

Premium Carbon Capture Applications for *Metal Organic Frameworks*

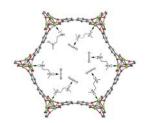
November 30, 2012 Inventor: Tom McDonald, PhD Candidate, the Long Group Jen Barnette Will Hewes Allan LeBlanc Miguel Modestino Reid Spolek

Team experience in breakthrough technology and market analysis

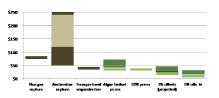
Tom McDonald Chemistry PhD UC Berkeley

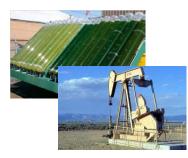
Jeff Long Professor of Chemistry, UC Berkeley

Reid Spolek MBA '13

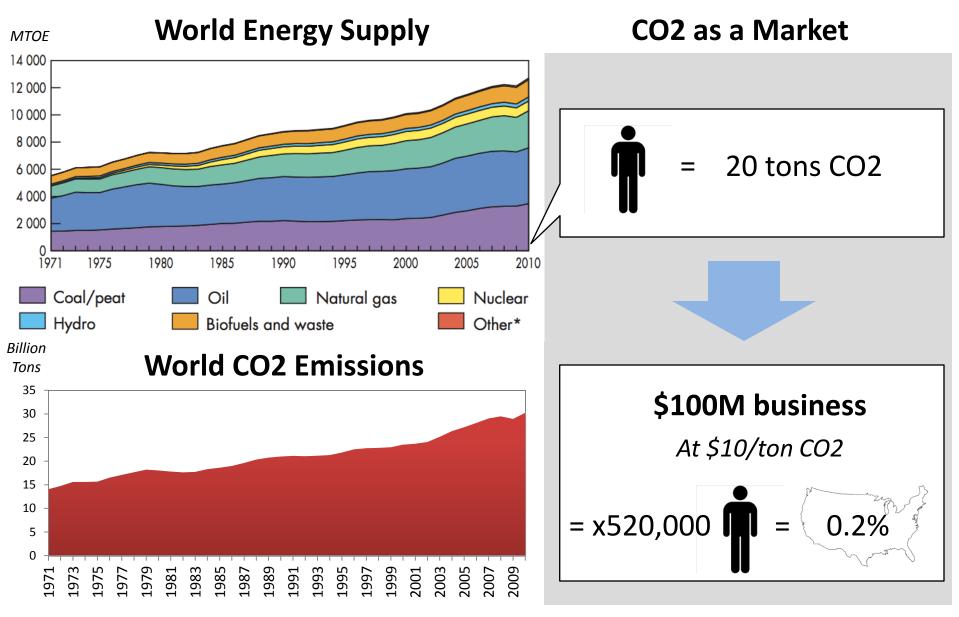

MiguelWillModestinoMBChemE PhD '13

Will Hewes MBA '13

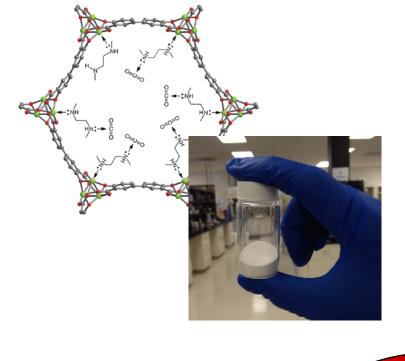

es Jen Barnette Allan JD '14 LeBlanc MBA '13 Improved approach to carbon capture, but how to monetize it?


The Opportunity: 30B tons CO₂ emitted per year

Technology: new chemistry, better performance



Carbon Economics: policy vs. industrial customers



Applications: niche markets pay premium price

CO2 emissions almost too large to comprehend in real terms



Metal-organic frameworks (MOFs) have high CO₂ capacity

- Porous framework with tunable centers that add functionality
- Walls tuned to adsorb CO₂
- A lot of walls! (70 m²/g)

Breakthrough MOF outperforms competing technologies

	Amines	Zeolites	
Max. Capacity	<5.5%	16 wt%	
Capacity from Air		1.4 wt%	
Regeneration Temp	<100 °C	>135 °C	
Energy input TSA	input TSA High		
Pressure Drop	Low	High	

- Very **high capacity** from high surface area
 - Smaller volume MOF material, higher volume of carbon
- High adsorption from low concentration
 - Wider range of operating conditions and gas streams
- Low heat capacity and ΔT between capture and release
 - Less energy needed to heat and cool down the MOF
 - Energy = cost

MOFs as component of larger processes in diverse industries

Carbon Capture Applications

Policy-Driven Sequestration

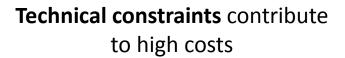
Existing Industrial Applications

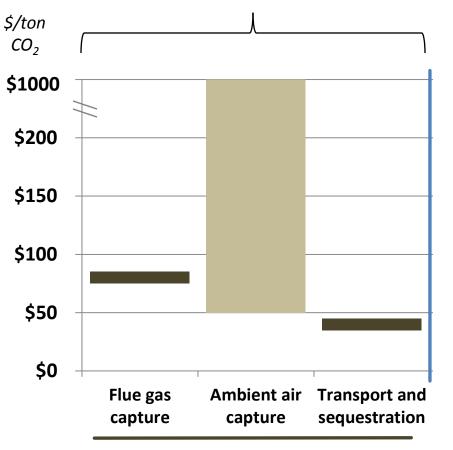
Natural Gas Processing C

Cryogenic Air Distillation

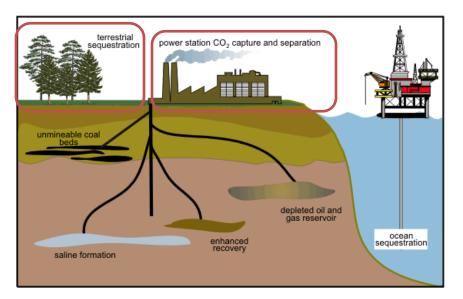
Enhanced Oil Recovery (EOR)

Algae Biofuels




CO₂ Scrubbing

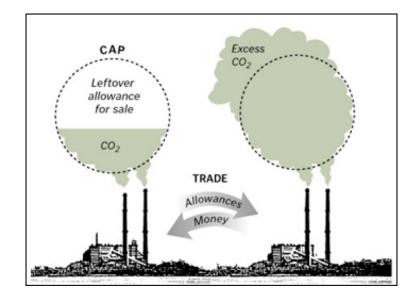
Alkaline Fuel Cells


Carbon economics driven by policy and technical constraints

CO₂ Capture Costs

CCS: price on CO₂ depends on policy that penalizes emissions

Challenges for CCS



Sequestration debated as reliable

Limited policy leads to low CO2 price

Opportunities for CCS

Proven scientifically; no leakage

Positive policy momentum worldwide

MOF conserves valuable arable land

Near-term focus on niche applications for carbon capture

Carbon Capture Applications

Policy-Driven Sequestration

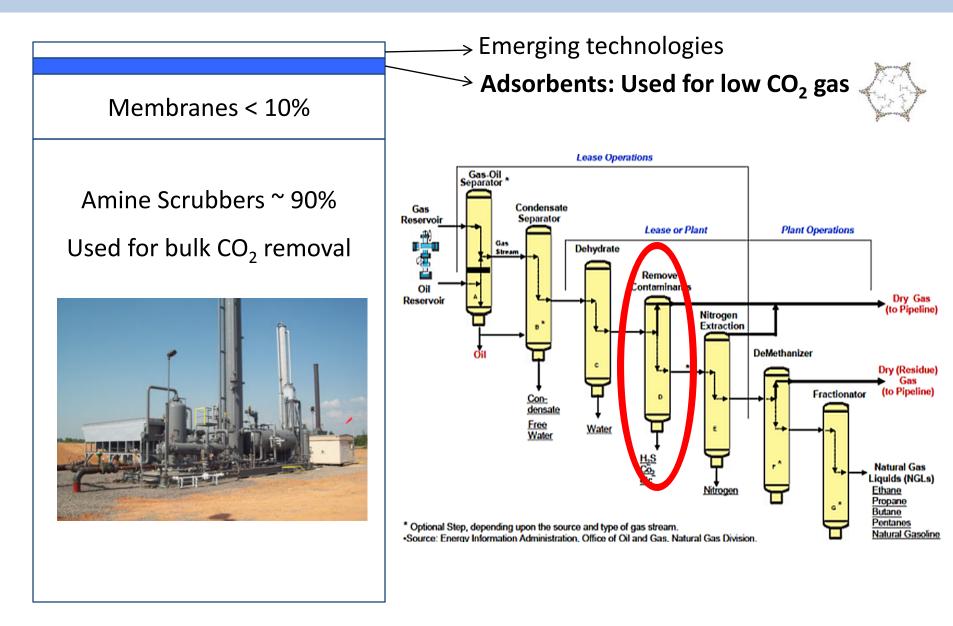
Existing Industrial Applications

Natural Gas Processing Ci

Cryogenic Air Distillation

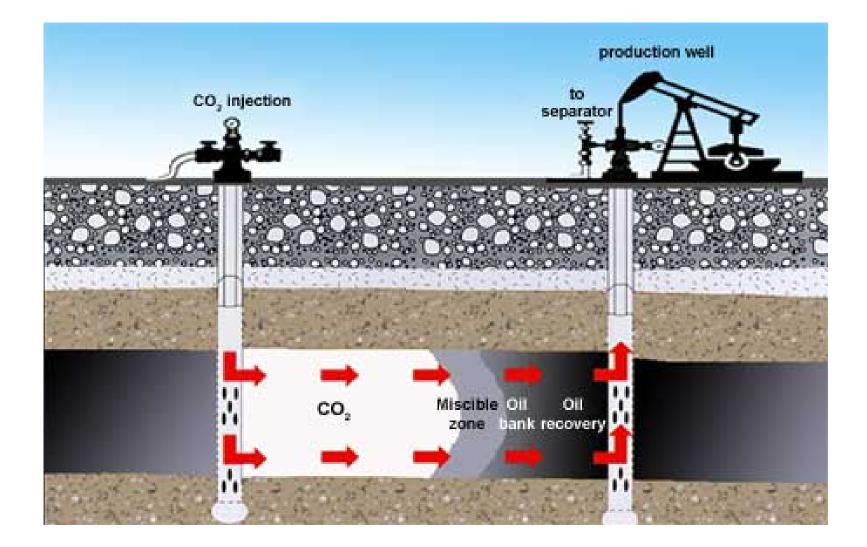
Enhanced Oil Recovery (EOR)

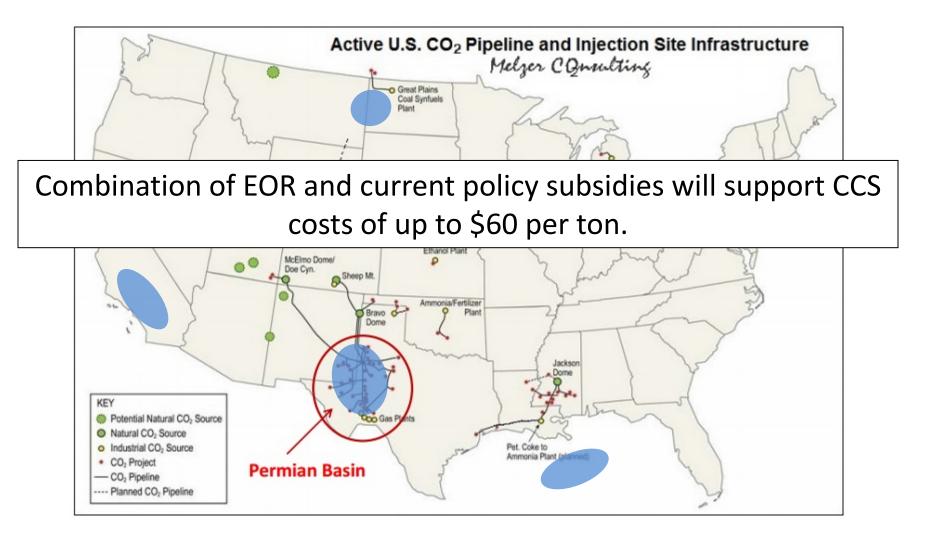
Algae Biofuels



CO₂ Scrubbing

Alkaline Fuel Cells


Natural gas sweetening: numerous technologies available


Natural gas sweetening: best pathway to prove the technology

EOR: opportunity where CO₂ pipelines don't already exist

EOR: opportunity where CO₂ pipelines don't already exist

Concentrations of the country's largest oil fields:

Algal biofuels: large customer base, but constrained by CO₂ pricing

Optimal algae development is in US Southeast, not close to current CO₂ pipelines

"Green" CO₂ for algae production needs a policy mandate

Algae doesn't need high purity CO₂ like EOR projects

Recommendation: niche applications until carbon policy matures

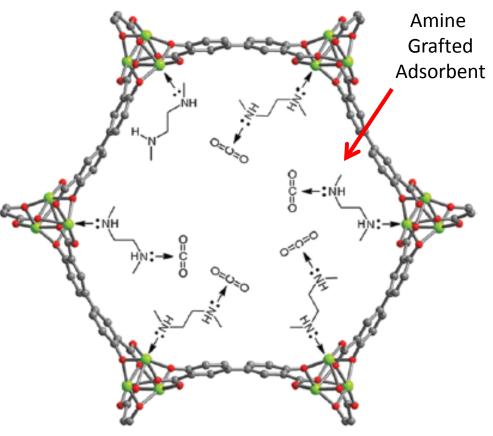
License with companies involved in natural gas sweetening

License with companies doing CCS with existing EOR and algae customers

Research MOF's capability to capture CO_2 from complex gas streams such as syn gas

Thank You!

Appendix


MOFs can be used in industrial processes - anywhere CO₂ is unwanted

	Description	Obstacles
Gas treating	 Removing CO₂ from natural gas before transportation 	 Not currently competitive for bulk CO₂ removal
Cryogenic distillation	 Making pure streams of oxygen, nitrogen, and argon for industrial uses 	 MOFs unlikely to improve significantly on existing technology
CO ₂ scrubbing	 Removing CO₂ in spacecraft, submarines, and SCUBA gear 	 Very difficult market to enter and limited opportunities
Alkaline fuel cells	 Preventing CO₂ contamination in AFCs, which powered Apollo space missions 	 Technology has largely been abandoned

Why is our MOF better?

material chemical formula ^a	common names	CO ₂ uptake at 0.15 bar (wt %) ^b
Mg ₂ (dobdc)	Mg-MOF-74, Mg-CPO-27	20.6
		18.9
		16.7
		14.5
Ni ₂ (dobdc)	Ni-MOF-74	16.9
	CPO-27-Ni	
Co ₂ (dobdc)	Co-MOF-74	14.2
	CPO-27-Co	
$Cu_3(BTC)_2$	HKUST-1	11.6
H ₃ [(Cu ₄ Cl) ₃ (BTTri) ₈ (mmen) ₁₂]	mmen-Cu-BTTri	9.5
$Zn_2(ox)(atz)_2$		8.3
Zn ₂ (dobdc)	Zn-MOF-74	7.6
	CPO-27-Zn	
$Pd(\mu$ -F-pymo- $N^1, N^3)_2$		6.5
Cu ₃ (TATB) ₂	CuTATB-60	5.8
Co ₂ (adenine) ₂ (CO ₂ CH ₃) ₂	bio-MOF-11	5.4
$Fe_3[(Fe_4Cl)_3(BTT)_8(MeOH)_4]_2$	Fe-BTT	5.3
$Al(OH)(bpydc) \cdot 0.97Cu(BF_4)_2$		4.0
Zn(nbIm)(nIm)	ZIF-78	3.3
Al(OH)(2-amino-BDC)	NH ₂ -MIL-53(Al), USO-1-Al-A	3.1
H ₃ [(Cu ₄ Cl) ₃ (BTTri) ₈]	Cu-BTTri	2.9
Cu ₂ (bdcppi)(DMF) ₂	SNU-50	2.9
H ₃ [(Cu ₄ Cl) ₃ (BTTri) ₈ (en) _{3.75}]	en-Cu-BTTri	2.3
Zn ₂ (bpdc) ₂ (bpee)		2.1
Ni ₂ (2-amino-BDC) ₂ (DABCO)	USO-2-Ni-A	2.1
$Cu_3(BPT(N_2))_2$	UMC-150(N)2	1.9
Cu ₃ (BPT) ₂	UMCM-150	1.8
Zn ₂ (BTetB)		1.8
Al(OH)(BDC)	MIL-53(Al), USO-1-A	1.7
Zn ₂ (bmbdc) ₂ (4,4'-bpy)		1.4
Ni ₂ (BDC) ₂ (DABCO)	USO-2-Ni	1.2

- Highest capacity from dilute streams
- High stability under humid streams
- Potential to reversibly adsorb H₂S and water

