window
around the RoC events. Specifically, we utilize the National Toxicology Program’s Report on Carcinogens (RoC )
to determine when chemicals were identified as known or reasonably anticipated human carcinogens. The year
of the RoC classification is defined as the event year. The sample is restricted to plants that were producing
these chemicals before their classification in the RoC and continued their production afterward. The dependent
variable in column 1 (column 2) is the natural logarithm of employment (sales). The independent variable,
Postit, is an indicator variable taking a value of one for all years after the event year and zero otherwise,
while Treatedit, is an indicator variable taking a value of one for treated plants after the event year and zero for
matched control plants. Specifically, for each plant j in our sample, we find control plants within the same state,
and 6-digit NAICS industry in the same event year. Further, we assign the event-year as a pseudo event-year
to the matched control plant. The empirical specification is as follows:

log(y)jnst = α+ βPost×Treated × Postjt × Treatedjt + γj + γnt + γst + ϵjt,

All regressions include plant, industry × event-year, and state × event-year fixed effects. Standard errors are
double clustered at the plant and year level. Standard errors are clustered at the plant level. ∗∗∗, ∗∗, ∗ denote
significance at the 1%, 5%, and 10% level, respectively.

Dependent variable: Log (employment) Log (sales)

Post × Treated -0.013 -0.012
(0.011) (0.012)

Plant fixed effects Yes Yes
Industry × event-year fixed effects Yes Yes
State × event-year fixed effects Yes Yes
R2 0.99 0.99
Observations 108,628 108,256
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Table 2: Changes in estimated lifetime cancer risk probability

This table presents regression estimates of changes in lifetime cancer probability in a one year window around
the RoC events. Specifically, we utilize the National Toxicology Program’s Report on Carcinogens (RoC ) to
determine when chemicals were identified as known or reasonably anticipated human carcinogens. The year
of the RoC classification is defined as the event year. The sample is restricted to plants that were producing
these chemicals before their classification in the RoC and continued their production afterward. The dependent
variable is the level of the lifetime cancer probability at a given location (grid-cells of dimension 800m ×
800m) l within 5 miles of the plant j in percentage points. The independent variable, Postlt, is an indicator
variable taking a value of one if the cancer probability is computed in the year t after the event year and zero
otherwise. We define five treatment rings based on the distance of the property from a toxic plant. Specifically,

1
Distancelj<Xmiles
lj takes a value of one if the cancer probability is within X miles from a plant j, where X is 3,

2, 1.5, 1.25, or 1 mile (columns 1 to 5), and zero for properties between 3 and 5 miles of the same plant. The
empirical specification is as follows:

Lifetime cancer probabilityljt = α+ βPost×Distance × Postlt × 1
Distancelj<Xmiles
lj + γl + γjt + ϵljt.

All regressions include Grid-cell and plant × year fixed effects. Standard errors are clustered at the grid-cell
level. ∗∗,∗ ,∗ denote significance at the 1%, 5%, and 10% level, respectively.

Dependent variable: Lifetime cancer probability

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles 0.002∗∗∗ 0.003∗∗ 0.003 0.003 0.003
(0.001) (0.001) (0.002) (0.003) (0.005)

Grid-cell fixed effects Yes Yes Yes Yes Yes
Plant × year fixed effects Yes Yes Yes Yes Yes
R2 0.99 0.99 0.99 0.99 0.99
Observations 253,496 206,734 189,860 183,050 177,504
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Table 3: House prices around changes in carcinogenic status of chemicals

This table presents regression estimates of changes in house price within 5 miles of the toxic plant around
RoC events. The analysis focuses on a window of one year (Panel A) or two years (Panel B) around a RoC
event. Specifically, we utilize the National Toxicology Program’s Report on Carcinogens (RoC ) to determine
when chemicals were identified as known or reasonably anticipated human carcinogens. The year of the RoC
classification is defined as the event year. The sample is restricted to plants that were producing these chemicals
before their classification in the RoC and continued their production afterward. The dependent variable is the
natural logarithm of the sale amount of a property, Log (sale amount). The independent variable, Postit, is an
indicator variable taking a value of one if property i is sold in the year t after the event year and zero otherwise.
We define five treatment rings based on the property’s distance from the nearest toxic plant. Specifically,

1
Distanceij<Xmiles
ij takes a value of one if property i is within X miles from a plant j, where X is 3, 2, 1.5, 1.25,

or 1 mile (columns 1 to 5), and zero for properties between 3 and 5 miles of the same plant (control ring). The
empirical specification is as follows:

log(Sale amount)ijt = α+ βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property

level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Event window [−1,+1]
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.010∗∗∗ -0.023∗∗∗ -0.022∗∗∗ -0.019∗∗∗ -0.019∗∗∗

(0.003) (0.003) (0.004) (0.005) (0.006)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.87 0.87 0.87 0.87
Observations 443,565 337,679 290,089 268,741 251,589

Panel B: Event window [−2,+2]
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.003∗∗ -0.009∗∗∗ -0.012∗∗∗ -0.012∗∗∗ -0.015∗∗∗

(0.002) (0.002) (0.002) (0.003) (0.003)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.87 0.87 0.87 0.87
Observations 1,218,451 926,936 797,427 740,518 692,721
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Table 4: Changes in house prices around the first-time reporting of carcinogenic toxins

This table presents regression estimates of changes in house prices within 5 miles of the toxic plant around the
first-time a plant reports carcinogenic emissions to the EPA’s TRI program. The analysis focuses on a window
of one year (Panel A) or two years (Panel B) around the event. The dependent variable is the natural logarithm
of the sale amount of a property, Log (sale amount). The independent variable, Postit, is an indicator variable
taking a value of one if property i is sold in the year t after the event year and zero otherwise. We define five

treatment rings based on the property’s distance from the nearest toxic plant. Specifically, 1
Distanceij<Xmiles
ij

takes a value of one if property i is within X miles from a plant j, where X is 3, 2, 1.5, 1.25, or 1 mile (columns 1
to 5), and zero for properties between 3 and 5 miles of the same plant (control ring). The empirical specification
is as follows:

log(Sale amount)ijt = α+ βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property

level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Event window [−1,+1]
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.012∗∗∗ -0.015∗∗∗ -0.012∗∗∗ -0.010∗∗∗ -0.008∗∗

(0.001) (0.002) (0.002) (0.003) (0.003)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.86 0.86 0.86 0.86 0.86
Observations 1,506,933 1,161,063 1,017,934 958,329 909,049

Panel B: Event window [−2,+2]
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.007∗∗∗ -0.010∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.001) (0.002) (0.002)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.87 0.87 0.87 0.87
Observations 4,431,190 3,418,925 3,001,801 2,828,846 2,683,027
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Table 5: Changes in neighbourhood composition: Heterogeneity by property price

This table presents regression estimates of changes in house prices within 5 miles of the toxic plant around 2
years of an event. In panel A, we utilize the National Toxicology Program’s Report on Carcinogens (RoC ) to
determine when chemicals were identified as known or reasonably anticipated human carcinogens. The year of
the RoC re-classification defines the event year. The sample is restricted to plants that were producing these
chemicals before their re-classification in the RoC and continued their production afterward. In panel B, we
focus on plants that report for the first-time that they emit carcinogenic toxins in the EPA’s TRI program
(event-year). Across both panels, the dependent variable is the natural logarithm of the sale amount of a
property, Log (sale amount). The independent variable, Postit, is an indicator variable taking a value of one if
property i was sold in the year following the plant’s emission report. We define five treatment rings based on

the property’s distance from a toxic plant. Specifically, 1
Distanceij<Xmiles
ij takes a value of one if property i is

within X miles from a plant j, where X is 3, 2, 1.5, 1.25, or 1 mile (columns 1 to 5), and zero for properties
between 3 and 5 miles of the same plant (control ring). We separate higher and lower-priced properties: we
include an indicator variable Abovei for whether property i sale price was above the median value, calculated
from sales 3 to 5 years before the event for properties around a plant. The empirical specification is as follows:

log(Sale amount)ijt = α+ βDistance × 1
Distanceij<Xmiles
ij + βPost × Postit + βAbove ×Aboveij

+ βAbove×Distance ×Aboveij × 1
Distanceij<Xmiles
ij + βPost×Distance

× Postit × 1
Distanceij<Xmiles
ij + βPost×Above × Postit ×Aboveij

+ βPost×Distance×Above × Postit × 1
Distanceij<Xmiles
ij ×Aboveij + γi + γct + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property
level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Changes in carcinogenic status of chemicals
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Below median
Treated -0.0063∗∗ -0.0095∗∗ -0.0132∗∗∗ -0.008 -0.011

(0.0031) (0.0038) (0.0047) (0.0054) (0.0067)
Above median
Control -0.0491∗∗∗ -0.0494∗∗∗ -0.0496∗∗∗ -0.0498∗∗∗ -0.0493∗∗∗

(0.0032) (0.0032) (0.0033) (0.0033) (0.0033)

Treated -0.0509∗∗∗ -0.0534∗∗∗ -0.0616∗∗∗ -0.0685∗∗∗ -0.0644∗∗∗

(0.0037) (0.0049) (0.0062) (0.0072) (0.0092)
Difference: Treated minus Control
Below median -0.0063∗∗ -0.0095∗∗ -0.0132∗∗∗ -0.008 -0.011

(0.0031) (0.0038) (0.0047) (0.0054) (0.0067)

Above median -0.0018 -0.004 -0.0121∗ -0.0187∗∗∗ -0.0151
(0.0037) (0.0049) (0.0062) (0.0072) (0.0092)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
Observations 265,294 201,347 172,372 160,007 149,850
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Panel B: First-time reporting of carcinogenic toxins
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Below median
Treated -0.002 -0.0043∗ -0.0054∗ -0.00001 0.00001

(0.0018) (0.0022) (0.0028) (0.0032) (0.004)
Above median
Control -0.0346∗∗∗ -0.0349∗∗∗ -0.0352∗∗∗ -0.0353∗∗∗ -0.035∗∗∗

(0.0017) (0.0017) (0.0017) (0.0017) (0.0018)

Treated -0.0416∗∗∗ -0.0444∗∗∗ -0.0451∗∗∗ -0.0494∗∗∗ -0.0457∗∗∗

(0.002) (0.0027) (0.0034) (0.0041) (0.0053)
Difference: Treated minus Control
Below median -0.002 -0.0043∗ -0.0054∗ -0.00001 0.00001

(0.0018) (0.0022) (0.0028) (0.0032) (0.004)

Above median -0.007∗∗∗ -0.0095∗∗∗ -0.0099∗∗∗ -0.0141∗∗∗ -0.0107∗∗

(0.002) (0.0027) (0.0035) (0.0041) (0.0053)
Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
Observations 903,333 695,451 609,632 574,151 544,358
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Table 6: Changes in neighbourhood composition: Ethnicity

This table presents regression estimates for the impact of toxic plants on the neighborhood composition within
5 miles of the toxic plant around 2 years of an event. In panel A, we utilize the National Toxicology Program’s
Report on Carcinogens (RoC ) to determine when chemicals were identified as known or reasonably anticipated
human carcinogens. The year of the RoC re-classification defines the event year. The sample is restricted
to plants that were producing these chemicals before their re-classification in the RoC and continued their
production afterward. In panel B, we focus on plants that report for the first-time that they emit carcinogenic
toxins in the EPA’s TRI program (event-year). Across both panels, the dependent variable y is a dummy
variable 1(Minority)it taking a value of 1 if property i in year t was purchased by a buyer of Hispanic or
African-American heritage. The independent variable, Postit, is an indicator variable taking a value of one if
property i was sold in the year following the event and zero otherwise. We define five treatment rings based

on the property’s distance from the nearest toxic plant. Specifically, 1
Distanceij<Xmiles
ij takes a value of one if

property i is within X miles from a plant j, where X is 3, 2, 1.5, 1.25, or 1 mile (columns 1 to 5), and zero for
properties between 3 and 5 miles of the same plant (control ring). The empirical specification is as follows:

1
Minority
ijt = α+ βPost×Distance × Postit × 1

Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property
level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Changes in carcinogenic status of chemicals
Dependent variable: 1Minority

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles 0.008∗∗∗ 0.011∗∗∗ 0.008∗∗ 0.009∗∗ 0.009∗∗

(0.002) (0.002) (0.003) (0.003) (0.004)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.64 0.64 0.64 0.64 0.64
Observations 879,371 666,855 574,629 534,106 499,962

Panel B: First-time reporting of carcinogenic toxins
Dependent variable: 1Minority

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles 0.005∗∗∗ 0.006∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.002)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.64 0.64 0.64 0.64 0.64
Observations 3,142,449 2,415,779 2,118,721 1,994,740 1,890,403
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Table 7: Calibrated or externally fixed parameters

For each parameter, the table reports the parameter symbol, numerical value, description, the target moment

or source, and if a target moment is used to calibrate the parameter, the table also shows the data and model-

implied moment.

Parameter Value Description Target moment or source Data Model

Income
w 51 High-income value 1st-stage estimation
w 38 Low-income value 1st-stage estimation

Preference
γ 0.348 Housing weight Spending on housing services (BLS, 2022) 0.258 0.258
s 4 Idiosyncratic preferences % of individuals in F who are high-income 50.8% 51.5%

Region characteristics
AF 0.004 Utility from amenities in F Ratio of average house prices in F vs N 1.0828 1.0828

P (c|F ) 1.045% Mortality rate in F US unconditional annual mortality rate (2021) 1.045% 1.045%
P (c|N) 1.052% Additional cancer mortality in N Additional lifetime cancer probability – pre-period, 1 miles 0.65% 0.65%

δ 0.0031% Additional cancer mortality in N Additional lifetime cancer probability – post-period, 1 miles 0.26% 0.26%
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A Data construction

Plant selection. The starting point of our analyses are the EPA’s TRI Basic Plus data files

which collectively contain all of the data reported by plants on the TRI Reporting Form R

and Form A Certification Statement. We begin with the file for the reporting year of 2000 and

retain plant observations that are marked as carcinogens and those that fall under the purview

of the Clean Air Act. We then iterate over other reporting years 2001 to 2020, ensuring that

each year we retain new plant additions, relative to the previous reporting years. We combine

all plants across the years and exclude plants with missing geo-location information and those

from the year 2000. This leaves us with a sample of 14,787 unique toxic plant-events. To

ensure that we capture plants that were reporting to the TRI in years other than the one they

were established, we merge these toxic plants with the NETS database which contains detailed

information on the first year of establishment. Applying this filter yields a sample of 11,561

plant-events.

Merge with Corelogic. Next, we merge location information on toxic plants to the universe

of residential property transactions in the continental United States as reported by the Corelogic

Deeds & Tax Records. We begin with the property information and restrict our attention to

single-family residences, condominiums, duplexes, and apartments. We then exclude properties

with missing information on their location (block-level latitude and longitude), year of sale,

and the year in which the property was built. Subsequently, we retain transactions where the

buyer purchased the property using cash or a mortgage. Subsequently, we merge the housing

transactions with plants by iterating over them and calculating distances (in miles) between

each property and plant. Once the distances are calculated, we retain properties within a 5-mile

radius of each plant and ensure that there are at least five housing transactions around each

plant.

Lastly, when a property is associated with multiple plant-events we retain the first year

among the associated events and the closest toxic plant. We also exclude houses with multiple

transactions in the same year. Further, to reduce the impact of outliers, we eliminate transac-

tions at the extreme ends of the price spectrum, specifically those below $30,000 (5th percentile

of the distribution) and above $700,000 (95th percentile). We show the robustness of our results

to a less stringent definition of outliers and consider dropping only houses with a value above

$2.57 million (99th percentile of the distribution).
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Merge with RSEI Geographic Microdata. To measure changes in cancer risk around

each plant, we rely on estimates provided by the EPA. Specifically, they use the TRI data

to construct Risk-Screening Environmental Indicators (RSEI) that measure potential risks to

human health and the environment. The data are drawn on information from the TRI program

on chemical releases into air, water, and soil and model their potential location-based health

impacts on the population exposed to these chemicals.

We obtain data at the most granular spatial unit - grid cells of dimension 810m × 810m. For

each grid cell, we observe the cancer risk score associated with a plant. The score is a unitless

measure computed for each chemical and media as a product of the estimated dosage released by

that specific toxic plant, the toxic concentrations, and the potentially exposed population. For

each grid-cell, we retain observations associated with on-site chemical releases and all media.

We then compute the cancer-risk score as the ratio of RSEI cancer risk score divided by the

potentially exposed population, and then aggregate at the grid-cell level. Lastly, when a grid-

cell is associated with multiple plant-events we retain the first year among the associated events

and the closest toxic plant.
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B Air pollution measured from monitors

In the main paper, we use measures of cancer risk near the plants from the EPA. These measures

are used as input to the calculations of the TRI data. In this section, we provide direct evidence

of cancer risk near the plants using data on ambient air quality across the US from the the Air

Quality System (AQS).

The AQS data are collected by the EPA using a network of over 10,000 monitoring sta-

tions located throughout the United States. They measure various pollutants, including ozone,

particulate matter, carbon monoxide, nitrogen oxides, sulfur dioxide, and lead. The data are

collected on an hourly or daily basis, depending on the pollutant being measured. Moreover,

the data are publicly available, providing information on local area air quality to households.

We extract readings from all 266 air monitoring stations that are within a five-mile radius of

the 11,561 plants included in our sample. We use readings for all years around the events.

When interpreting the data, it is important to keep in mind that the location of the monitors

and plants is likely to be endogenous.

Figure B.1 presents a binscatter plot of the relation between distance from the plant and

air monitor (within a 5-mile radius) and the concentration of four predominant carcinogenic

pollutants. Although the data are noisy, as it is based on only 266 air monitors, it shows a more

pronounced concentration of toxins up to a distance of 1 to 1.5 miles from the plant, varying

by pollutant. This evidence on the importance of the distance from the plant for air quality is

consistent with that for cancer risk scores.
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Figure B.1: The effect of toxic plants on hazardous air pollution.
The figure shows the scatter plot for the concentration of 4 toxic air pollutants as a function of distance
between the monitor and the operating toxic plant. Hazardous air pollutants, also known as toxic air
pollutants, are defined by the EPA as “pollutants that are known or suspected to cause cancer or other
serious health effects, such as reproductive effects or birth defects, or adverse environmental effects.”
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C A back-of-the-envelope calculation

We can use our results to estimate the value of an additional 1 year of statistical life. Our

starting point is the mortality rate by age pt as reported in Table I–10 of the National Vital

Statistics Report, Vol. 72, No. 10, September 22, 2023 (data as of 2020). These values represent

the base-level mortality rates for our computation.

Regarding cancer, from the American Cancer Society, we observe that 41.6 out of 100 males

and 39.6 out of 100 females develop cancer over the course of their lifetime (from birth to

death): we use a straight average of the two values (i.e., 40.6).26 To calculate the likelihood

of developing cancer before and after the event in the treated relative to control areas, we

augment the base lifetime cancer risk of 40.6% with the increased risk associated with residing

continuously within 1 mile of the toxic plant. The resulting total risk is 41.19% for the pre-event

(an increase of 59 basis points), and 41.45% for the period after the disclosure (an increase of

84.6 basis points). These risks are then translated into yearly probabilities over a lifetime of 70

years, called cpre and cpost. The duration aligns with the EPA’s default “lifetime” assumption

of 70 years for cancer risk assessments. We assume that with probability 50% an individual

who gets cancer dies. The expected lifespan is determined by the formula:

E[#years|i] =
n∑

t=1

(1− pt − ci)
t−1 × (pt + ci)× t, (C.1)

where i is either pre or post and n is 105.27 For an average house value of $200,000, our

estimates imply a drop in price of $2,000.
We determine the value of 1 additional year of statistical life calculating the ratio of the

relative change in housing prices for the treated area to the difference in expected lifetime:

Value of an additional 1 year of life =
$2, 000

E[#years|pre]− E[#years|post]
. (C.2)

Figure C.1 plots the value of 1 year of life computed for different levels of ppost/ppre.
28 Our

estimates imply a value of $28,312 per additional year of life corresponding to the 1% drop in

26Access the source here. The figures are based on estimates as of January 18, 2024.
27We assume no change in the cancer probability for the control areas. Moreover, we assume that in the last

year, everybody dies.
28In scenarios where the risk of death does not change, the value of an extra year of life approaches infinity,

as the denominator in the calculation becomes zero.

5

https://www.cancer.org/cancer/risk-prevention/understanding-cancer-risk/lifetime-probability-of-developing-or-dying-from-cancer.html


house values. On the other hand, for RoC events the drop in house price is $4,000 implying

an estimate of $56,624 per additional year of life. These values are sensitive to the conditional

mortality rate upon having cancer. Assuming that 30% of individuals die of cancer upon

diagnosis, our estimates imply a $43,681 value per additional year of life for all events and a

$87,362 per additional year of life for RoC events.
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Figure C.1: Dollar value of 1 additional year of life.
The figure shows the dollar value of 1 additional year of life implied by our empirical estimates for
different probabilities c of dying of cancer in a given year. Calculations are described in Section C.
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D Additional results

non−ROC event

ROC event

2001 − 2020
Toxic plant locations

Figure D.1: Location of the reporting plants.
The figure shows the location of plants in our sample. Further, we distinguish events in which plants
report the emission of carcinogenic toxins because of a RoC re-classification (ROC events) from events
in which plants report the emission of carcinogenic toxins for the first-time (non-ROC events). We
exclude all plants for which the first reporting year is the same as the opening year. The data are from
the EPA’s TRI program between 2001 and 2020.
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Figure D.2: Empirical distribution of sale prices.
The figure shows the empirical distribution of sale prices for all property transactions (blue
solid bars) and repeated property transactions (white hollow bars) in the sample of RoC events.
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Figure D.3: News coverage of the change in carcinogenic status of chemicals.
The figure shows an excerpt from Washington Post from 2011 describing an update in the carcinogenic
status of Styrene.
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Table D.1: Summary statistics, first-time reporting of carcinogenic toxins

This table presents the frequency of toxic plants emitting carcinogen chemicals by industry and chemical toxicity.
Panel A reports the industry distribution of toxic plants in our sample by their primary two-digit North American
Industry Classification System (NAICS) industry while panel B reports the ten most common carcinogenic
chemicals emitted by toxic plants in our sample. In panel B, we report the distribution of toxic chemicals for
the set of plant-events in our sample. We present the toxicity classification as reported by International Agency
for Research on Cancer (IARC) and National Toxicology Program (NTP). Specifically, IARC uses the following
classification scheme: 1 —The chemical is carcinogenic to humans; 2A —the chemical is probably carcinogenic
to humans; 2B —the chemical is possibly carcinogenic to humans. NTP uses the following classification scheme:
K —The chemical is known to be a human carcinogen; RA —The chemical is reasonably anticipated to be a
human carcinogen. Lastly, − denotes missing classification. These classifications obtained from the November
2019 update of the “Toxics Release Inventory (TRI) Basis of OSHA Carcinogens.”

Panel A: Industry distribution of toxic plants
Two-digit NAICS Industry description Fraction total(%)

11 Agriculture, Forestry, Fishing and Hunting 0.06
21 Mining, Quarrying, and Oil and Gas Extraction 0.95
22 Utilities 1.32
23 Construction 0.15
31-33 Manufacturing 87.89
42 Wholesale Trade 4.85
44-45 Retail Trade 0.11
48-49 Transportation and Warehousing 0.09
51 Information 0.01
54 Professional, Scientific, and Technical Services 0.15
56 Administrative & Support and Waste Management & Remediation Services 0.92
61 Educational Services 0.01
62 Health Care and Social Assistance 0.04
71 Arts, Entertainment, and Recreation 0.01
81 Other Services (except Public Administration) 0.05
92 Public Administration 3.38

Panel B: Distribution of toxic chemicals at plants
Chemical CAS Number NTP classification IARC classification Fraction total(%)

Lead 7439-92-1 RA 2A 47.15
Nickel 7440-02-0 RA 2B 16.65
Polycyclic aromatic compounds N590 P 2B 8.90
Styrene 100-42-5 RA 2B 6.97
Ethylbenzene 100-41-4 - 2B 6.42
Naphthalene 91-20-3 RA 2B 5.25
Nickel compounds N495 RA 1 4.77
Benzene 71-43-2 K 1 4.11
Formaldehyde 50-00-0 K 1 2.59
Methyl isobutyl ketone 108-10-1 - 2B 2.10
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Table D.2: Effects on employment and sales, Plant-level evidence using matched sample

Notes: This table presents regression estimates of changes in plant-level employment and sales within two years
around the first year a toxic plant reports emitting carcinogenic pollutants in the EPA’s TRI program (event
year). The dependent variable in column 1 (column 2) is the natural logarithm of employment (sales). The
independent variable, Postit, is an indicator variable taking a value of one for all years after the event year and
zero otherwise, while Treatedit, is an indicator variable taking a value of one for treated plants after the event
year and zero for matched control plants. Specifically, for each plant j in our sample, we find control plants
within the same state, and 6-digit NAICS industry in the same event year. Further, we assign the event-year
as a pseudo event-year to the matched control plant. The empirical specification is as follows:

log(y)jnst = α+ βPost×Treated × Postjt × Treatedjt + γj + γnt + γst + ϵjt,

All regressions include plant, industry × year, and state × year fixed effects. Standard errors are double
clustered at the plant and year level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Dependent variable: Log (employment) Log (sales)

Post × Treated 0.051∗∗∗ 0.052∗∗∗

(0.008) (0.008)

Plant fixed effects Yes Yes
Industry × year fixed effects Yes Yes
State × year fixed effects Yes Yes
R2 0.98 0.98
Observations 906,720 905,500
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Table D.3: Number of transactions around changes in carcinogenic status of chemicals

This table presents regression estimates for the impact of toxic plants on the number of house transactions
within 5 miles of the toxic plant within one year around an RoC event. Specifically, we utilize the National
Toxicology Program’s Report on Carcinogens (RoC ) to determine when chemicals were identified as known or
reasonably anticipated human carcinogens. The year of the RoC is the event year. The sample is restricted to
plants that were producing these chemicals before their classification in the RoC and continued their production
afterward. The dependent variable is the number of transactions, # transactions, computed separately for the
treated and the control rings around the toxic plant. Specifically, we define 5 different treated areas, i.e., within
3, 2, 1.5, 1.25, or 1 mile (columns 1 to 5), and one control area between 3 and 5 miles of the same plant. The
independent variable, Postt, is an indicator variable taking a value of one if the year t is after the event year
and zero otherwise. The dummy variable Treatedi takes a value of one if the area i is a treated area and 0
otherwise. The empirical specification is as follows:

# transactionsit = α+ βPost×Treatedi
× Treatedi × Postt + γi + γjt + ϵijt.

All regressions include treatement-ring and plant × sale-year fixed effects. Standard errors are clustered at the
plant level j. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Dependent variable: # transactions

Treatment (Distance in miles) 3 2 1.5 1.25 1
(1) (2) (3) (4) (5)

Post × 1Distance<Xmiles 0.425 -7.649 -11.722∗ -13.195∗∗ -15.933∗∗

(3.097) (4.861) (6.005) (6.514) (6.882)

Treatment ring fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.73 0.66 0.63 0.61
Observations 8,714 8,714 8,714 8,714 8,714
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Table D.4: Robustness, more than 199 observations per toxic plant

This table presents regression estimates of changes in house prices within 5 miles of the toxic plant in a one-year
window around an RoC event. Specifically, we utilize the National Toxicology Program’s Report on Carcinogens
(RoC ) to determine when chemicals were identified as known or reasonably anticipated human carcinogens.
The year of the RoC classification is defined as the event year. The sample is restricted to plants that were
producing these chemicals before their classification in the RoC and continued their production afterward. We
restrict the sample to toxic plants for which we have more than 199 observations in the 3-year window [-1,+1].
The dependent variable is the natural logarithm of the sale amount of a property, Log (sale amount). The
independent variable, Postit, is an indicator variable taking a value of one if property i is sold in the year t
after the event year and zero otherwise. We define five treatment rings based on the property’s distance from

the nearest toxic plant. Specifically, 1
Distanceij<Xmiles
ij takes a value of one if property i is within X miles from

a plant j, where X is 3, 2, 1.5, 1.25, or 1 mile (columns 1 to 5), and zero for properties between 3 and 5 miles
of the same plant (control ring). The empirical specification is as follows:

log(Sale amount)ijt = α+ βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property
level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.007∗∗∗ -0.021∗∗∗ -0.021∗∗∗ -0.016∗∗∗ -0.014∗∗

(0.003) (0.004) (0.004) (0.005) (0.006)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.87 0.87 0.87 0.87
Observations 398,095 301,232 258,154 239,025 223,669
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Table D.5: Robustness, changes in house prices in levels ($ amount)

This table presents regression estimates of changes in price of houses of within 5 miles of the toxic plant around
an RoC event. The analysis focuses on a window of one year (Panel A) or two years (Panel B) around a RoC
event. Specifically, we utilize the National Toxicology Program’s Report on Carcinogens (RoC ) to determine
when chemicals were identified as known or reasonably anticipated human carcinogens. The year of the RoC
classification is defined as the event year. The sample is restricted to plants that were producing these chemicals
before their classification in the RoC and continued their production afterward. The dependent variable is the
sale amount of a property, Sale amount. The independent variable, Postit, is an indicator variable taking a
value of one if property i is sold in the year t after the event year and zero otherwise. We define five treatment

rings based on the property’s distance from the nearest toxic plant. Specifically, 1
Distanceij<Xmiles
ij takes a value

of one if property i is within X miles from a plant j, where X is 3, 2, 1.5, 1.25, or 1 mile (columns 1 to 5),
and zero for properties between 3 and 5 miles of the same plant (control ring). The empirical specification is as
follows:

Sale amountijt = α+ βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property

level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Event window [−1,+1]
Dependent variable: Sale amount ($)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -6,373.1∗∗∗ -11,581.7∗∗∗ -13,286.1∗∗∗ -12,641.5∗∗∗ -12,552.0∗∗∗

(532.921) (683.515) (818.220) (937.109) (1123.646)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.88 0.88 0.88 0.88 0.88
Observations 443,565 337,679 290,089 268,741 251,589

Panel B: Event window [−2,+2]
Dependent variable: Sale amount ($)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -5,285.2∗∗∗ -8,901.9∗∗∗ -10,858.4∗∗∗ -10,813.2∗∗∗ -11,980.2∗∗∗

(312.553) (398.275) (483.381) (557.935) (668.830)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.88 0.88 0.88 0.88 0.88
Observations 1,218,451 926,936 797,427 740,518 692,721
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Table D.6: Robustness, dropping properties in the top 1% of price distribution

This table presents regression estimates of changes in price of houses of within 5 miles of the toxic plant around
an RoC event. The analysis focuses on a window of one year (Panel A) or two years (Panel B) around a RoC
event. Specifically, we utilize the National Toxicology Program’s Report on Carcinogens (RoC ) to determine
when chemicals were identified as known or reasonably anticipated human carcinogens. The year of the RoC
classification is defined as the event year. The sample is restricted to plants that were producing these chemicals
before their classification in the RoC and continued their production afterward. Additionally, we drop properties
in the top 1% of the price distribution, namely, properties whose price exceeds $2.57 million. The dependent
variable is the natural logarithm of the sale amount of a property, Log (sale amount). The independent variable,
Postit, is an indicator variable taking a value of one if property i is sold in the year t after the event year and
zero otherwise. We define five treatment rings based on the property’s distance from the nearest toxic plant.

Specifically, 1
Distanceij<Xmiles
ij takes a value of one if property i is within X miles from a plant j, where X is 3,

2, 1.5, 1.25, or 1 mile (columns 1 to 5), and zero for properties between 3 and 5 miles of the same plant (control
ring). The empirical specification is as follows:

log(Sale amount)ijt = α+ βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property

level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Event window [−1,+1]
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.045∗∗∗ -0.068∗∗∗ -0.060∗∗∗ -0.045∗∗∗ -0.028∗∗∗

(0.003) (0.004) (0.005) (0.006) (0.007)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
R2 0.84 0.85 0.85 0.86 0.86
Observations 488,956 372,323 318,894 295,507 276,750

Panel B: Event window [−2,+2]
Dependent variable: Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -0.022∗∗∗ -0.036∗∗∗ -0.027∗∗∗ -0.018∗∗∗ -0.009∗∗

(0.002) (0.002) (0.003) (0.003) (0.004)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
R2 0.85 0.86 0.86 0.86 0.86
Observations 1,326,702 1,010,340 868,699 807,606 756,372
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Table D.7: Changes in neighbourhood composition: Creditworthiness

This table presents regression estimates for the impact of toxic plants on the neighborhood composition within 5
miles of the toxic plant in the 3 years around the events. In panel A, we utilize the National Toxicology Program’s
Report on Carcinogens (RoC ) to determine when chemicals were identified as known or reasonably anticipated
human carcinogens. The year of the RoC re-classification defines the event year. The sample is restricted
to plants that were producing these chemicals before their re-classification in the RoC and continued their
production afterward. In panel B, we focus on plants that report for the first-time that they emit carcinogenic
toxins in the EPA’s TRI program (event-year). Across both panels, the dependent variable is the FICO Score
of the buyer when available. The independent variable, Postit, is an indicator variable taking a value of one if
property i was sold in the year following the event and zero otherwise. We define five treatment rings based

on the property’s distance from the nearest toxic plant. Specifically, 1
Distanceij<Xmiles
ij takes a value of one if

property i is within X miles from a plant j, where X is 3, 2, 1.5, 1.25, or 1 mile (columns 1 to 5), and zero for
properties between 3 and 5 miles of the same plant (control ring). The empirical specification is as follows:

FICOijt = α+ βPost×Distance × Postit × 1
Distanceij<Xmiles
ij + γi + γjt + ϵijt.

All regressions include property and plant × sale-year fixed effects. Standard errors are clustered at the property
level. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively.

Panel A: Changes in carcinogenic status of chemicals
Dependent variable: FICO Score

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -3.226 -4.948 -3.774 -2.503 2.169
(2.761) (3.755) (4.701) (5.765) (7.161)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year × plant fixed effects Yes Yes Yes Yes Yes
R2 0.65 0.66 0.67 0.67 0.67
Observations 15,409 11,440 9,811 9,068 8,521

Panel B: First-time reporting of carcinogenic toxins
Dependent variable: FICO Score

Treatment (Distance in miles) 3 2 1.5 1.25 1

Post × 1Distance<Xmiles -4.515∗∗∗ -4.857∗∗ -7.394∗∗∗ -8.054∗∗ -5.859
(1.659) (2.253) (2.832) (3.395) (4.149)

Property fixed effects Yes Yes Yes Yes Yes
Sale-year× plant fixed effects Yes Yes Yes Yes Yes
R2 0.81 0.81 0.82 0.82 0.82
Observations 76,721 58,842 51,727 48,930 46,719
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