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This paper studies whether electricity use in newer or older residential buildings rises
more in response to high temperature. Peak electricity demand occurs at the highest
temperatures which are predicted to increase due to climate change. Understand-
ing how newer buildings differ from older buildings improves forecasts of how peak
electricity use will grow over time. Newer buildings are subject to stricter building
energy codes, but are larger and more likely to have air conditioning; hence, the
cumulative effect is ambiguous. This paper combines four large datasets of build-
ing and household characteristics, weather data, and utility data to estimate the
electricity-temperature response of different building vintages. Estimation results
show that new buildings (1970-2000) have a statistically significantly higher temper-
ature response (i.e., use more electricity) than old buildings (pre-1970). Auxiliary
regressions with controls for number of bedrooms, income, square footage, central
air conditioning, ownership, and type of residential structure partially decompose
the effect. Though California has had extensive energy efficiency building stan-
dards that by themselves would lower temperature response for new buildings, the
cumulative effect of new buildings is an increase in temperature response. As new
buildings are added, aggregate temperature response is predicted to increase.
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1. Introduction

Understanding the relationship between electricity usage and temperature, i.e. tempera-

ture response, is important for climate change policy and long-range electricity infrastruc-

ture planning. Residential buildings are a substantial contributor to CO2 emissions. In the

US, residential buildings account for 21% of 2008 CO2 emissions (Environmental Protection

Agency 2010), with about 50% of residential energy going to space heating and air condi-

tioning (Energy Information Administration 2009). Furthermore, temperature increases from

CO2 emissions will affect electricity demand through increased cooling loads, i.e., air condi-

tioning use. Electric power plant construction and infrastructure decisions are strongly driven

by peak electricity demand which in California occurs during periods of highest temperature.

If new buildings have higher temperature response1, then the average temperature response

will increase as new buildings are added. Peak demand per household will also increase.

Policies to reduce greenhouse gas emissions or reduce energy use often aim to decrease peak

and total electricity demand.

Temperature response is better than total electricity use as a measure of the performance of

buildings. As the component of electricity usage that varies with temperature, temperature

response isolates factors such as the thermal performance of the building, the size of the

building, and the thermostat preferences of occupants. In contrast, total electricity use

conflates these factors with appliance ownership (e.g., more televisions) and other factors

that don’t depend on the building.2

Whether newer or older residential buildings in California have higher temperature response

has not been studied using field data. California has had the most extensive energy efficiency

standards in the United States applied to new buildings. Engineering models (e.g., Marshall

and Gorin (2007); Abrishami, Bender, Lewis, Movassagh, Puglia, Sharp, Sullivan, Tian,

Valencia and Videvar (2005)), predict strong reductions in energy use (both peak and total

1In this paper, temperature response is defined as the percentage increase (relative to usage on a 65�F day)
in electricity use due to a 1�F increase in temperature. Higher temperature response means more incremental
electricity use.
2Though I focus on temperature response, I also present comparisons of the total electricity use across vintage
in Appendix A. Unsurprisingly, new homes use more electricity, principally because they are larger.
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use) due to these standards, ceteris paribus, but other factors can offset these increases. The

sign of the cumulative effect, measured as the difference between new and old buildings, is

ambiguous. I use field data to estimate the temperature response across houses of different

vintages.

This paper uses (household, monthly) field panel data on electricity use linked to build-

ing vintage and other building and household characteristics. Household electricity usage

(quantity) data in Riverside County, California, USA, is regressed on time series variation in

temperature to estimate temperature response. Cross sectional variation in building vintage

and other characteristics at the Zip9-level or census block group-level identifies the temper-

ature response by vintage.

The main finding is that each successive decade since 1970 has statistically significantly

increased temperature response compared to older buildings (built prior to 1970). Hence,

average peak load is expected to increase due to population growth and ensuing new construc-

tion. This exacerbates the impact of climate change on electricity use. Auxiliary regressions

add controls for bedrooms, income, sqft, central air conditioning ownership, and type of

residential structure. These differ across vintage and partially explain the increase in tem-

perature response for newer buildings. With controls, 1990s homes are estimated to have a

temperature response of 8% less to 6% more than pre1970s homes in the most unrestrictive

specification.

The organization of the paper is as follows. Section 2 presents existing related studies.

Section 3 presents a description of the data. Section 4 presents an econometric model.

Section 5 estimates the model. Section 6 discusses results and potential mechanisms. Section

7 concludes.

2. Related Work

2.1. Temperature Response and Building Vintage in Field Evidence and Forecast-

ing. Several papers have focused on temperature response of buildings using field evidence

but ignore how buildings have changed across vintage. Aroonruengsawat and Auffhammer
3



(2009) examine the variation in the non-linear relationship between temperature and elec-

tricity use by sixteen climate zones in California, showing that the strongest relationships are

in hotter inland areas. Earlier work on temperature response with (annual, state)-level data

by Deschênes and Greenstone (2008) predicts that climate change scenarios generate a 33%

increase in residential energy consumption nationwide with the current set of buildings. New

buildings, if they perform worse than older buildings, may exacerbate this predicted increase.

By ignoring vintage effects, such studies would underestimate the impact of new buildings.

Baxter and Calandri (1992) use an engineering model to estimate the impact of a 1.9�C

temperature increase, finding a 2-4% increase in electricity use, but the study holds the

building stock fixed. More recent work suggests that newer buildings are more temperature

responsive. Every two years, the California Energy Commission runs a detailed simulation

model to construct its demand forecast that includes a large mix of econometrically estimated

parameters and engineering estimates. In a recent revision, they find that air conditioning

saturation for newer buildings increased unexpectedly for both hotter (inland) and cooler

(coastal) areas (Marshall and Gorin 2007). 3

A limitation of engineering studies is uncertainty about whether engineering parameters

represent actual field performance. Joskow and Marron (1992) describe many factors that

contribute to overstatement of program effectiveness. In particular, a rebound effect may

exist where occupants demand more services by responding to a decrease in the price due to

efficiency (Greening, Greene and Difiglio 2000), interventions may imperfectly translate to

the field, or unexpected confounding effects could diminish or accentuate savings. Although

only a small portion of their broader critique, they highlight the difficulty of extrapolating

from the laboratory to the field. In Joskow and Marron (1993), they find that the ratio

of measured to estimated savings are 0.31-0.42 for two 1980s retrofit programs; that is,

engineering predictions overstated savings by a factor of 2 to 3. As more current evidence that

field measurements and engineering estimates differ, Larsen and Nesbakken (2004) compare

3Their large simulation model reports aggregate result but does not explain how they model differences
between new and old homes. They use an alternate but related concept of load factor, which is defined
as average demand relative to peak demand. Load factor and average temperature response are inversely
related. They project that load factor will decrease.
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an econometric decomposition approach to the predictions of engineering models in Norway.

They find that the two approaches decompose end uses quite differently. Hirst (1990) surveys

the broader question of program evaluation. Nadel and Keating (1991) summarize results of

a large number of field evaluations and find generally positive, but usually smaller, savings

than what engineers predict. Use of field data, like that done in this paper, can produce

more realistic forecasts or provide ways to validate engineering estimates. If engineering

parameters overstate energy savings, then demand forecasts will be biased downward.

Two very recent papers use field data to test the impact of building vintage, both using

monthly utility data. Jacobsen and Kotchen (2009) analyze one building standard code

change in Florida using a sharp regression discontinuity. They estimate a 4-6% reduction

is energy use. Costa and Kahn (2010) estimate the differences in total electricity use by

building vintage for buildings in a community in California using cross-sectional variation

and show that homes built after 1983 had lower total electricity use. My research looks

at the differences for homes over three decades and focuses on differences in temperature

response.

2.2. The Rosenfeld Curve and Energy Efficiency. Per capita total electricity sales for

California have been relatively flat since the mid-1970s, when landmark legislation for energy

efficiency was passed. Comparatively, sales for the rest of the United States have gone up

by 50% (Figure 1). Explanations of this time series phenomenon, commonly referred to as

the Rosenfeld Curve, vary widely. The obvious explanation points to California’s policies,

especially the establishment of building and appliance standards unique to California, as

major contributors. However, correlation is not causation. The visual remarkableness of this

curve is tempered when looking at comparable curves for nearby states. A look at analogous

“Rosenfeld Curves” of residential electricity per capita over time for eight Western States

(Figure 2) presents a quick visual contrast to California’s impressive performance relative to

the United States (Figure 1). Three other states (NV, OR, and WA) have had flat residential

electricity per capita profiles, though they had weaker building standards.4

4Historical information for all states on building energy standards comes from the Building Codes Assistance
Project (n.d.). Nevada implemented a mandatory building energy code in 1978 but "between 1983 and 1986,

5



Avoiding many of the problems of state-level analyses, my research uses rarely available

microdata at the household-level with covariates at the 5-10 household-level. State-level

analyses are problematic because they assume comparability across states. The identifying

assumption in such studies is that changes in per-capita electricity load across states would

have been the same in the absence of energy efficiency policies. This assumption is embed-

ded in several state-level analyses: Aroonruengsawat, Auffhammer and Sanstad (2009) and

Horowitz (2007) use state-level panel data; Sudarshan and Sweeney (2008) make a comparison

between the US and California; and Loughran and Kulick (2004) and Auffhammer, Blumstein

and Fowlie (2008) use utility-level panel data. These analyses typically find evidence that

energy efficiency programs reduce energy consumption. Comparability across states can be

violated for many reasons. The evolution of a state’s aggregate energy efficiency (as measured

by residential electricity per capita) will depend on changes in the composition of the type

of housing (urban vs rural, single family vs condominiums), growth in the size of housing,

changes in geographic/climatic composition (e.g. coastal vs. inland), and differences in the

adoption of air conditioning.

This analysis makes an important contribution to studies of policies aimed at reducing

residential energy. In the context of "energy intensity" measures, such as electricity per

capita or per GDP, my research identifies the new and counterintuitive empirical fact that

households in new buildings use more electricity per household, both in total use and in

response to temperature. It runs counter to what one might expect from looking at the

Rosenfeld Curve, where per capita electricity has been flat, but the Rosenfeld Curve is an

aggregate-level result that may conflate other factors.5 Explaining what causes this empirical

fact is important for understanding the effectiveness of building energy use policy in the

context of many simultaneous changes.

the state did not support or enforce this energy code". Oregon implemented a building energy code in 1978
that did not apply to residential buildings. A residential code was adopted in 2003. Washington adopted a
voluntary energy code in 1977, with a mandatory code established in 1986.
5Given that households in new buildings use more electricity than those in older buildings, if older buildings
have not changed, it follows logically that the average household use would go up. Since this contradicts the
flat average electricity use (Rosenfeld Curve), the inference is that households in old buildings use significantly
less electricity, to the point that the average use is flat.
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3. Description of the Data

Three investor-owned utilities (Pacific Gas and Electric, Southern California Edison, and

San Diego Gas and Electric) gave researchers at the University of California Energy Insti-

tute the complete billing history for all residential household bills in these electricity service

territories. Time coverage for utilities varies, but the longest period of data are from 1998 to

part of 2009 for Southern California Edison (SCE). Information includes billing start date,

billing end date, total electricity used (kWh), total bill, an account id, a physical location

id, and the zip code (usually at the nine digit level). This paper currently focuses on one

county, Riverside County, where there are over 20 million observations for SCE customers.

Riverside County was chosen because it is an inland area with a wide range of temperatures,

there is considerable variation in the building vintage, Aroonruengsawat and Auffhammer

(2009) found this region to have substantial average temperature response, and detailed

county assessor’s property information is available. It is important to restrict to one county

or area because housing design, climate, and building standards differ strongly across the

state. For cleaning, bills with 25 days or less or 35 days or more were dropped (about 5%).

Bills with less than 2kWh/day or more than 80kWh/day are outliers were also dropped (about

4%).

The billing data lacks housing and household information; two data sets of different spatial

resolution are used to provide this information. County assessor’s data (County of Riverside

Assessor’s Office 2010) was obtained for single family homes identifiable to the address.

Because SCE billing includes both bills for single family and multifamily (e.g., apartments),

I condition on census block groups where more than 95% of households are in single family

homes. Bills are next matched to assessor data via the zip9. Zip9s are very small, with an

average of 4.8 assessor records per zip9. For each zip9, the proportion constructed in each

vintage category, the median of square footage, and the proportion of houses with central air

conditioning for each zip9 is associated with all the bills in that zip9.
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The second source of housing information is the US Census. The 2000 US Census’s Sum-

mary File 3 (United States Census Bureau 2009) has at the census block group-level propor-

tions of the vintage of housing, proportions of type of structure (single family vs multifamily

vs mobile home), the number of rooms, and the income distribution. A census block group

has a size on the order of 500 housing units. Figure 3 has a map of part of Riverside County

by census tract.6. The shading corresponds to the proportion of housing in a tract that was

built after 1980, with darker meaning more new construction. Hence, within this county,

there is substantial spatial variation in the age of housing which is needed for estimating

vintage differentiated temperature response; i.e. temperature response is compared between

dark and light areas of the figure. Because of the large number of observations and comput-

ing limitations, a 1-in-5 subsample was used to reduce the sample to 5.3 million observations

when using census data.

Daily maximum (Tmax) and minimum (Tmin) temperature at a 4km x 4km grid are

generated according to the algorithm used by Schlenker and Roberts (2009) which has been

used for estimating the relationship between crop yields and temperature. The reader is

directed there for a more full description of the algorithm as well as diagnostics that show the

methodology is reliable. Billing data are then matched via Zip9 to the gridded temperature

data and to the census block group. The average of Tmax and Tmin is then taken as the

daily temperature. These are then translated into cooling degree days (CDD) and heating

degree days (HDD) with a reference temperature of 65�F. In a more flexible approach which

follows Aroonruengsawat and Auffhammer (2009), the daily temperature is binned into 10

bins with approximately equal number of observations. Temperature bin ranges are listed in

Table 1.

To give a better sense of the data, Figure 4 gives plots of average daily electricity use

versus time from the monthly billing data for one household. Peaks for electricity use corre-

spond to summer months. This data is then replotted as average daily electricity use versus

6On average, a census tract is 3 census block groups.
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average cooling degree days in Figure 5. As temperature increases, the electricity use for this

household increases.

Summary statistics of the data (using assessor’s data which is restricted to single family

homes at the zip9 level) are in Table 2. Most single family homes (88%) have central air

conditioning overall; the newest homes almost always have central air conditioning, but less

than half of older homes have central air conditioning.

Summary statistics of the data (using census block groups) are in Table 3. The top section

reports information from the billing data. The average household use per day is 25.5kWh, or

9307kWh per year. This is slightly lower than the national average of 11,500 kWh per year

(Energy Information Administration 2009). The second section of the summary statistics

corresponds to building and household characteristics from the Census data at the level of

the census block group. 20% of observations were built in 1970-1979, 36% in 1980-1989, and

21% in 1990-2000, and 23% before and including 1969. The min and max of these variables

are close to zero and one, which means there is substantial variation across census block

groups in building vintage. The vintage variables differ from the previous table because this

data set includes non-single family homes. The average number of bedrooms and rooms are

2.57 and 5.23, and the average household income is $48,200.

An extended data discussion with additional detail on data cleaning and matching is in

Appendix D.

4. Econometric Model

The average temperature response for subareas of California has been estimated by Aroon-

ruengsawat and Auffhammer (2009) and nationally by Deschênes and Greenstone (2008). A

similar estimating equation is given by Equation 1. This flexibly estimates the average tem-

perature response in log terms within the sample area after controlling for a household fixed

effect.7 Temperature is binned. Dpit is a scalar [0, 1] that denotes the fraction of days where

7Studies relating energy use and temperature have varied in the functional forms used. I discuss this in
Appendix B. In the robustness checks and the auxiliary regressions, I include alternative functional forms.
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a household is exposed to the pth temperature bin.

ln(kWh_useperdayit) =
PBINS

p=1 ⇢p ⇤Dpit + (1)

↵i + "it

An alternative specification is to parameterize the temperature response in terms of cooling

degree days and heating degree days8. Following Reiss and White (2008), I include linear

and squared terms for CDD and HDD which results in Equation 2.

ln(kWh_useperdayit) = f(CDD,HDD) + ↵i + "it

= �1CDDit + �2CDD
2
it + �3HDDit + �4HDD

2
it + ↵i + "it (2)

I have estimated both temperature parameterizations. The degree day parameterization

is the main specification presented. A limited number of binned results will be presented.

I next estimate the heterogeneity of temperature response by vintage. The vintage of each

household is not known, but the proportion of buildings of each vintage in an area is known,

either at the Zip9- or census block group-level. The temperature response of each vintage

is estimated via the cross sectional variation in vintage across areas. Equation 3 uses the

degree day parameterization, while Equation 4 estimates the average response by vintage

using binning.

ln(kWh_useperdayijt) =
PV INTAGES

v=1 Vjv⇤ (�1vCDDit + �2vCDD
2
it + �3vHDDit + �4vHDD

2
it)

+↵i + "it (3)

ln(kWh_useperdayijt) =
V INTAGESX

v=1

⇣ BINSX

p=1

[�pvVjv]
⌘
⇤Dpit + ↵i + "it (4)

8Degree days are referenced to 65�F. For a given day, CDD = max(Tmean� 65, 0) and HDD = max(65�
Tmean, 0)

10



where

• i, j, t index households, zip9 or census block groups, and time (monthly billing period),

respectively

• BINS represents the number of temperature bins, p indexes them.

• V INTAGES represents the number of building vintage categories. v indexes them.

• Vjv is in [0,1] and represents the proportion of buildings in j for vintage v

• Dpit is in [0,1] and is the measure of the proportion of days for household i in the billing

cycle t where the average temperature is in the pth bin

In both regressions, the mean temperature-invariant consumption is captured by the house-

hold fixed effect, ↵i. Importantly, this will flexibly capture temperature invariant factors such

as variation in appliance ownership and usage patterns. In Equation 4, the parameters of

interest are the �pv that represent the temperature response for the pth temperature bin

for the vth vintage9. The set of �pv plotted against the p temperature bins yields the tem-

perature response. Electricity use should increase with increasing temperature, represented

by �p⇤v > �p0v when p
⇤ is hotter than p

0 in the air conditioning range of temperatures for

a given v.10 If new buildings have higher temperature response than older buildings, then

�pv⇤ > �pv0 when v
⇤ is newer than v

0 for any p in the air conditioning range of temperatures.

In Equation 3 with the degree day parametrization, the �1v and �2v determine the tempera-

ture response to hotter temperatures. Temperature response is higher when these coefficients

are larger. In the degree day parameterization, the comparison of interest is the analogous

differences in predicted temperature response across vintages.

Estimation of Equations 4 and 3 determines the average temperature response by vintage

but does not identify the causal effect of building standards. Over time, buildings have

changed in numerous ways, such as building standards on insulation and glazing, efficiency

standards on appliances, the likelihood to have air conditioning, the square footage, and

9One of the temperature bins, 62.7�F � 66.4�F is left out wlog as the reference temperature bin, otherwise
the rank condition is violated.
10The heating range of temperatures is estimated but not discussed in this paper. Heating fuel varies across
vintage, with newer homes more likely to have natural gas as their primary heating fuel. In contrast, electricity
is almost universally the energy source for cooling.
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building design. The standard practice of using ln(kWh_useperday) as the dependent vari-

able is one way to controls for square footage and size as discussed in Appendix B, but the

other factors are captured by the vintage effect. Building standards do vary by vintage and

are predicted via engineering estimates to have an impact on temperature response. How-

ever, building standards cannot be isolated from the other changes.11 Hence, I interpret the

estimate to Equations 4 and 3 as the cumulative impact of multiple changes.

In order to aid interpretation of the cumulative effect, available covariates can be added

which can isolate some factors of the cumulative impact of vintage, but the remaining factors

cannot be isolated. County assessor’s data provide additional covariates for central air con-

ditioning ownership and square footage at the zip9-level but only for areas almost entirely

composed of single family homes. Using this data, the following auxiliary specifications can

be run, the first with the degree day parameterization and the second with temperature bins.

Importantly, building standards are not controlled for and would be part of the vintage effect.

ln(kWh_useperdayizt) =
V INTAGESX

v=1

Vzv ⇤ (�1vCDDit + �2vCDD
2
it + �3vHDDit + �4vHDD

2
it)

+CentralACz ⇤ ('1CDDit + '2CDD
2
it + '3HDDit + '4HDD

2
it)

+SquareFootagez ⇤ (✓1CDDit + ✓2CDD
2
it + ✓3HDDit + ✓4HDD

2
it)

+↵i + "it (5)

ln(kWh_useperdayizt) =
PBINS

p=1

⇣ V INTAGESX

v=1

[�pvVzv] + (6)

'pCentralACz +

✓pSquareFootagez

⌘
⇤Dpit +

↵i + "it

11There are two potential methods of estimating the causal impact of building standards. First, a regression
discontinuity (RD) design may be possible if the treatment is discontinuous. However, building standards
implementation could be slow and gradual, which would not be picked up by an RD design. Jacobsen and
Kotchen (2009) apply an RD approach which assumes a sharp change in standards implementation. Second,
cross state comparisons can be made, but the limitations of cross-state analyses has been discussed.
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where

• i, z, t index households, zip9, and time (monthly billing period), respectively,

• Vzv is in [0,1] and represents the proportion of buildings in z for vintage v

• CentralACz is the proportion of buildings with central air conditioning in z, and

• SquareFootagez is the median square footage for buildings in z.

With the census data, three variables are interacted with temperature response that vary

at the census block group-level: (1) average ln(income), (2) average number of bedrooms

(a proxy for size), and (3) the type of structure, i.e. Single Family or Multifamily or Mo-

bile/Other. Equation 7 presents this auxiliary specification with the degree day parameteri-

zation.

ln(kWh_useperdayijt) =
V INTAGESX

v=1

Vjv ⇤ (�1vCDDit + �2vCDD
2
it + �3vHDDit + �4vHDD

2
it)

STRUCTURESX

s=1

STRjs ⇤ (⇢1sCDDit + ⇢2sCDD
2
it + ⇢3sHDDit + ⇢4sHDD

2
it)

+AvlnIncomej ⇤ (�1CDDit + �2CDD
2
it + �3HDDit + �4HDD

2
it)

+AvBedroomsj ⇤ (�1CDDit + �2CDD
2
it + �3HDDit + �4HDD

2
it)

+↵i + "it (7)

STRjs is in [0,1] and represents the proportion of buildings in j for the type of structure, s.

AvlnIncomej is the average of ln(income) per household in j. AvBedroomsj is the average

bedrooms per household j. j indexes census block groups. Importantly, building standards

and measures of air conditioning ownership are not available as covariates in this specification.

An important property of estimates of temperature response is that they are immune to

many types of omitted variable bias. In order for omitted variable bias to bias temperature

response results, two conditions must be met. First, the omitted variable must vary across

vintage. Second, the omitted variable must be correlated with temperature. A variable,

such as price, that does not vary within this region nor by temperature, would not bias
13



results, except if price elasticities for cooling varied across vintages. Aroonruengsawat and

Auffhammer (2009) included price as a regressor in estimating regional temperature response

and found that it did not affect results.

5. Results

5.1. Main Results: Degree Day Parameterization With County Assessor’s Data.

Results presented in this subsection use the degree day parameterization and county assessor’s

data. Alternative specifications follow this subsection.

I first estimate the average temperature response across all households given earlier by

Equation 2. Column A1 of Table 4 and Figure 6 present the results of the estimation

using fixed effects panel regression with standard errors clustered at the zip9 level. This

shows the strong increase in electricity in response to temperature for both higher and lower

temperatures, relative to 65�F.

Next, I estimate temperature response by vintage as given earlier by Equation 3. Column

A2 of Table 4 and Figures 7 to 10 present the results of the estimation. The omitted vintage

variable is pre1970s, so the coefficients on the remaining variables are differences from the

temperature response of pre1970s buildings. Figure 7 is the temperature response for pre1970s

buildings. Figures 8 to 10 are for each other vintage relative to pre1970s buildings. Each

figure has a horizontal line at zero to indicate what would result if there were no difference

between vintages. To interpret these results, the 1970s, 1980s, and 1990s vintage of buildings

have statistically significantly higher temperature response than pre1970s buildings. The

highest temperature response is for 1990s buildings, followed by 1980s buildings, 1970s, and

then pre1970s buildings.

Lastly, I estimate temperature response by vintage with some controls interacted with tem-

perature response, as given by Equation 5. These controls capture variation in temperature

response that is correlated with central air conditioning and square footage. Results are in

Column A3 of Table 4 and Figure 11 which combines the graphs. Central air conditioning

strongly positively increases temperature response and is more prevalent in newer buildings.

Square feet negatively impacts CDD; this means that the percentage increase in electricity on
14



a hot day is less for larger buildings. As discussed in the Appendix B, the main econometric

specification assumes comparability across households of different size by comparing percent

changes. In the figure, all of the temperature response curves shift downward because new

buildings more often have air conditioning. 1970s buildings are not statistically significantly

different from pre1970s buildings after adding controls. 1980s and 1990s buildings are still

more temperature responsive after adding controls.

5.2. Robustness checks.

To guard against the possibility that some of these results are driven by parametric assump-

tions on size, I re-estimate the previous regression and restrict square footage to 1300 to

1600 square feet which reduced the observations by about two-thirds. Estimation results are

presented in Column A4 of Table 4 and Figure 12. The signs of the Square Foot ⇥ CDD and

Square Foot ⇥ CDD
2 variables change, but it is also less statistically significant. Even with

this change, cumulative responses by vintage with controls are similar to the main results.

The degree day parameterization may be overly restrictive. I run analogous regressions but

with temperature binning instead of the degree day parameterization. Equation 4 presents

the regression without controls. Results are given in Figure 13. Equation 6 presents the

regression with controls. Results are given in Figure 14.12 Results are similar to the main

results. Without controls, all vintages have statistically higher temperature response for bins

higher than 65�F. With controls, 1970s buildings are not statistically significantly different

from pre1970s buildings for all bins, and 1980s and 1990s buildings are more temperature

responsive.13

In each of these cases, the ln(kWhperday) specification compares households in terms of the

percent change in electricity use relative to each house’s fixed effect, i.e. their temperature

invariant mean usage. An alternative approach is to compare each household’s temperature

response in levels (as opposed to percentages) and control explicitly for size. This alternative

is discussed and estimated in Appendix B. Referring to Figure 15, this parameterization
12Regression tables available upon request.
13Note that caution should be used when looking at the lowest and highest temperature bins. These bins
contain outliers and the intra-bin temperature distribution across vintages is quite large. Newer buildings
have more data points in the highest temperature bin.
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shows that the predicted temperature response for all vintages of buildings are not statistically

significantly different from the reference group of pre-1970s buildings. Standard errors are

larger.

An alternative data source is census data which offers some advantages. Census data is

not restricted to single family homes and includes income and other socioeconomic informa-

tion. The disadvantage is that census block groups are larger geographically, so there is less

spatial variation and more potential for bias from aggregation, as discussed in Appendix C.

Regressions are run with census block data. Figure 16 shows the temperature response by

vintage after estimating Equation 3. 1980s and 1990s homes hive a higher temperature re-

sponse that is not statistically significantly different from pre1970s homes, but 1970s homes

have a lower temperature response. Standard errors are much larger due to the decrease in

number of areas. There are 372 census block group areas compared to 9316 Zip9’s areas.

Figure 17 shows the the results of estimating temperature response by vintage with controls

for income, size, and type of structure, as described in Equation 7. Note that air condition-

ing is not available at this spatial resolution and is not used as a control. With controls,

results change dramatically. 1970s buildings have a higher temperature response that is not

statistically significant. 1980s and 1990s buildings have a higher temperature response that

is statistically significant. The reason for the upward shift is that 1970s and 1980s buildings

had a higher proportion of apartments which have lower temperature response. After con-

trolling for this, both curve shifted upward. For the 1990s buildings, income has a negative

effect on temperature response and households in newer building have higher income. After

controlling for this, the the 1990s curve shifts upward.

Total usage is another way to compare electricity use across households. This research

focuses on temperature response under the argument that temperature response isolates

elements of the building and household preferences only for cooling and heating services. In

contrast, total usage captures many other differences across vintages, such as the number

and type of appliance. Appendix A discusses this in more depth. The results, as presented

in Table 5, shows that new homes use statistically significantly more electricity than older
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homes in total electricity use (Column T1). This is expected since new homes are larger.

After adding controls for square footage and central air conditioning (Column T2), new houses

use statistically significantly less electricity. Further adding controls for temperature across

vintages (Column T3), new homes still use less electricity, and the coefficient on central air

conditioning without temperature interactions becomes statistically insignificantly different

from zero.

6. Policy Significance and Potential Mechanisms

6.1. Policy Significance. The results show that, in Riverside County, the cumulative tem-

perature response for buildings has been stronger for newer buildings (1980s and 1990s) than

for older buildings (1970s and pre1970s). This has two main policy impacts, one for load

forecasting and one for the impacts of climate change given that the composition of the

building stock is changing to something more temperature responsive.

First, in conducting load forecasts, these results suggest that new construction will in-

crease the average temperature response and increase peak load on the hottest days. As a

calibration, the population forecasts of RAND (RAND California 2010) predict an average

annual population increases of 2.6% for Riverside County. Applying this growth to Riverside

County and assuming that new construction has the same temperature response as 1990s

buildings, Figure 18 predicts the increase in average temperature response on a 75�F day

to go from 48.8% to 52.3% from today to 2020. Peak demand will increase proportionately

as well. This is comparable to the estimated 3.7% increase in peak demand due to a 1.9�C

increase in temperature as estimated by Baxter and Calandri (1992).

Looking at the issue of air conditioning statewide potentially could have an even greater

effect. This is because coastal areas have historically had a lower amount of air conditioning,

but the CEC revised forecast commented that there was an unexpected increased air condi-

tioner saturation in cooler areas. Table 6 presents air conditioning saturation for old versus

new housing by forecast climate zones from KEMA-XENERGY (2004) data. Figure 19 gives

a map of the zones. Coastal areas that have very low ownership of air conditioners for older

buildings have dramatically increased air conditioner ownership for newly built buildings.
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Second, climate change impacts will be exacerbated with the increased temperature re-

sponse from newer houses. Using the same calculation as given in Figure 18 above, I can

predict the difference in climate change impacts adjusting for the estimate that new build-

ings are more temperature responsive. In 2050, Riverside’s population is predicted to more

than double. For a 5�F increase due to climate change, temperature response will be about

2-3%higher with the addition of new buildings compared to the current building stock.

6.2. Potential Mechanisms. As previously discussed, it is not possible to separate out the

mechanism of the vintage-differentiated temperature response. The heterogeneity by vintage

was first estimated, and then controls for observables were included, which captured some

of the heterogeneity. The remaining temperature response is from the other factors.14 One

of the remaining factors that are part of the vintage temperature response coefficients were

policy developments. This would include building standards implemented in 1975, 1979,

1984, and 1992 and appliance standards implemented in 1978 and 1987.

After controlling for differences in air conditioning, the remaining differences across house-

holds of different vintages is smaller and depends on the specification used. In the main log

specification with controls for central air conditioning ownership, new buildings had statis-

tically significantly higher temperature response by a small amount (Figure 11). Using a

level specification and restricting the sample to houses of similar size, new homes performed

slightly better, but not statistically significantly so (Figure 15).

Engineering estimates provide a prediction of the impact of buildings standards absent

any other changes. Building standards have also varied by vintage and are predicted to

reduce temperature response significantly by 34-56% for new versus old buildings. The CEC

identifies four significant changes in building standards and estimates the savings from those

standards with engineering models (Marshall and Gorin (2007) and Abrishami et al. (2005)).

I summarize and report the savings from in Table 8. Total load reduction is about 6%

from engineering estimates. However, to make this result comparable to my estimates,

two adjustments must be considered. First, building standards only affect new construction
14This relies on the assumption that the other factors are uncorrelated. Otherwise, the included controls
would pick up other factors through correlation with omitted variable.
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and major renovation; these are represented in the fourth column which has the population

increase since the standard went into effect as a proportion of the current population. Also,

building standards only affect the temperature response component of electricity use. I

calculate the implied reduction in Temperature Response, -34% to -56% from each building

standard in the last column.

The juxtaposition of similar temperature response across vintages and a large predicted

decrease in temperature response due to building standards suggests that other factors have

had a large positive effect for new houses. There are multiple potential mechanisms, none of

which the data can separate out. Behavioral responses, such as those driven by the rebound

effect (Greening et al. 2000) can increase temperature response. This would mean that part of

the increase is due to an increase in comfort from using more cooling services. New buildings

may differ in their thermal design in that they may have taller ceilings, more structural

complexity, or a higher window-to-wall ratio; all of which may increase the electricity needed

to cool a building. It is also possible that there is sorting, where people who favor more

cooling services are more likely to live in new buildings. Another possibility is that standards

may not have been as effective as they have claimed, following the logic of Joskow and

Marron (1992). These are factors that would need to be carefully considered when designing

and evaluating of building standards.

6.3. Future Work. Billing data are available for a large portion (about 80%) of California

and future work will estimate this specification across the entire state. Though the average

temperature response in coastal areas is low, according to Aroonruengsawat and Auffhammer

(2009), the CEC reports suggest that new construction in lower temperature areas on the

coast has had higher than anticipated air conditioning ownership. In fact, Table 6 shows

that air conditioning ownership has increased strongly in both coastal and inland areas.

Estimation of the entire state would enable me to aggregate county-level estimates to a

statewide average cumulative temperature response.

This research also presents a puzzle about the causes of the Rosenfeld Curve, shown in

Figure 1. Since the mid 1970s, per capita electricity consumption for California has been
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flat while it has increased 50% for the United States. The breakpoint in the 1970s coincided

with the establishment of aggressive energy efficiency policies. The Rosenfeld Curve coupled

with engineering estimates suggest that California’s policies have been very effective, but

this research suggests that, in terms of temperature response, the net effect has been that

newer buildings increase temperature electricity use more than older ones in response to high

temperatures in Riverside County, one of California’s hottest counties. Several other drivers

(most notably, population growth biased toward hotter areas which have higher electricity

use) would also increase aggregate per capita electricity consumption. The resulting puzzle

is why California has had a flat per capita electricity profile despite these drivers that would

strongly push electricity use upwards. To try to understand the aggregate effect, I will look

at patterns of population growth, housing size (square footage), and changes in heating fuel

in addition to the heretofore studied differences between new and old residential buildings in

temperature response.

7. Conclusion

The contribution of this paper is to focus on the relationship between building vintage

and temperature response in residential buildings in California. The main finding is that

temperature response for buildings varies by vintage: new buildings (1970-2000) have a

statistically significantly higher temperature response (i.e. use more electricity in response

to higher temperature) than old buildings (pre-1970). This is robust to many specifications.

The cumulative positive effect for temperature response in new buildings means that increased

air conditioning ownership and other factors have outweighed other energy-saving impacts,

such as building standards applied to new residential buildings.

This result has two main implications, one for electricity demand forecasting and one

for climate change impacts. First, since new residential buildings have higher temperature

response, this means that the average temperature response is expected to go up as new

buildings are added. Peak electricity load will also increase, even with climate held constant.

Second, if temperatures increase due to climate change, the new residential buildings will

exacerbate the increase in peak load.
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Appendices
Appendix A. Total electricity vs temperature response

This appendix provides estimates that compare the differences in the total electricity use

across households of different vintages. Note that because the variation in age of housing

does not vary over time, this precludes the use of household fixed effects. Vintage effects will

include differences across households that are not related to the building, such as increases

in the amount of appliances or televisions.

Regression results are shown below using a random effects specification with clustering at

the ZIP9 level in Table 5. The first column shows that newer buildings have larger utility

bills, with no clear pattern across decades. The second column two adds a control variable

for square footage. Size increases total electricity use, as expected, but the estimates have

1990s and 1980s buildings using less energy after controlling for size, whereas 1970s buildings

use slightly more than pre1970s buildings. The third column adds controls for temperature

interacted with all variables; the signs of the vintage coefficients are unchanged.

Though interesting empirical regularities, the coefficients on the vintage variables are

hard to interpret. They can be rationalized both by increasing efficiency of appliances in new

buildings or fewer appliances in new buildings of comparable size.

It is important to note that newer buildings have a larger temperature invariant component

(Column T1), which means that the same percentage increase in new buildings and old

buildings (due to temperature difference) also means a higher change in kWh for the new

buildings.

Appendix B. Functional Form

The function form used in electricity regressions varies across studies, with the literature

split between have ln(kWhuseperday) (dubbed "ln") or kWhuseperday (dubbed "levels") as the

LHS variable. In many cases, the choice is ad hoc, justified on the grounds that the ln

specification compares percent changes across observations which roughly controls for size.
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In KEMA-XENERGY (2004), a conditional demand analysis framework is used that is mo-

tivated by the concept of summing up the loads of each appliance separately, in which case

levels are the appropriate regressand and temperature response is scaled by some measure of

the size of a house.

First, I present a mathematical justification for the ln specification. Second, I present

some results using levels as the regressand after making appropriate adjustments. The results

across vintage are similar.

kwhperdayit = basei + heatit + coolit (8)

kwhperdayit = basei + f(weather)⇥ f(size)⇥ f(other) (9)

kwhperdayit = basei + Z (10)

ln(kwhperdayit) = ln(basei) +
1

basei
⇤ Z (11)

via Taylor approximation around Z=0

ln(kwhperdayit) = ln(basei) +
1

basei
⇤ f(weather)⇥ f(size)⇥ f(other) (12)

assuming
f(sizei)

basei
= Q, a constant

ln(kwhperdayit) = ln(basei) +Q ⇤ f(weather)⇥ f(other) (13)

The derivation above begins with a partition of energy use into a base usage that is

temperature and time invariant followed by heating and cooling loads that vary by time

through weather’s variation over time. The next step takes the natural log and then expands

via a Taylor expansion. Under the maintained hypothesis that a function of size enters

multiplicatively and that the ratio of base usage to the function of size is constant, size

can then be omitted. Intuitively, this specification assumes that percent changes of bills are

the comparable metric across buildings of different size. The f(other) term would include

vintages, housing characteristics, and household characteristics. 15

15A reasonable alternative approach would be to use Box-Cox transformations to estimate nonlinearly the
impact of size and choosing the model with the best fit.

24



Alternatively, one could directly estimate Equation 9 by choosing a functional form for

f(weather)⇥ f(size)⇥ f(other) when such data is available at a fine spatial resolution. My

data at the Zip9-level, which on average has 5-10 households, is spatially more disaggregated

than most other data. Weather was parameterized as a function of CDD and HDD and its

squares.

A natural assumption to make is that cooling and heating loads scale by size, so that

f(size) = sqft. This turns out to not be a good assumption, as shown below. I first estimate

the cumulative temperature response across vintages without other controls as described in

Equation 14.

kWh_useperdayijt =
V INTAGESX

v=1

Vjv ⇤ (�1vSQFT ⇥ CDDit + �2vSQFT ⇥ CDD
2
it +

+�3vSQFT ⇥HDDit + �4vSQFT ⇥HDD
2
it)

+↵i + "it (14)

The results in Figure 20 show that new buildings are much less temperature responsive,

contrary to other specifications. I then re-estimate this constrained to areas where the sqft

variable is between 1300 and 1600 sqft which is a range of sqft with substantial overlap for

all vintages. The results in Figure 21show that new buildings perform worse, as is expected

because they have much more air conditioning. The reason the two results differ is because

the density of the sqft variable is larger for new houses and cooling and heating loads scale

less than proportionately to sqft. Hence, the assumption that f(size) = sqft overcorrects

for size.16

While still using levels, I estimate a less functionally constrained version of f(weather)⇥

f(size)⇥f(other) in Equation 9. Size is restricted to sqft between 1300 and 1600. f(size) =

(↵0 + ↵1 ⇤ sqft) which is a first order approximation applied to this narrow range of sqft.

A similar first order approximation is used for air conditioning, and vintage is given by an
16KEMA-XENERGY (2004) models cooling load as scaling by external surface area. If a building doubles in
size, the external surface area will less than double. For example, a cube on the ground has 5 external faces
(one exposed to the ground), but two cubes side by side only have 8 external faces.
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indicator variable, similar to the main specification. The final specification has 64 parameter

estimates.

kwhperdayit = basei + f(weather)⇥ f(size)⇥ f(other)

where

f(weather) = �1CDD + �2CDD
2 + �3HDD + �4HDD

2

f(size) = ↵0 + ↵1 ⇤ sqft

f(other) =
V INTAGESX

v=1

�v ⇤ V intageDummyv ⇤ (�0 + �CAC ⇤ CentralAirConditioning)

(15)

Figure 15 shows the results of the regression by predicting the value of electricity con-

sumption kwhperdayit, for a reference 1500sqft house with central air conditioning for each

vintage. Because of the large number of covariates, the regression results are omitted. The

results show that the 1990s and 1970s buildings may have lower temperature response after

controlling for air conditioning and size, but that the difference is not statistically signifi-

cant. Focusing just on the 1990s buildings, the range of the difference at 75�F is -2 to +1.5

kwhperday. This translates into an -8% to +6% which is lower than the range given by the

main specification.

Appendix C. Aggregation

The aggregation issue can be described by referring to the discussion of Blundell and

Stoker (2005) which focuses on aggregation issues in demand systems and other scenarios.

Aggregation presents biases when the underlying data generating process has cross-terms

and there are non-zero covariances. For example, the following data generating process has

no cross terms and could be estimated by data aggregated spatially across j.
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yij = �0 + �1 ⇤ xij + �2 ⇤ zij + "ij (16)

Ej[yij] = �0 + �1 ⇤ Ej[xij] + �2 ⇤ Ej[zij] + Ej["ij] (17)

yj = �0 + �1 ⇤ xj + �2 ⇤ zj + "j (18)

In the presence of a cross term, the aggregation presents bias if there are covariances.

In the example below, the relationship between the individual level coefficient, �3, and the

aggregate regression parameter, �3, is �3 = �3 ⇥ Ej [xij ]⇤E[zij ]
Ej [xij⇤zij ] . The two equal if an only if the

covariance, Cov(xij, yij), is zero.

yij = �0 + �3 ⇤ xij ⇤ zij + "ij (19)

Ej[yij] = �0 + �3 ⇤ Ej[xij ⇤ zij] + Ej["ij] (20)

Ej[yij] = �0 + �3 ⇤ (Ej[xij] ⇤ E[zij] + Cov(xij, yij)) + Ej["ij] (21)

yj = �0 + �3 ⇤ xj ⇤ zj + "j (22)

Aggregation problems are less likely with county assessor’s data than with census block

group data. County assessor’s data is matched at the Zip9-level, which is about 5-10 house-

holds. Hence, it is hoped that covariates in a Zip9-level are relatively homogeneous in terms

of house size, vintage of year built, and ownership of air conditioning. Census block groups,

at 300-700 households each are much more likely to have these issues.

I have not done aggregation of bill to the census block or zip code level. Aggregation of all

bills within a census block group can be done only if the panel is balanced; otherwise some

bills exist in some years but not in others. A large proportion of properties have occupant

turnover. If occupant turnover were random, dropping unbalanced observations would not

present bias, but it is plausible that certain homes are more likely to have occupant turnover.
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Appendix D. Extended Data Discussion

There are two datasets depending on the building characteristic information used. The

first dataset uses ZIP9-level data from county assessor’s information. The second dataset

uses census block group-level data from the 2000 Census.

The billing data was cleaned. Bills with 25 days or less or 35 days or more were dropped

(about 5%). Bills with less than 2kWh/day or more than 80kWh/day are outliers were also

dropped (about 4%).

For the ZIP9 data, assessor’s data primarily includes complete records of square footage,

year built, and air conditioning ownership for single family homes. Records were dropped if

there was more than 10 bedrooms, square footage less than 200 or greater than 10000, missing

ZIP code, or the structure was built before 1850 or after 2000. Many of these were obvious

data errors because they contained internally inconsistent values, such as many bedrooms but

very little square footage. Census block group information was used to identify areas where

more than 95% of the households were in single family structures and decreases the sample

to this area. Next, at the ZIP9-level, the proportion of houses with central air conditioning,

the median structure size, and the proportion of buildings built in each vintage category were

attributed to each bill in that associated ZIP9.

For the census block group data, a 1-in-5 subsample of observations was used to enable the

estimation to be run on a Linux server with 8GB of RAM and an Intel Quadcore processor,

running Stata 10.0 MP.

The spatial matching of weather, census block groups, and ZIP9s merits some description.

Weather data is available on a 4km x 4km grid. Census block groups are given as polygons.

ZIP9s are given as points, but the ZIP9 are ranges of street addresses. Typically opposite

sides of the street will have different ZIP9s. To describe the matching from the perspective

of the bill, the bill’s ZIP9 is matched to the census block group and 4km by 4km grid square

that contains the Zip9 point.

28



Figure 1. The “Rosenfeld” Curve. Per capita electricity sales for California
and the United States, annually from 1960-2006. Source: California Energy
Commission (2007).
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Figure 2. Per capita residential electricity sales for eight western states, 1963-
2004 . Source: Energy Information Administration (2007).
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Figure 3. Variation in building vintage in Riverside County, California, USA.
Shading represents proportion of buildings built since 1980. Darker means
higher proportion of new buildings.
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Table 1. Temperature bins.

Bin Number Temperature Range
bin0 0-51.96�F
bin1 51.96-55.89�F
bin2 55.89-59.25�F
bin3 59.25-62.70�F
bin4 62.70-66.39�F
bin5 66.39-70.54�F
bin6 70.54-74.37�F
bin7 74.37-78.30�F
bin8 78.30-84.02�F
bin9 84.02-130�F

32



Figure 4. Electricity Use (KWH) vs time for one sample household. Source:
Author’s data.
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Figure 5. Electricity Use (KWH) vs cooling degree days for one sample house-
hold. Source: Author’s data.

Note: Days with heating degree days were omitted.
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Table 2: Summary Statistics.

Variable Mean Std. Dev. Min Max
BILLING DATA

useperday 24.73 14.20 2.03 79.97
days 30.43 1.50 26 34

ASSESSOR’S DATA
Building Age

proportion built prior to 1970 0.15 0.36 0 1
proportion built in 1970s 0.16 0.36 0 1
proportion built in 1980s 0.54 0.50 0 1
proportion built in 1990s 0.15 0.36 0 1
Other Characteristics

Square Feet 1750 480 360 7138
Has Central Air Conditioning? 0.88 0.28 0 1

for pre1970s 0.407
for 1970s 0.847
for 1980s 0.986
for 1990s 0.995

Observations (no subsampling) 5,106,398
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Table 3: Summary Statistics.

Variable Mean Std. Dev. Min Max
BILLING DATA

useperday 21.61 14.56 2.03 79.97
days 30.43 1.52 26 34

CENSUS DATA
Building Age

proportion built prior to 1970 0.23 0.24 0 1
proportion built in 1970s 0.20 0.16 0 1
proportion built in 1980s 0.36 0.22 0 0.94
proportion built in 1990s 0.21 0.21 0 0.98
Type of Structure

proportion SingleFamily 0.64 0.30 0 1
proportion MultiFamily 0.28 0.28 0 1.00
proportion MotorOther 0.073 0.15 0 0.84
Other Characteristics

Average Bedrooms 2.57 0.62 0.89 4.36
Average Rooms 5.23 1.01 2.31 8.00
Average Income $48,200 $16,600 $13,000 $108,900
Observations (1-in-5 subsample) 5303019
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Table 4. Estimation results, temperature response with CDD and HDD pa-
rameterization, assessor’s data.
Dependent variable is ln(KWH_perday)

VARIABLES (A1) (A2) (A3) (A4)

CDD 0.0553*** 0.0460*** 0.0355*** 0.0476***
[0.000330] [0.000930] [0.00149] [0.00321]

HDD 0.0274*** 0.0293*** 0.0231*** 0.0326***
[0.000268] [0.000905] [0.00132] [0.00286]

CDD
2 -0.000283*** -0.000185*** 0.000234*** -0.000270*

[1.61e-05] [4.44e-05] [8.27e-05] [0.000164]

HDD
2 -0.000590*** -0.000743*** -0.000260*** -0.000802***

[1.87e-05] [6.64e-05] [8.93e-05] [0.000191]

Built in 1990⇥CDD 0.0149*** 0.0108*** 0.00871***
[0.00121] [0.00160] [0.00300]

Built in 1980⇥CDD 0.0117*** 0.00482*** 0.00827***
[0.00103] [0.00141] [0.00246]

Built in 1970⇥CDD 0.00393* 0.000171 0.000292
[0.00201] [0.00210] [0.00371]

Built in 1990⇥HDD -0.00049 -0.00306** -0.00364
[0.00109] [0.00139] [0.00248]

Built in 1980⇥HDD -0.00195** -0.00502*** -0.00359*
[0.000976] [0.00125] [0.00208]

Built in 1970⇥HDD -0.00800*** -0.00980*** -0.00984***
[0.00161] [0.00169] [0.00295]

Built in 1990⇥ CDD
2 -0.000242*** -0.000151** -3.00E-05

[5.61e-05] [6.81e-05] [0.000116]

Built in 1980⇥ CDD
2 -0.000130*** 7.86E-05 -2.47E-05

[5.00e-05] [5.98e-05] [9.66e-05]

Built in 1970⇥ CDD
2 7.56E-05 0.000147 0.000384**

[0.000114] [0.000113] [0.000195]

Built in 1990⇥ HDD
2 0.000128* 0.000114 0.000201

[7.71e-05] [9.32e-05] [0.000154]

Built in 1980⇥ HDD
2 0.000156** 0.000263*** 0.000261*

[7.02e-05] [8.61e-05] [0.000133]

Built in 1970⇥ HDD
2 0.000674*** 0.000737*** 0.000598***

[0.000106] [0.000109] [0.000186]

Central Air Conditioning⇥CDD 0.0160*** 0.00803**
[0.00186] [0.00318]

Central Air Conditioning⇥HDD 0.00822*** 0.000798
[0.00164] [0.00275]

Central Air Conditioning⇥ CDD
2 -0.000554*** -0.000287*

[8.98e-05] [0.000151]

Central Air Conditioning⇥ HDD
2 -0.000534*** -0.00014

[0.000110] [0.000181]
regression results continued
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continuation of regression results

VARIABLES (A1) (A2) (A3) (A4)

Square Feet⇥CDD -0.00516*** 0.00621**
[0.000482] [0.00295]

Square Feet⇥HDD -0.00239*** 0.00540**
[0.000360] [0.00257]

Square Feet⇥ CDD
2 0.000241*** -0.000235*

[2.66e-05] [0.000134]

Square Feet⇥ HDD
2 0.000243*** -4.91E-05

[2.16e-05] [0.000164]

Constant 2.704*** 2.705*** 2.710*** 2.597***
[0.00122] [0.00138] [0.00151] [0.00244]

Observations 5,625,517 5,625,517 5,625,517 1,652,525
R-squared 0.363 0.366 0.367 0.414

Number of aididlong 118,252 118,252 118,252 37,984
Includes household-level fixed effects. 5,303,019 observations over 159,819 households.
*,**,*** represent 10%, 5%, and 1% statistical significance, respectively. Robust standard
errors clustered at the Zip9-level. †The square feet variable has been demeaned (1750
square feet) and rescaled by the population standard deviation (480 square feet).
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Figure 6. Estimation results, temperature response with CDD and HDD pa-
rameterization, assessor’s data, average across all vintages
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval.
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Figure 7. Estimation results, temperature response with CDD and HDD pa-
rameterization, assessor’s data, by vintage. pre1970s reference curve.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 8. Estimation results, temperature response with CDD and HDD pa-
rameterization, assessor’s data, by vintage. 1970s relative to pre1970s curve.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors.

41



Figure 9. Estimation results, temperature response with CDD and HDD pa-
rameterization, assessor’s data, by vintage. 1980s relative to pre1970s curve.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 10. Estimation results, temperature response with CDD and HDD
parameterization, assessor’s data, by vintage. 1990s relative to pre1970s curve.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 11. Estimation results, temperature response with CDD and HDD
parameterization, assessor’s data, by vintage, with controls.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 12. Estimation results, temperature response with CDD and HDD
parameterization, assessor’s data, by vintage, with controls. Home size re-
stricted to 1300-1600sqft.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 13. Estimation results, temperature response with binning, assessor’s
data, by vintage, no controls.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 14. Estimation results, temperature response with binning, assessor’s
data, by vintage, with controls.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The next three curves are the relative
temperature responses of the other vintages. The bottom curves plot the impact of central
air conditioning and square footage.
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Figure 15. Estimation results, temperature response with CDD and HDD
parameterization, assessor’s data, by vintage, with controls. Home size re-
stricted to 1300-1600sqft.
Dependent variable is KWH_perday

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 16. Estimation results, temperature response with binning, census
data, by vintage, no controls.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The next three curves are the relative
temperature responses of the other vintages. The bottom curves plot the impact of central
air conditioning and square footage.
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Figure 17. Estimation results, temperature response with binning, census
data, by vintage, with controls for type of structure, bedrooms, and income.
Dependent variable is ln(KWH_perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The next three curves are the relative
temperature responses of the other vintages. The bottom curves plot the impact of central
air conditioning and square footage. Variation in temperature response by the three
controls (structure, bedrooms, and income) are omitted.
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Table 5. Estimation results, Differences across vintage for total usage
Dependent variable is ln(KWH_perday)

VARIABLES (T1) (T2) (T3)
Built in1990s 0.145*** -0.156*** -0.196***

[0.0124] [0.0137] [0.0149]
Built in1980s 0.0459*** -0.126*** -0.133***

[0.00959] [0.0120] [0.0130]
Built in1970s 0.177*** 0.0118 0.0445***

[0.0139] [0.0133] [0.0146]
Square Feet† 0.158*** 0.189***

[0.00341] [0.00381]
Central Air Conditioning 0.0980*** -0.00343

[0.0147] [0.0157]
Constant 2.833*** 2.928*** 2.681***

[0.00858] [0.00963] [0.0108]
random effects yes yes yes

controls for Temperature Response no no yes
Observations 5,625,517 5,625,517 5,625,517

Number of aididlong 118,252 118,252 118,252
Robust standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.1
*,**,*** represent 10%, 5%, and 1% statistical significance, respectively. Robust standard
errors clustered at the Zip9-level. Temperature response controls include square feet,
central air conditioning, and vintage dummies interacted with the quadratic degree day
parameterization. †The square feet variable has been demeaned and rescaled by the
population standard deviation.

51



Figure 18. Simulation of Riverside average temperature response in 2020,
with and without new building stock. Source: Author’s calculations.

—–

52



Table 6. Comparison of Air Conditioning Saturation by Climate Zone for
Old and New Homes. SOURCE: RASS 2004

Central Air Central or Room Air
Zone Geography 1990s pre1970s 1990s pre1970s

1 Inland 56% 23% 63% 37%
2 Inland 96% 55% 97% 78%
3 Inland 93% 61% 95% 79%
4 Coastal 69% 30% 72% 41%
5 Coastal 27% 4% 29% 8%
7 Inland 93% 59% 93% 73%
8 Coastal 77% 21% 80% 32%
9 Inland 84% 39% 85% 59%

10* Inland 94% 53% 96% 76%
11 Coastal 60% 12% 68% 25%
12 Coastal 75% 51% 82% 81%
13 Coastal 68% 22% 69% 32%

Note: Zone refers to Forecast Climate Zones as determined by the California Energy
Commission. Zone 10 includes Riverside County. A map of the zones is given below in
Figure 19.
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Figure 19. California Energy Commission Forecast Climate Zones. Source:
California Energy Commission (2007), page 24.
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Table 7. Comparison of Air Conditioning Saturation by Vintage in Forecast
Climate Zone 10. SOURCE: RASS 2004

Vintage Central Air Room Air Central or Room
pre1970s 53% 22% 76%

1970 80% 9% 88%
1980 89% 2% 91%
1990 94% 1% 96%

Note: Forecast Climate Zone 10 includes Riverside County.
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Table 8. Savings from Building Standards in 2005 and the Implied Reduction
In Temperature Response. SOURCE: California Energy Commission reports,
author’s calculations

Standard
Estimated
Savings
(GWH)

Percent of To-
tal Load

Population
Increase Since
Standard

Implied
Impact on
Temperature
Response
(Cumulative
Standards)

Building Standard1992 310.7 0.4% 15% -34 to -56%
Building Standard1984 1074.8 1.3% 29% -31 to -53%
Building Standard1979 878.7 1.1% 36% -25 to -45%
Building Standard1975 3166.9 3.8% 41% -20 to -38%

Notes: These values include only the top 5 utilities: PG&E, SDG&E, SCE, LADWP, and
SMUD. These utilities supply electricity to a wide majority of the state’s population. Total
residential load is 83600 GWH for these utilities. To interpret columns 4 and 5 in the
second to last row, 36% = (change in population from 1979 to 2005)/(population in 2005)
and -25 to -45% is the implied percent reduction from all standards prior to and including
the 1979 standards. The calculation range is given by a low and high assumption, 0.1 and
0.25, of the proportion of load that is temperature response. An adjustment factor of 50%
was also used to crudely account for the fact that growth has been faster in hotter inland
areas and that new homes are larger. These numbers should be treated as speculative
because the details of how the estimated savings were calculated are not fully known
beyond that which is described in the two CEC reports referenced in the text of my paper.
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Figure 20. Estimation results, difference in temperature response with CDD
and HDD parameterization, assessor’s data, by vintage.
Dependent variable is KWH_perday

This uses the assumption that f(size) = sqft.
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Figure 21. Estimation results, difference in temperature response with CDD
and HDD parameterization, assessor’s data, by vintage, restricted to sqft in
[1300,1600].
Dependent variable is KWH_perday

This uses the assumption that f(size) = sqft, but for a narrow range of sqft.
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