
 
       EI @ Haas WP 240R 

 
 
 

The Economics of Solar Electricity 
 

Erin Baker, Meredith Fowlie, Derek Lemoine, and Stanley S. 
Reynolds 

April 2013 
 

  
Revised version published in the  

Annual Review of Resource Economics 
5(1), 397–426, 2013.  

  
 

 
 

Energy Institute at Haas working papers are circulated for discussion and comment purposes. They 
have not been peer-reviewed or been subject to review by any editorial board. 
 
© 2013 by Erin Baker, Meredith Fowlie, Derek Lemoine, and Stanley S. Reynolds. All rights 
reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit 
permission provided that full credit is given to the source. 

 
http://ei.haas.berkeley.edu 

 



The Economics of Solar Electricity⇤

Erin Baker,† Meredith Fowlie,‡ Derek Lemoine,§ and Stanley S. Reynolds§

April 2013

Abstract

The benefits and costs of increasing solar electricity generation depend on the scale
of the increase and on the timeframe over which it occurs. Short-run analyses focus on
the cost-e↵ectiveness of incremental increases in solar capacity, holding the rest of the
power system fixed. Solar’s variability adds value if its power occurs at high-demand
times and displaces relatively carbon-intensive generation. Medium-run analyses con-
sider the implications of non-incremental changes in solar capacity. The cost of each
installation may fall through experience e↵ects, but the cost of grid integration in-
creases when solar requires ancillary services and fails to displace investment in other
types of generation. Long-run analyses consider the role of solar in reaching twenty-
first century carbon targets. Solar’s contribution depends on the representation of grid
integration costs, on the availability of other low-carbon technologies, and on the po-
tential for technological advances. By surveying analyses for di↵erent time horizons,
this paper begins to connect and integrate a fairly disjointed literature on the eco-
nomics of solar energy.
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1 Introduction

Recent trends in the economics of solar energy are striking. Global installations of solar
photovoltaic (PV) technology, which converts sunlight directly to electricity, increased from
26 Megawatts (MW) direct current in 2000 to an estimated 21,000 MW in 2011. This rapid
increase in installations has been driven by steep declines in cost and by policies favoring
renewable energy. In the United States, the capacity-weighted average installed costs of
the technology fell by an estimated 17% between 2009 and 2010 (Barbose, 2012). Policy
interventions also continue apace, with property tax assessment programs and clean energy
standards recently joining feed-in tari↵s, renewable portfolio standards, and carbon pricing.

Despite these recent increases in solar resource deployment and industry prominence,
solar energy still contributes a very small share of total electricity generation. In fact, it
provides less than half a percent of the United States’ electricity. The relatively high cost
of solar technology has been a major impediment to further market penetration. The recent
decline in installation costs notwithstanding, standard measures of the costs of solar energy
production still exceed the costs of more conventional generation by a significant margin.
However, these standard measures fail to account for important public benefits such as
reductions in greenhouse gas emissions.

Economic analyses of solar PV must take into account several features that distinguish
solar PV from more conventional thermal generation. First, the fuel (sunlight) is free. Con-
sequently, variable costs associated with solar power generation are close to zero. Second,
increasing the level of grid-connected solar capacity typically displaces fossil fuel generation
and thereby reduces operating costs, greenhouse gas (GhG) emissions, and other pollutants
as well. The marginal economic and environmental benefits associated with additional solar
thus depend on the operating characteristics and emission intensities of the units displaced on
either the operating or build margin. Third, solar electricity generation is non-dispatchable:
it cannot be turned on and o↵ when needed but works precisely when the sun is shin-
ing. Non-dispatchability engenders two issues: solar generation is variable, with predictable
changes over diurnal and seasonal cycles, and intermittent, with unpredictable changes due
to cloud cover. Given non-dispatchability, the variability can be advantageous insofar as so-
lar resources are most productive during high-demand hours when energy’s value is greatest.
On the other hand, intermittency of a solar resource can add to system costs as additional
system reserves and back-up generation may be required to maintain system reliability.

The value of a solar resource and the methods used to assess it depend on the time
horizon over which benefits are realized and measured. This paper assesses the market and
non-market value of solar power across a range of timescales.1 At one extreme, short-run
analyses analyze incremental increases in solar capacity within the existing electricity system.

1We ignore subsidies o↵ered by government agencies or electric utilities when calculating economic value,
as these represent a transfer of public funds to private entities. We also ignore any impacts on “green job”
creation. Policies promoting the manufacturing and deployment of new solar resources may generate new
employment opportunities, and employment e↵ects could be substantial in some geographic areas. However,
public and private investments in solar power are likely o↵set by reduced spending on other economic
activities, and the net impact of investments in solar on national employment is likely to be small.
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The cost of installing solar technology and the set of generators available to the grid are both
taken as given. The benefits are the operating costs and emissions avoided by displacing
conventional generation.

Medium-run analyses typically feature non-incremental increases in solar penetration
and allow for more flexibility or malleability in the larger power system. The increased
penetration of solar has two competing impacts on costs. On the one hand, the cost of
installing solar PV may fall with cumulative installations. On the other hand, the costs
associated with intermittency may increase with higher penetration, though they can be
attenuated when system operators alter system infrastructure, demand-side management
programs, and the operating capabilities of conventional generation to better accommodate
higher levels of solar penetration.

At the other extreme timescale, large-scale integrated assessment models consider the
evolution of the global energy system over the next century and its interaction with cli-
mate goals. Over this long timescale, the electric grid passes through several generations
of infrastructure. Further, solar technology itself can evolve due to purposeful research and
development e↵orts. While installation costs make it di�cult for solar to compete with more
conventional generation sources in the short run, this need not be the case in the long run. In
multidecadal integrated assessment modeling, solar’s long-term role is primarily determined
by the strength of climate policy and the ability to integrate additional solar capacity into
the grid once it has already reached high levels of penetration.

In principle, analyses conducted at di↵erent timescales should be viewed as complements.
Short-run analyses are useful for evaluating the impacts of existing subsidies and incremental
installation decisions. Medium-run analyses can inform grid planning and non-incremental
policies such as renewable portfolio standards. Long-run analyses consider the ultimate costs
of climate targets and how to lower those costs by scaling policy interventions over time. By
surveying the core analytics and estimates associated with analysis conducted over di↵erent
time horizons, we aim to connect and integrate a fairly disjointed literature on the economics
of solar power.

We begin by briefly introducing solar electricity generating technologies and the challenge
posed by intermittency. Section 3 covers the core analytics of short-run costs and benefits,
with an emphasis on incremental increases in solar power production. The medium-run per-
spective in Section 4 considers the benefits from learning-by-doing and the costs of grid inte-
gration. Section 5 examines solar’s implementation in long-run integrated assessment models,
highlighting their treatment of solar’s intermittency and their representations of technologi-
cal change. Section 6 concludes with opportunities to progress by linking timescales.

2 Solar photovoltaics: Technological alternatives and defining char-
acteristics

While most energy sources can be traced back to the energy of the sun, photovoltaics are
unique in that they directly convert the energy of the sun into electricity. The photons in
sunlight can free an electron from its bonds and cause it to conduct electricity. While other
energy sources use photosynthesis (biofuels and fossil fuels) or convective heating (wind) as
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a “middle man” between solar energy and power production, solar PV eliminates the middle
man by directly generating electricity from sunlight. The apparent e�ciency of “eliminating
the middle man” to directly generate electricity is a conceptually appealing aspect of solar
PV. In reality, however, it has proven di�cult to find cost-e↵ective ways to exploit this
potential.

In this section, we first discuss some challenges to cost-e↵ective grid integration of solar
resources. We then provide an overview of commercially viable PV technologies.

2.1 Variability and intermittency

One challenge to the widespread adoption of solar PV is the di�culty of integrating large
quantities into the electric grid. This di�culty arises because the solar resource is both
“variable”, exhibiting daily and seasonal patterns that are largely predictable, and “inter-
mittent”, exhibiting short term variation that is largely unpredictable. This variability and
intermittency of the solar resource directly translate into solar generation because PV is
“non-dispatchable”: its output is driven by solar insolation and cannot be intentionally
adjusted up or down. Diurnal and seasonal variation in solar generation require a system
operator to have energy storage resources and/or maintain other sources of generation for use
during periods when solar output is low. The intermittency of solar PV generation requires
a system operator to hold dispatchable generation in reserve to either “fill in” unanticipated
drops in solar PV output or reduce output when solar PV output is unexpectedly high.
While the key technological challenges in the cost of solar relate to materials and PV e�-
ciency, the key technological challenges in grid integration relate to improvements in storage
and grid controls.

Several studies have assessed the intermittency of solar PV generation. A common metric
is the “delta”: the change in the insolation index from one time interval to the next, measured
as a fraction of maximum sunlight. Using solar insolation data from 23 instrument sites in
Kansas and Oklahoma, Mills & Wiser (2010) observe that deltas greater than +/- 0.6 occur
for timescales ranging from one minute to one hour. The standard deviation of deltas grows
slightly as the length of the interval increases. Using actual generation data from a 5 MW
solar PV installation in Arizona, Hansen (2007) finds similarly high levels of intermittency.

Because the electric grid matches aggregate generation to aggregate load, intermittency
presents less of a problem as PV sites become more geographically dispersed. Mills & Wiser
(2010) find that the correlation between deltas for pairs of sites decreases in the distance
between sites and increases in the length of the time scale. The correlations between deltas
are nearly zero for one-minute and five-minute time scales for all site pairs. Further, the
standard deviation of deltas for insolation data aggregated from multiple sites is much less
than for a single site. Similarly, the model in Ho↵ & Perez (2010) predicts that the standard
deviation of deltas would decrease by a factor of 20 if a 5 MW installation were instead
spread among 1000 5 kW sites.

The ability to forecast generation has emerged as a significant issue for grid integration of
wind resources (e.g., GE Energy, 2008). This is also true of solar. Less work has been done
on solar forecasting than on wind forecasting, but an emerging literature should be useful for
managing system operations as solar penetration increases (e.g., Perez et al., 2010; Mathiesen
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& Kleissl, 2011; Marquez & Coimbra, 2011; Lorenz et al., 2011). For longer intervals such
as 30 minutes, changes in solar PV output from one interval to the next would have fairly
minor e↵ects on grid operations if the changes could be accurately forecast several hours
in advance: generators would simply be dispatched with output rates set to compensate
for the forecast changes in solar PV output. However, changes in solar PV output for very
short time scales, even if perfectly forecasted, would require setting some units aside so that
their output rate could be adjusted quickly up or down to compensate for rapid PV output
changes. Finally, if the standard deviation of solar PV forecast errors from one interval to
the next is large, then a system operator may need to hold large amounts of capacity in
reserve. We further discuss this challenge in Section 4.1.2.

Energy storage is often proposed as the solution to solar’s variability and intermittency.
Storage could smooth out intermittent generation and permit shifting of energy to periods
with high demand but low insolation. Research and experimentation is underway for large-
scale energy storage technologies such as fly-wheel systems, compressed air energy storage,
pumped hydro, various advanced battery technologies.2 Pumped hydro storage is the most
widely used technology, accounting for 4.3% and 2.1% of total generating capacity in the
EU and U.S., respectively (Deane et al., 2010). Most existing pumped hydro facilities were
constructed to shift low-cost, o↵-peak energy from coal or nuclear plants to peak periods.
A number of utilities in the U.S. are exploring how existing and planned pumped hydro
facilities could be used to manage renewables’ variability and intermittency.3 Yet it remains
the case that energy storage systems are currently quite costly and there is relatively little
practical experience with using large-scale storage to manage renewable sources’ variability
and intermittency.4 We therefore do not consider storage when reviewing the economics of
solar PV in the short-to-medium term (Sections 3 and 4). Instead, we examine ways in
which a system operator can address intermittency via scheduling dispatchable generators
and demand-side management. In Section 5, we discuss the role that energy storage plays in
conjunction with renewable penetration in integrated assessment models (IAMs) of long-run
economic growth and climate change.

2.2 Technology overview

Commercially viable PV technologies fall into one of three categories: thick film silicon, thin
films, and third generation technologies. The following discussion of these technologies will
emphasize cost comparisons. The cost of a PV system is made up of two parts: the module
cost and the balance of system (BOS) cost. BOS costs typically include inverters, mounting
hardware, and labor, but they may also be broadly defined to include permitting and fees,
shipping, overhead, and installer profit. For residential and commercial PV, BOS costs have

2Dunn et al. (2011) review the potential for several battery technologies to provide large-scale energy
storage for the grid.

3Deane et al. (2010) note that the majority of recent preliminary permits for new pumped hydro facilities
issued by FERC are for western U.S. states with high renewable portfolio standards.

4In addition to barriers to storage deployment such as cost and lack of system e�ciency, Sioshansi et al.
(2012) describe other barriers due to regulatory treatment of storage investments and incomplete markets
for services provided by storage systems.
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historically accounted for around 50 percent of the total installed cost. With the recent drop
in the cost of modules, BOS costs are now approaching two-thirds of system costs. When
comparing PV technologies, costs are often presented in $/Wp, or the cost per a Watt-peak
of direct current (DC) power of a module or installed system. This number accounts for
both the cost of manufacturing the module and the e�ciency of the solar cell.

2.2.1 Thick film crystalline silicon technologies

Until recently, solar PV has been dominated by the most mature module technology: thick
film silicon. These modules use mono- or poly-crystalline silicon. Crystalline silicon has a
low absorption coe�cient, which measures how well a material absorbs a given wavelength.
This type of module therefore needs to be relatively thick (at least 100 micrometers (µm))
in order to absorb a su�cient part of the solar spectrum.

Thick film PV technology is relatively inexpensive and reliable compared to other PV
technologies. In the late 1990s, module costs averaged around $4.8/Wp (Barbose et al.,
2011). In recent years, these costs have fallen precipitously: Barbose (2012) estimate that
modules cost $2.4/Wp in 2010. Much of this drop occurred between 2008–2010, and this
trend has continued through 2011.5 Recent drops in module costs have been accompanied by
decreasing BOS costs which were estimated to be $3.8/Wp in 2010. Note that these figures
are for typical residential rooftop systems. There are significant economies of scale in solar
PV installations. Barbose (2012) report that large commercial rooftop systems (greater than
one MW) cost 42% less than residential rooftop systems on average, and utility-scale systems
cost even less.

2.2.2 Thin film technologies

In principle, thin film technologies have cost advantages over thick film technologies because
thin films require less materials and can potentially be produced using innovative, relatively
low-cost techniques such as screen printing. In practice, however, there are critical technical
issues related to module e�ciency, manufacturing scale-up, yield, throughput, and reliability
(Surek, 2003). As of 2007, thin films had captured about 6.5% of the PV market. According
to news reports, their share peaked in 2009 at 18% before falling to about 10–11% by 2011.6

Until the recent run-up, one technology, amorphous-silicon (a-Si), made up 64% of the thin
film market, mostly in consumer electronic devices such as calculators (van Sarka et al., 2007).
However, its low e�ciency and light-induced degradation have prevented further penetration.
Some other thin film technologies (particularly cadmium telluride, known as CdTe, and
copper indium gallium selenide, known as CIGS) have potential for higher e�ciencies but
have problems related to scarcity and toxicity of materials. Semi-organic and purely organic
cells are also promising, but these have issues with stability in an outdoor environment and
with their realized energy conversion e�ciency (Green et al., 2001).

5Processing silicon wafers requires technology from the semiconductor industry (Halme, 2002). The
process constitutes about 50% of the total direct module manufacturing cost (Goetzberger & Hebling, 2000).
The cost of silicon wafers has been an important driver of cost reductions over the period 1975–2001 (Nemet,
2006).

6http://www.greentechmedia.com/research/report/thin-film-2012-2016
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2.2.3 Third generation technologies

In contrast to thin film technologies, so-called “third generation” technologies have very
high e�ciencies but are very expensive to manufacture. These technologies are qualitatively
di↵erent from thick and thin film technologies. For example, quantum dots consist of tiny
crystals of semiconductors just a few nanometers thick, and multijunction cells optimize
layers of materials for the full spectrum of light. Both concepts can theoretically generate
higher e�ciencies due to their ability to produce multiple excitons for each photon received.

These technologies still face technical challenges. For example, the laboratory e�ciency
of quantum dots is about 2%, whereas the theoretical maximum is 42%. Manufacturing costs
could also be a challenge as quantum dots, for example, require unusually precise placement
of the semiconductor crystals.

2.2.4 Concentrating solar power

A technology that is commonly compared to PV is Concentrating Solar Power (CSP). CSP
uses sunlight to heat up a liquid, which is then used to turn a turbine that generates elec-
tricity. The thermal mass of the working fluid reduces the intermittency of generation and
can even smooth its diurnal profile. We will generally not cover CSP in this review, but in
Section 5 we will describe how it competes with PV in long-run models.

2.2.5 Technological change

There is great potential for improvements in solar PV. The two primary avenues for reducing
cells’ cost are reducing manufacturing costs and increasing cells’ conversion e�ciency. For
organic solar cells, a third challenge is to increase their lifetime. The cost of manufacturing
the cells can be reduced through lower material costs and through improved production
techniques. E�ciency and lifetime are important not just for the cost of a given cell but also
because higher e�ciencies reduce land requirements and longer lifetimes reduce the frequency
of replacement. We discuss avenues for technological change in more detail in Sections 4.2
and 5.1.2.

3 The short run: Incremental additions to the existing grid

In this section, we consider the costs and benefits that accrue in the short run from an
incremental increase in PV capacity. The defining feature of the short run is that all costs
and benefits are evaluated conditional on the existing state of the technology and the power
system to which the solar technology is connected. In other words, the costs of solar tech-
nologies, the operating characteristics of incumbent generators, and the infrastructure of the
electric power system are taken as given.

This discussion begins by reviewing standard approaches to measuring short-run costs.
We then introduce a conceptual framework for valuing the short-run benefits of solar capacity.
To make this discussion more concrete, we use the framework to estimate the short-run net
benefits of incremental PV capacity additions at four sites across the country. This exercise
is intended to illustrate how regional and temporal variation in the solar resource interacts
with pre-existing power system operating characteristics to determine the short-run value of
incremental increases in PV penetration.
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3.1 Short-run costs

The levelized cost of electricity (LCOE) generation is a common benchmarking tool used to
compare costs across di↵erent energy technologies. Conceptually, it measures the constant
(in real terms) price per unit of electricity generated that would equate the net present value
of revenue from the plant’s output with the net present value of the cost of production:

LCOE =

P
L

t=0
Ct

(1+i)tP
L

t=1
Et

(1+i)t

. (1)

The numerator in equation (1) measures the net present value of the costs incurred to
construct and operate the generation technology. The lifespan of the technology is L. The
discount rate is i. Ct captures the installation and operating costs incurred in time period
t. These costs are dominated by the up-front module installation and BOS costs incurred
in t = 0. Ongoing operation and maintenance costs (including the costs of periodically
replacing the inverter) are also incurred over the life of the project.

As noted above, the intermittent nature of solar generation has potentially significant
implications for the economic value of a solar resource. For small changes in PV penetration,
however, the intermittency of the solar resource does not impose significant costs. Our
discussion of short-run cost considerations will therefore focus exclusively on module and
BOS costs.

Energy output in period t is Et. The quantity of electrical energy produced by a grid-
connected PV panel in a given hour depends on a host of factors including latitude, weather
and cloud cover, the time of year, the installed capacity of the system (measured in power),
and the orientation and tilt of the panels. Section 3.3 includes a detailed discussion of how
site-specific solar energy production potential can be estimated or forecast.

Table 1 summarizes module costs for commercial and near-commercial PV technologies.
We present high and low module costs for each technology, along with an estimated lifetime.
Several low values come from recent news reports. The high values come from older, peer-
reviewed papers. We include both because there is some question about whether the current
low prices reflect fundamentals or whether they reflect a glut in the market and possible
“dumping”. We provide the LCOE of the module by itself and of the module with BOS
costs. The BOS costs are derived from Goodrich et al. (2012). They are adjusted to reflect
the fact that lower e�ciencies lead to higher areas and thus higher BOS costs. The low
values for the BOS costs are based on utility-scale installations; the high values are based on
residential. We show the LCOE under two assumptions about interest rates: 3% to represent
the social costs of investment, and 15% to represent the cost to investors. For this simple
calculation we ignore O&M costs. To estimate energy output, we assume a capacity factor
of 18.3% (Nemet & Baker, 2009).7 In Section 3.3, we will use a more sophisticated approach
to estimate energy generated by a thick film silicon technology.

The LCOE estimates reported in Table 1 are often compared to those of conventional

7The “capacity factor” is the ratio of actual energy generated to the energy generated by a panel consis-
tently exposed to sunlight at standard test conditions.
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generating sources. For example, LCOE estimates for natural gas or coal-fired generation
are typically in the range of $0.07–$0.09 per kWh (EIA, 2010), while the lowest estimate in
Table 1 is only $0.10 per kWh. However, comparisons based on LCOE alone are problematic
because the economic value of a unit of energy depends on the conditions of the power market
at the time the energy is generated (Joskow, 2011). The value of energy can vary by orders
of magnitude across hours. In what follows, we demonstrate the importance of accounting
for di↵erences in value depending on when energy is generated.

3.2 Short-run benefits: Displaced generation and emissions

Short-run benefits associated with incremental increases in PV capacity manifest indirectly
as reductions in the operating costs and emissions of the marginal, dispatchable generating
units on the system.8 In order to frame our discussion of these benefits, we modify and
extend a model developed by Lamont (2008). Table 2 introduces notation and defines the
main components of the framework.

The short-run value (or benefit) per year of installed solar capacity K is defined to be
the system operating costs and emissions costs that would manifest if there were no installed
solar capacity on the system less the system operating costs and emissions cost given solar
capacity K:

V (K) =
HX

h=1

[C(yh) + ⌧EM(yh)]�
HX

h=1

[C(yh � shK) + ⌧EM(yh � shK)] . (2)

Because the variable operating costs of solar generation are very low, it is standard to assume
that a grid-connected solar generating unit will be dispatched to the full capacity available
in any given hour (shK). Subtracting this hourly solar generation from the corresponding
hourly load yields a measure of “net load”.9 Equation (2) implicitly assumes that an incre-
mental increase in solar production will decrease electricity production at dispatchable units
by an equal increment.10 We assume that the solar’s productivity sh is independent of K.
This assumption is likely to hold for small changes in K.11

Variable operating costs C(x) capture the fuel and operations costs incurred by dispatch-
able generating units. Social costs include not just the private costs in C(x) but also the
external costs of emissions. These are the product of the marginal damage ⌧ from emissions
and total emissions EM(x). In this short-run formulation, operating costs and emissions
both vary with the level of output x, but the operating characteristics of the dispatchable

8In this short-run analysis, we do not explicitly account for any reductions in the need to build additional
generation capacity in the future. By focusing on the operating margin, rather than the build margin, we
are implicitly assuming that the power system is in long-run equilibrium.

9In systems supplied by hydro and/or wind, the y variable should be re-interpreted as load minus wind
and hydro. Similarly, net load should be interpreted as load net of solar, wind, and hydro.

10This assumption simplifies the exposition, but as we discuss below, ignores di↵erences in transmission
and distribution line losses.

11Large increases in K could a↵ect sh in at least two ways. First, as solar is installed at progressively
lower quality sites, the average value of sh could fall. Second, due to weak correlation of PV output across
sites, the overall variance of sh will fall as penetration increases (Mills & Wiser, 2010).
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generators are fixed.
Di↵erentiating equation (2), we obtain an intuitive expression for the short run marginal

value of solar capacity:

V 0(K) =
HX

h=1

�
sh�h + ⌧sh�h

�
(3a)

=H
�
�̄CF + Cov(�, s)

�
(3b)

+H⌧
�
�̄CF + Cov(�, s)

�
, (3c)

where �̄ and �̄ refer to averages over all hours, and Cov(·, ·) is the population covariance.
Solar’s capacity factor CF is the average value of sh over all hours. The key thing to note
is that it is not enough to consider only the mean values: because solar energy covaries with
demand, it is crucial to consider covariance as well. Sub-equation (3b) captures the short-
run economic value of the electricity generated by an incremental unit of solar capacity. As
a point of departure, we interpret � to measure the marginal cost of electricity produced
by dispatchable generators on the system. In the power systems engineering literature,
the “system lambda” parameter is derived from an economic least-cost dispatch model and
represents the cost of the last kilowatt produced by dispatchable units over a particular hour
(excluding transmission losses).

If solar output s is uncorrelated with �, the expected value of avoided fuel costs in any
given hour is simply the average system lambda (averaged across hours) multiplied by the
solar capacity factor. However, solar power is generally available during the times of day
when the marginal cost of supplying load is high. As we will show below, this positive
correlation can significantly influence the marginal economic value of PV resources.12

Sub-equation (3c) captures the monetized value of the emissions o↵set by solar electric-
ity generation. The change in system-wide emissions that is associated with an incremental
change in net load is summarized by the marginal operating emissions rate �. The quantity
of emissions released per unit of electricity generated vary significantly across dispatch-
able units according to fuel type (e.g., nuclear versus coal-fired), plant vintage, and plant
e�ciency. In systems where base load generating units are more emission-intensive than
marginal generators in peak hours, the covariance term in (3c) will be negative.

3.3 Short-run costs And benefits of a solar resource: Application

A simple application of the valuation framework introduced above serves to illustrate how
temporal and spatial variation in solar resource potential, marginal economic costs, and
marginal emission profiles all play a role in determining the short-run benefits of incremental
increases in PV penetration. We estimate the market and non-market value of the electricity
generated by a single grid-connected 5 kW (DC) fixed PV array.13 We compare these benefits

12For example, using data on solar PV production and wholesale electricity prices in California, Borenstein
(2008) finds that the favorable timing of solar PV generation increases its economic value by 0–20 percent
relative to a valuation based on a flat, average cost of electricity generation.

13The median size of residential PV systems installed in the U.S. in 2011 is 5 kW.
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with the costs of installing and maintaining a state-of-the-art system. We consider four sites
spread across the country: Boston, Massachusetts; San Francisco, California; Trenton, New
Jersey; and Tucson, Arizona.

3.3.1 Measuring site-specific energy production potential

As a first step, we characterize the solar resource potential at our four sites. The most
straightforward approach to measuring solar power potential involves metering actual elec-
tricity production at a PV panel installed at the sites of interest (see, for example, Gowrisankaran
et al., 2013). However, these data are available for a very limited number of sites. In the
analysis summarized below, we use an alternative, simulation-based approach.

The National Renewable Energy Laboratory (NREL) has developed a simulation tool
(PVWATTS v. 2) which uses typical meteorological year weather data (TMY2), together
with a PV performance model, to simulate hour-by-hour, site-specific energy production
over a typical year for thousands of sites. We simulate the performance of a 5 kW (DC)
fixed PV array assuming that the tilt angle is set equal to the latitude of the location (this
normally maximizes annual energy production).14 We simulate production assuming both
south-facing and west-facing configurations.15

The top panel in Table 3 reports simulated AC electricity generation summed over the
course of a typical year at each site. Figure 1 plots simulated electricity generation by hour
averaged across summer hours (May-September). The solid (broken) lines correspond to the
south-facing (west-facing) arrays. Of the four sites, the installation in Tucson has the greatest
electricity generating potential over the course of the year. However, in the summer months
between the hours of 11 am and 4 pm, the San Francisco site has the highest average hourly
output (when demand and prices are high). This is likely due to the relatively moderate
summer temperatures in San Francisco.16

3.3.2 Measuring site-specific costs

The primary cost consideration in this short-run analysis is the up-front installation cost.
To estimate site-specific system costs, we use the median reported price (measured in 2011
$/W) of customer-owned systems with capacity below 10 kW installed in 2011 (Barbose,
2012). These are reported in the top row of Table 3. We assume that the inverter is
replaced every 10 years (Navigant Consulting, 2006). We assume a current inverter cost of
$3000 (Barbose, 2012). Following Borenstein (2008), we further assume these costs decline
at 2 percent annually in real terms.

We assume a project life of 30 years (Branker et al., 2011). To account for the fact that
energy output tends to decline over time as panels degrade, we assume a degradation rate

14This is a standard system design assumption. It is worth noting that increasing (decreasing) the tilt
angle favors energy production in the winter (summer). So setting the tilt angle equal to latitude will not
necessarily maximize the economic value in systems where prices are systematically higher in the summer or
winter.

15We assume a standard DC-to-AC derate factor of 0.77. Borenstein (2008) notes that production from
west-facing panels can be better synchronized with system load (potentially increasing economic value on
average).

16High temperatures decrease PV module e�ciency.
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of 0.5 percent per year (Skoczek et al., 2008). Finally, we assume a real discount rate of 3
percent. This rate is appropriate for public policy analysis, but lower than the rates that
private buyers or investors would face.

The top panel of Table 3 reports the levelized cost of electricity for each site (measured
in $/kWh). We observe substantial variation in levelized costs, both across sites and within
sites across panel orientations. Because the installed cost per watt is quite similar across
locations, the lowest LCOE estimates are associated with the highest energy production
potential.

3.3.3 Measuring the short-run economic value of solar energy production

Having constructed site-specific cost estimates, we are interested in assessing whether short-
run benefits justify these costs. An important component of these benefits is the economic
costs avoided when marginal units reduce production in hours with solar electricity genera-
tion. Our approach to measuring short-run marginal economic costs varies with the structure
of the electricity market in which the solar resource is located.

In regions of the country where the electricity sector has not been subject to wholesale
market restructuring, local control areas compute and report hourly system lambdas that
can be used to value electricity produced by a solar resource.17 These lambda parameters
are derived from the economic dispatch that minimizes the operating cost of meeting system
load. They represent the shadow value of the constraint that supply must equal demand.
Our Tucson site is the only one in a region subject to traditional regulation. We use the
system lambdas reported by Tucson Electric Power over the period 2004–2007 to value the
electricity production potential.

In restructured wholesale electricity markets, control areas do not report system lambdas.
Instead, real-time locational marginal prices (LMPs) can be used to value the electricity
generated by a renewable resource supplying a restructured electricity market. These prices
reflect the marginal cost of supplying (at least cost) the next increment of electricity to a
particular location given the supply and demand bids submitted by market participants and
the physical constraints on the system. We collect locational marginal prices over a four
year period (2004–2007) from the California, New England, and PJM electricity markets
that correspond to the San Francisco, Boston, and New Jersey sites, respectively.

In Figure 1, locational marginal prices (or system lambda in the case of Arizona) are
measured on the right vertical axis. The broken line with dots plots these marginal eco-
nomic values (averaged across hours in May-September) by hour. These figures illustrate
the positive correlation between solar power production and the marginal economic cost of
electricity production. The figure also demonstrates how orienting solar panels west versus
south reduces total electricity production but strengthens the correlation between electricity
production and the marginal economic value.

The second panel of Table 3 reports both the average marginal economic value (averaged
across all hours over the period 2004–2007) and a weighted average value (weighted by PV

17These parameters are computed by local control areas where demand following is primarily performed
by thermal dispatch and reported to the Federal Energy Regulatory Commission (FERC).
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production potential). Intuitively, accounting for the temporal coincidence between solar
resource availability and marginal economic value increases the net present value of the
electricity generated by solar PV. To highlight this point, we calculate the net present value
using both the average marginal economic value and the hour-specific values. Across all sites
and panel orientations, accounting for the temporal correlation between resource potential
and our measure of marginal economic value increases the annual value estimate.18 The
stronger the positive correlation between regional load profiles and solar resource profiles,
the larger is this percentage increase (see Table 3).

In Table 3, we observe variation in marginal economic values across sites. Interpreting
this variation is complicated by several factors.

First, the system lambda reported to FERC by local control areas and the LMP prices
determined in restructured electricity markets are not directly comparable. Whereas hourly
system lambdas capture variable electricity production costs (i.e. fuel and variable O&M),
LMP prices are comprised of an energy cost component, a transmission congestion compo-
nent, and a marginal line loss component. Thus, in some sense, the LMP is a preferable
measure of the value of solar power generation in a particular location because it captures
not only the energy component, but also the marginal value of reduced congestion and line
losses.

On the other hand, because bids to supply are a↵ected not only by fuel and operating
costs, but also the market structure and associated incentives that govern the bidding behav-
ior of the market, the energy cost component of a locational marginal price need not equal
the marginal operating costs of suppliers in the market. Di↵erences we observe in average
marginal economic value across markets are likely due in part to di↵erences in market struc-
ture. Importantly, if there are distortions or imperfections in the market that drive a wedge
between the marginal economic cost and the marginal bid, the LMP may be an imperfect
measure of the economic value of solar power generation.19

3.3.4 Measuring the short-run environmental benefits of solar energy produc-
tion

Conceptually, the quantification of marginal emission impacts is very similar to the marginal
economic impacts discussed above. In order to estimate the emissions displaced by a new
PV installation, we need to identify the emission intensity of the marginal units displaced.
However, whereas system lambda and locational marginal prices provide a readily observ-
able measure of the short-run marginal economic costs of electricity production, marginal
emissions rates pose more of a challenge.

18All of the systems we consider are summer-peaking. Hours of high demand (and high prices) are therefore
associated with above-average solar PV production. Because the PV production data are simulated and
derived separately from the LMP/system lambda data, the positive correlation between solar output and
our hourly measures of marginal economic value generally underestimate the true correlation. However,
Borenstein (2008) finds that the bias introduced by a failure to account for the unobserved correlation is
likely small.

19For example, if a price cap binds in high-demand hours, the LMP will underestimate the true value. If
the electricity market is imperfectly competitive, the LMP will overestimate the true value in hours where
prices reflect the exercise of market power.
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Methods to quantify the impact of increasing renewables penetration on emissions have
advanced in recent years (see, for example, Broekho↵, 2007; Gil & Joos, 2007). The simplest
approach assumes that the system average emissions rate (easily calculated by dividing total
system emissions by total system generation) can be used to estimate the emission intensity of
the marginal generator in all hours. However, this assumption is unlikely to hold in practice,
particularly in regions where the emission rates of base load generation di↵er markedly
from the emission profiles of marginal units. Several recent papers use plausibly exogenous
variation in wind power production, together with rich hourly data tracking system demand
and plant-level operations, to identify the e↵ect of marginal increases in wind electricity
generation on system-wide emissions (Cullen, 2012; Ka�ne et al., 2013; Novan, 2012).20

Callaway et al. (2013) take a somewhat di↵erent approach. Focusing on those regions
and markets where demand-following is primarily performed by thermal generating units,
they estimate hour-specific average e↵ects of hour-to-hour changes in thermal generation on
hour-to-hour changes in system-wide emissions (controlling for hour-of-day-by-season fixed
e↵ects). Conditional on the assumption that the marginal units in any given hour are thermal
units, and that incremental increases in intermittent renewable electricity generation will
have the same impact on system operations (and emissions) as observable fluctuations in
fossil generation, these marginal operating emissions rate (MOER) estimates can be used to
estimate the emissions displaced by an incremental increase in renewable resource capacity.

In our illustrative exercise, we focus exclusively on greenhouse gas emissions impacts.
Fossil fuel combustion also emits harmful local and regional pollutants. However, those
pollutants which cause the largest damages are subject to emission trading programs during
the time period we consider.21 If we assume that the prevailing permit prices adequately
capture marginal damages from emissions, then the social cost of the damages caused by
emissions at marginal plants should already be reflected in our measures of marginal economic
operating costs.22 In contrast, damages from greenhouse gas emissions were not internalized
over the time period we consider. We use the MOER estimates for carbon dioxide generated
by Callaway et al. to capture these emissions impacts. The solid lines with dots in Figure 1
plot these region-specific MOER point estimates (corresponding to summer hours in 2004–
2007).

The third panel of Table 3 reports the average MOER by region and a weighted average
(weighted by hourly solar electricity generation). Accounting for the temporal correlation be-
tween solar electricity generation and marginal emission displacement rates does not strongly
a↵ect estimates of total emission displacement. Because the emission intensity of marginal
producers is highest in New Jersey, our estimate of emissions displaced per unit of electricity

20Much of this analysis focuses on Texas, where relatively high levels of wind penetration generate the
variation required to clearly identify the impact of wind generation on emissions. These studies document
significant variation in emission displacement across hours of the day.

21Sulfur dioxide emissions are subject to a nationwide cap-and-trade program. Nitrogen oxide emissions
are subject to regional emissions trading programs in regions of the country where these emissions cause the
most damage.

22The increase in PV capacity we consider would have no noticeable e↵ect on equilibrium permit prices
and associated operating costs.
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generated is highest for the installation in Trenton. In fact, the New Jersey installation
displaces more emissions than does the Arizona installation, even though potential solar
electricity generation is much higher in Arizona.

3.3.5 Regional variation in the short-run net benefits of solar energy production

Ultimately, we are interested in integrating short-run cost and benefit estimates in order to
evaluate the net returns to incremental investment in PV capacity. One approach to inte-
grating emission displacement estimates into the larger valuation exercise involves assigning
a dollar value to each ton of carbon dioxide emissions avoided (i.e., the social cost of carbon).
We assume a value of $21 per ton, which is the central value from Greenstone et al. (2011).
The fourth panel of Table 3 subtracts the weighted average marginal economic value (per
kWh of electricity generated) and the monetized value of the emissions displaced (per kWh)
from the corresponding levelized cost estimate to come up with an estimate of net cost per
kWh.

An alternative approach involves calculating the installation cost (measured in $/Wp)
that equates the net present value of costs with the net present value of benefits. The bottom
row of Table 3 reports this break-even cost for a social cost of carbon of $21 per ton CO2.
Figure 2 plots break-even costs for a range of social costs of carbon, including the range of
$5–$65 per ton CO2 from Greenstone et al. (2011).

A striking result illustrated by both Table 3 and Figure 2 is that the PV installations
located in the colder locations with relatively low solar resource potential (i.e. New Jersey
and Massachussetts) are more cost-e↵ective than the installation in relatively sunny Cali-
fornia. To see this, note that the break-even cost per Wp in San Francisco is below the
break-even costs in New Jersey. The northeast’s advantage is due to emission-intensive gen-
erating units on the margin, greater marginal economic operating costs, and the stronger
correlation between solar resource profiles and marginal economic cost profiles.

Figure 2 illustrates how, at current technology costs, solar electricity generation is only
cost-e↵ective if we assume a very high social cost of carbon. At a value of $21 per tCO2,
PV installation costs would need to drop below $1.50/Wp in order to be cost e↵ective at
the sites in New Jersey. The most optimistic numbers from Table 1 imply a total installed
cost of about $3/Wp. At this cost, even our most promising installation (in Tucson) would
become cost-e↵ective only if the social cost of carbon were at least $90 per tCO2.

3.4 Summary—The short run

In sum, the economics of solar energy do not look very good in the short run. However, short-
run valuation imposes several restrictions and assumptions. By focusing on the operating
margin, we do not explicitly consider capacity value. This leads us to undervalue benefits
at some sites.23 On the other hand, this short-run analysis of an incremental increase in
PV capacity has ignored any costs associated with intermittency. Moreover, recent work
has shown how the marginal economic value of new PV generation can fall as the degree

23Our approach to valuing economic benefits should implicitly capture capacity value in restructured
energy-only markets such as Texas but not in markets where producers are compensated for capacity value
outside the hourly wholesale market.
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of penetration increases (Mills & Wiser, 2012a). Medium-run analyses, the focus of the
following section, are better equipped to consider the economics of non-incremental changes
in PV penetration.

4 The medium run: Non-incremental changes in capacity and in-
cremental changes in technology

In the medium- to longer-term, much higher levels of solar penetration may occur than seen
to date. Over these longer time horizons, the structure of the power system can adjust
to accommodate greater penetration by renewables. Moreover, increased adoption of solar
technologies can reduce costs through learning e↵ects in production or installation. We
discuss the consequences of integrating non-incremental additions of solar capacity into the
electric grid. We then discuss the impact of non-incremental changes in solar capacity on
costs by surveying the empirical literature on learning e↵ects.

4.1 Increasing costs: Grid integration

Electricity systems operate under a variety of constraints. Transmission lines have capacity
constraints that limit movement of energy across the grid. Generators have minimum and
maximum generation rates, ramping constraints that limit the rate at which output can be
changed, and start-up costs that are incurred whenever a unit is turned on. There are also
constraints on system operations imposed by reliability considerations. The system operator
must match energy demand and supply in real time, so as to maintain system frequency
within narrow tolerances. This requires holding some generation in reserve so that energy
supply can be adjusted up or down to o↵set variations in demand and supply.

The various operating constraints associated with existing transmission and generation
can add significant costs to integrating large-scale solar. For example, Denholm and Margolis
(2007) consider how large-scale deployment of PV would interact with the existing infras-
tructure in the ERCOT (Texas) system. With solar generation at 20% of load, they find
that operating constraints for baseload generation units (mainly nuclear and coal) would
cause substantial amounts of solar generation to be wasted, thereby increasing the net cost
of usable solar energy.24 However, over time, investments in generation and transmission can
be made in response to demand changes and penetration of renewables. These investments
have the potential to provide more flexibility in managing the grid for renewable generation.

4.1.1 Adjusting for solar’s variability

Several studies have examined how the amounts and types of conventional generation capac-
ity should adjust for increasing solar penetration. Capacity planning for dispatchable gen-
eration technologies is often based on a screening curve methodology (Stoft, 2002; Shaalan,
2003). The amounts of each type of capacity (e.g., base-load, mid-merit, and peaking) are
chosen to minimize total cost (including investment, operating, and maintenance costs) while
meeting system load in each hour. In this type of optimization, system loads are typically

24By contrast, Helman et al. (2011) estimate that less than 0.02% of total renewable generation would be
wasted in California under a 20% renewable portfolio standard; generation from solar PV is projected to
comprise a fairly small fraction of renewable generation in California.
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characterized by a load duration curve, representing the cumulative distribution of hourly
loads during the year.

One approach for examining how large-scale solar impacts the grid is to modify the stan-
dard screening curve methodology by treating intermittent renewable generation as “negative
load”: the generation from a given amount of intermittent capacity is subtracted from load
in each hour to obtain the residual (or net) load in each hour. The screening curve analysis
may be applied to the load duration curve for residual loads to find optimal capacities for
dispatchable technologies, given a fixed amount of intermittent capacity (Kelly & Weinberg,
1993). This modified screening curve methodology can provide insight into the impact of
large-scale solar penetration on the rest of the grid, but it is not directly informative about
the value of solar power.

Lamont (2008) extends the standard screening curve method to consider cost-minimizing
investment and production decisions for both dispatchable and intermittent renewable tech-
nologies. This allows him to characterize the marginal value of capacity for a renewable tech-
nology, given optimal capacity levels for all technologies. Lamont’s expression for marginal
value is essentially identical to sub-equation (3b) above. That is, the marginal value of
renewable capacity is the product of its capacity factor times the average marginal cost of
the dispatchable generation it displaces (average system lambda), plus a term reflecting the
covariance of lambda and renewable generation.

In spite of the similarity of Lamont’s marginal value term to (3b), there are important
di↵erences between short-term and longer-term valuation. In Lamont’s formulation, solar
(and other renewables) can penetrate at a large scale and the amounts and types of con-
ventional generation capacities change in response to market incentives. Rather than taking
the distribution of �’s (or of wholesale spot prices) as given as in a short-run analysis, La-
mont recomputes the cost-minimizing conventional generation profile conditional on levels
of renewable capacity. Based on this cost-minimizing solution, the new joint distribution of
system lambdas and solar output can be derived and the marginal value of solar computed.
Lamont’s approach computes the marginal value of renewable capacity based on long-run
equilibrium levels of alternative types of generation capacity. By contrast, the marginal value
of renewable capacity derived using the short-run model we outlined in Section 3 is based on
displaced generation for the current state of the power system. The short-run derivation of
marginal value will capture the full marginal benefits of displaced generation if the current
system is in long-run equilibrium, but not otherwise.

Lamont (2008) applies his methods to the 2001 California electric grid. As expected, the
covariance term is negative for wind energy and positive for solar PV. The positive covariance
of solar PV and � raises the marginal value of solar by 20 percent; this estimate is at the
high end of the range of short-term “timing premia” estimates for solar from Borenstein
(2008).25 As solar costs fall and solar penetration increases, the optimal mix of conventional

25Borenstein (2008) uses California wholesale prices, which were constrained by a regulated price cap, to
estimate the marginal value of solar. Lamont (2008) simulates wholesale prices in the absence of a cap, which
would lead to a higher estimate. On the other hand, Lamont’s analysis is based on solar penetration levels
of 10–20%, whereas Borenstein’s analysis considers a marginal change in solar capacity. Because higher solar
penetration would tend to reduce wholesale prices during periods of high solar insolation, Lamont’s higher
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generation shifts away from base-load investment and generation and toward intermediate
(e.g., combined cycle natural gas) investment and generation; these impacts of increasing
solar penetration are also what would be predicted by a screening curve analysis using net
load. Solar PV capacity displaces a small percentage of dispatchable capacity. Penetration
of solar PV capacity to 30 percent of peak load displaces dispatchable capacity amounting
to about 5 percent of peak load.

Over the medium- and long-run, adjustments to the grid infrastructure made in response
to large-scale renewable penetration can reduce investment and operating costs for dispatch-
able generation, thereby o↵setting some of the investment cost of renewables. We now
address the system reliability issues associated with large-scale solar penetration.

4.1.2 Intermittency and system reliability

The previous discussion accounts for how the predictable variability of the solar resource
a↵ects grid investments. However, as discussed in Section 2.1, solar’s intermittency challenges
grid reliability: unexpected short-term changes in solar generation require additional backup
capacity to avoid temporary mismatches between supply and demand. Mismatches of long
enough duration impact “resource adequacy”, or the availability of su�cient generation,
transmission, and distribution resources to consistently serve loads.26 Mismatches of very
short duration impact “system security”, which refers to the fluctuations in system frequency
due to real-time mismatches. To maintain system frequency within a narrow tolerance, the
system operator requires generators to be available on a stand-by basis so that customers can
continue to be served in the event that one or more generators fails or that load or renewable
generation deviates from forecasted levels (Stoft, 2002). Spinning reserves are available on a
very short-term basis (typically within 30 minutes or less), while non-spinning reserves allow
for a longer response time (1/2 hour to 2 hours).

PV generation is commonly adjusted for impacts on resource adequacy by estimating
its capacity credit (or capacity value). Roughly speaking, the capacity credit indicates the
amount by which load could increase after adding solar PV capacity, while keeping the level
of system reliability the same as it was before adding PV capacity or increasing load.27

Because solar generation’s intermittency can increase the risk of a system interruption and
loss of load event, the requirement to maintain system reliability is important. In order to
fix ideas, consider a specific system reliability index and two measures of capacity credit.
A commonly used reliability index is the loss of load expectation (LOLE): the expected
number of outages over some time horizon. LOLE can be expressed as the expected number
of hours of outages in a system per year. One measure of the capacity credit is e↵ective
load carrying capacity (ELCC). The ELCC of a generator is defined as the amount by which
adding a generator to the system enables load to increase while maintaining the same LOLE.
An alternative measure of the capacity credit is equivalent conventional power (ECP). The

penetration will tend to reduce his estimate of solar’s marginal value.
26See Bushnell (2005) for a discussion of resource adequacy issues.
27“Capacity credit” is distinct from “capacity factor”. The capacity credit of a PV installation may

be either higher or lower than its average output (capacity factor), depending on the distribution of PV
generation and how this matches up with system loads and the availability of dispatchable generators.
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ECP of a generator is equal to the amount of capacity from an alternative technology (e.g.,
natural gas turbine) that would be needed to replace that generator while maintaining the
same LOLE.

Estimated capacity credits for solar PV range from 10% to 95% (Ho↵ et al., 2008; Perez
et al., 2006). This wide range is due to di↵erences in physical setting (which influence the
timing and variability of solar generation and its correlation with load) and to di↵erences
in estimation methods. Madaeni et al. (2012) review capacity credit estimation methods
and apply them to 14 solar PV locations in the western U.S. Their analysis uses predicted
solar PV generation from NREL’s Solar Advisor Model and data on loads and conventional
generators from the entire Western Electricity Coordinating Council interconnection. Their
ECP estimates for solar PV range from 56–75% across the sites, and their ELCC estimates
range from 52–70%. Their assumptions of a very broad geographic area for loads and gener-
ators and no transmission constraints yield a very flexible electric system; these assumptions
likely contribute to estimated capacity credits for PV that are much higher than PV capacity
factors. Also, the Madaeni et al. (2012) capacity credit estimates are for a marginal increase
in PV capacity. Estimated PV capacity credits are decreasing in the projected level of PV
penetration (Mills & Wiser, 2012b). Studies that are based on higher PV penetration, a
smaller geographic area, and more detailed models of conventional generation tend to yield
lower capacity credit estimates. For example, the capacity credit implied by Lamont (2008)
for large-scale PV in California is 17%. Capacity credit estimates implied by computations
in Gowrisankaran et al. (2013) (see below) for large-scale PV in Arizona range from 17–35%.

Capacity credits reflect resource adequacy, but solar PV intermittency also influences sys-
tem security. Greater solar PV penetration increases the variability of supply and therefore
requires more ancillary services to maintain reliability. A greater need for ancillary services
can raise costs both through requiring more generation capacity to provide these services
and through the direct costs of maintaining reserves. These direct costs include the fuel
costs for spinning reserves, the increase in energy costs from running some units out of merit
order, and the additional maintenance costs imposed by more frequent starts and stops.

Mills & Wiser (2010) use their solar insolation data (described in Section 2.1) to estimate
the cost of the reserves required to maintain system security. They calculate the standard
deviation of solar generation deltas for 3 time scales: 1-minute, 10-minute, and 1-hour. They
assign su�cient operating reserves so that the likelihood of reserves being insu�cient is less
than 0.3% for each time scale, and they estimate a cost of reserves that has both a fixed
and variable component. For 10% PV penetration at a utility in the midwestern U.S., their
estimated additional cost of reserves ranges from $0.039/kWh of solar generation (if the PV
installation is at a single site) to $0.0027/kWh (if the PV installation is dispersed across 25
sites).

A complete analysis should include both resource adequacy and system security costs of
solar’s intermittency. Further, adjusting the grid for resource adequacy also a↵ects sys-
tem security, and adjusting the grid for system security also a↵ects resource adequacy.
Gowrisankaran et al. (2013) combine both reliability measures in an empirical approach
to estimating the equilibrium value of renewable energy. Their approach is based on a
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welfare-maximizing system operator who chooses generation capacity investments, gener-
ator dispatch, operating reserves, and demand curtailment. This approach addresses the
system security aspect of reliability by explicitly considering how solar’s intermittency in-
fluences costs via its e↵ect on operating reserve decisions, and it also addresses the resource
adequacy aspect of reliability by examining optimal investment in conventional generation.
Instead of using a fixed, exogenous level of reliability as a constraint, Gowrisankaran et al.
allow the level of system reliability to emerge endogenously via welfare optimization. This ap-
proach also overlaps Lamont’s analysis, in that conventional generation capacity and output
decisions are made within an optimizing framework. Gowrisankaran et al. extend Lamont’s
approach to consider a forecasting model of demand and solar output, operating reserve
decisions, and demand-side management via curtailment decisions.

Using this empirical approach, Gowrisankaran et al. (2013) analyze the impact of a state-
mandated renewable portfolio standard (RPS) on the Tucson Electric Power utility service
area in southeastern Arizona. They assume that the RPS will be met entirely via solar
PV investments and that solar PV capacity costs are $4.14/W peak (DC).28 As a reference
point, they observe that levelized cost for PV is $0.117/kWh higher than for a combined
cycle natural gas generator. Their estimated welfare cost for PV is slightly higher than the
levelized cost gap: from $0.004/kWh to $0.012/kWh higher as the RPS ranges from 10%
to 25%. The cost increases associated with system security are minor: unforecastable solar
intermittency is estimated to add only $0.004/kWh.29 The bulk of the estimated welfare
costs are associated with the high installed cost of PV and the relatively small amount of
conventional generation capacity that is displaced (i.e., low implied capacity credit). An
important finding is that their estimated welfare costs are based on re-optimizing decisions
regarding generation investment, operating reserves, and demand curtailment by the system
operator in response to changes in solar PV penetration. Gowrisankaran et al. estimate that
welfare costs would be around 6 times higher if, instead, the system operator followed rule-
of-thumb policies. These welfare costs do not account for reduced CO2 emissions. If CO2

reductions are valued at $21 per ton (Greenstone et al., 2011), then solar contributes another
$0.014/kWh to welfare. The net welfare cost for PV then ranges from slightly smaller than
the levelized cost gap (for a low RPS requirements) to around the size of the gap (for larger
RPS requirements). A 20 percent RPS would be welfare-neutral with a solar capacity cost
of $1.63/W.

Tucson, Arizona is one of the locations used in the short-run analysis of Section 3. By
re-calculating the results for Tucson in Table 3 so that the assumptions match those used
in Gowrisankaran et al. (2013), we can compare the results based on a short-run analysis
to those based on a medium-run analysis. The levelized cost for south-facing solar PV in

28This is a weighted average of utility-scale and residential cost of installed PV, based on data in Barbose
(2012).

29The estimated costs associated with grid integration of solar are embedded in their overall welfare cost
estimates, so it is di�cult to break grid integration costs out separately. Based on the reported welfare
results we can infer that grid integration costs rise by $0.011/kWh as the RPS goes from 10% to 25%. The
$0.011/kWh figure does not include integration costs associated with going from very low solar penetration
to 10% penetration.
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Tucson is $0.193/kWh, roughly equal to the corresponding figure in Table 3.30 The short run
approach estimates a net welfare cost of $0.119/kWh, while Gowrisankaran et al. estimate
that a 15% RPS met entirely with solar PV has a net welfare cost of $0.108/kWh. The
medium-run analysis estimates that welfare costs are about one cent per kWh lower than
the short-run estimate. This is a surprising comparison, since the medium-run analysis
includes grid integration costs associated with system security and resource adequacy that
are not part of the short-run estimate. The di↵erence between short-run and medium-run
welfare cost estimates is likely due to di↵erences in approach and data. The short-run
analysis uses system lambda data from FERC to estimate the value of displacing generation.
In contrast, the medium-run analysis uses a model based on generator characteristics, fuel
costs, and optimal dispatch to estimate the value of displaced generation. The medium-
run analysis also explicitly takes into account savings associated with reduced investment
in fossil fuel units.31 Estimates based on system lambda may miss some of the energy cost
savings and some of the capacity investment savings. Also, the implied estimate of marginal
emissions displacement from Gowrisankaran et al. is slightly higher than the estimate from
the short-run approach.

Finally, Lew & Piwko (2010) examine the impact of renewable energy targets on the
portion of the western U.S. grid served by the WestConnect group of transmission providers.
Their analysis uses components similar to those of the Helman et al. (2011) study, includ-
ing a production module based on GE MAPS electricity system simulation software. They
conclude that it would be feasible to meet a 30% wind target and a 5% solar target, pro-
vided several changes are made to current practices and resources. Their recommended
changes include modifying current practices so that there is more coordination of gener-
ation scheduling across balancing areas, greater utilization of existing transmission links,
greater operating reserves (in particular, wind plants should provide some “down reserves”),
greater use of state-of-the-art wind and solar forecasts for dispatch decisions, and expansion
of demand-side management practices. In addition, dispatchable generation should be made
more flexible as new units replace old generation capacity. These qualitative findings of
Lew & Piwko (2010) are in the spirit of the quantitative results from Gowrisankaran et al.
(2013), who estimate dramatically higher costs associated with solar PV penetration when
the system operator fails to adjust operating policies.

4.2 Decreasing costs: Experience e↵ects

Most installation cost estimates in Table 1 are for current costs. Yet, we expect the cost
and performance parameters of solar technologies to change through time, both through
advances discovered and perfected through R&D expenditures and through production or
experience e↵ects such as learning by doing (LBD) and economies of scale. Technological

30The e↵ects of assuming lower installed cost per watt peak capacity coupled with slightly greater PV
output roughly o↵set the e↵ects of assuming a higher discount rate and shorter panel life.

31Gowrisankaran et al. (2013) assume no imports or exports, so all generation is done by the utility. This
biases the estimated value of energy savings upward relative to the short-run approach. Also, while the
medium-run analysis takes into account additional reliability costs associated with system security, these
costs were estimated to be quite low.
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change resulting from production e↵ects tends to be incremental. R&D, on the other hand,
can lead to non-incremental improvements in technology (see Section 5.1.2). The two avenues
of technical change are not independent and often interact. Policy can potentially play a
large role in each of these e↵ects, and understanding the potential evolution of solar costs
and the degree of knowledge spillovers can in turn impact optimal policy.

A traditional distinction is between “technology push” policies, such as R&D investment
(Ho↵ert et al., 2002; Nemet & Kammen, 2007; Prins & Rayner, 2007), and “demand pull”
policies, such as a carbon price or an adoption subsidy (O’Neill et al., 2003; Pacala & Socolow,
2004; Yang & Oppenheimer, 2007). The first set of policies aims for the development of new
technologies and non-incremental improvements in current technologies; the second set of
policies aims to induce production e↵ects by increasing demand. While the literature has
argued about the relative benefits of the two directions, the consensus is that both have
an important role to play and should exist simultaneously (Mowery & Rosenberg, 1979;
Grübler et al., 1999; Norberg-Bohm, 1999; Requate, 2005; Horbach, 2007). More specifically,
technology-push policies tend to dominate the early stages of the innovation process while
demand-pull policies become more important in the later stages (Freeman & Perez, 1988;
Dosi, 1988). Finally, Taylor (2008) has argued for a third category of technology policy, which
she terms “interface improvement . . . government actions which share a focus on improving
the boundary-space between innovators and technology consumers.” This has proven to be
particularly important in the case of solar, where the system installers play an important
role in the cost of PV and also as a conduit for knowledge to flow backward to the technology
producers and developers.

4.2.1 Learning by doing

Increased production has been noted to decrease production costs. Experience e↵ects have
been noted empirically in services since Bryan & Harter (1899) and in manufacturing since
Wright (1936). First, it was qualitatively observed that workers became more e�cient as they
produced more units. Second, it was observed that unit costs decrease with accumulated
production experience. Arrow (1962) went on to formalize the concept of LBD in his seminal
paper, focusing mainly on labor costs.

Experience curves are a common way to capture LBD. In particular, LBD has most
commonly been represented as a power function due to simplicity and a generally good fit
to observations. Measures of fit for energy technologies are often well above 0.90 (McDonald
& Schrattenholzer, 2001). Let ct be the time t cost measure of interest (say cost per watt
peak or the LCOE). Then the power function for LBD is:

ct = ct�1

✓
Xt

Xt�1

◆�b

, (4)

where Xt is the experience at time t. Experience is measured as cumulative capacity in the
appropriate metric: total watts of solar cells produced if measuring cost per watt peak, or
total energy produced by solar if measuring LCOE. The exponent b measures the strength
of the learning e↵ect. Estimates of the learning e↵ect are often presented as the “learning
rate”: the rate at which unit costs decrease for each doubling of the cumulative capacity.
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The learning rate is given by 1 � 2�b. This value has been estimated for solar PV in a
number of studies, with most estimates lying between 0.17 and 0.22 (Harmon, 2000; Jamasb
& Kohler, 2007; McDonald & Schrattenholzer, 2001; Miketa & Schrattenholzer, 2004; Neij,
1997; Williams & Terzian, 1993; OECD/IEA, 2000; van der Zwaan & Rabl, 2004; Nagy
et al., 2012). However, a few studies estimate higher learning rates of 0.28–0.35 (McDonald
& Schrattenholzer, 2001; Nagy et al., 2012; Jamasb & Kohler, 2007). An important, but oft-
overlooked, question is the degree to which learning e↵ects are appropriable to the firm or not.
Policy intervention is generally only warranted if the learning e↵ects are non-appropriable.

While most estimated learning rates have focused on the PV cells themselves and have
used global cumulative capacity, a few papers have considered learning-by-doing in balance of
systems. Schae↵er et al. (2004) found learning rates for BOS in Germany and the Netherlands
of 0.22 and 0.20, respectively. Bollinger & Gillingham (2012) study the California market
and find that there is highly non-appropriable contractor LBD at the regional level. This
is relevant, since van Benthem et al. (2008) found that solar subsidies are warranted if, and
only if, there is LBD in BOS.

4.2.2 Criticisms and alternatives

Several studies have criticized the attribution of cost reductions to LBD (e.g., Dutton &
Thomas, 1984). Argote & Epple (1990) proposed four alternative hypotheses for the observed
technical improvements: economies of scale, knowledge spillovers, organizational forgetting,
and employee turnover. Knowledge spillovers are especially important in firm-level analyses
of technical change. The latter two categories are typically addressed by depreciating the
value of experience over time (Thompson, 2007).

Nemet (2006) uses a decomposition model to gauge the e↵ect of di↵erent factors on
aspects of solar cells. He finds that three key factors explained much of the reduction in
cost: solar manufacturing plant size, module e�ciency, and the cost of silicon. (BOS is not
included in this study.) From 1980–2001, plant size accounted for 43% of the cost reduction.
The increase in manufacturing plant size produced economies of scale. This is di↵erent from
LBD and traditional experience curves, since the scale of the plants depends on current and
forecasted demand rather than cumulative demand. The cost of silicon is exogenous to the
PV market: it was driven primarily by events in the semiconductor market. While module
e�ciency may have been increasing due to learning e↵ects, it also appears to have a strong
relationship to research and development: Nemet found that of 16 key advances, 6 were made
by firms and 10 by universities or other research organizations. Other factors that lowered
cost were due to the main application for PV changing from space to the terrestrial market
in the late 1970s. The terrestrial market allowed for lower quality, greater competition,
standardization, and lower manufacturers’ margins due to greater price elasticity of demand.

4.3 Summary—The medium run

In the medium run there are costs associated with maintaining system reliability as solar
penetration rises. There are additional system security costs associated with solar intermit-
tency and capital costs for backup generation to address solar variability. The magnitude of
system integration costs depends on a multitude of factors: the degree of solar penetration,
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energy and capital costs for dispatchable generators, correlation of solar output and load,
weather, and more. Results reviewed in Section 4.1.2 suggest that grid integration costs
would be in the range of $0.005/kWh to $0.02/kWh of solar generation for penetration in
the 10-20% range (assuming multiple, dispersed solar sites). Integration costs would raise
the installed cost of solar by $0.15 to $0.60 per Wp. These estimates assume an optimized
electricity system; integration costs could be much higher under ine�cient grid management
and incentives.

On the other hand, experience e↵ects are likely to lower costs in the medium run. Policy
intervention might be justified, at least for BOS costs; however, more research would be
valuable. It is worth noting that at a 20% penetration rate (as in many of the integration
studies above), the estimated learning rates imply that the cost of PV would fall considerably.
For example, if we assume a 1000-fold increase in installed capacity (from about 0.02% of the
market to 20% of the market) and use the central learning rate of 0.2, then the total installed
costs for thick film silicon from Table 1 would fall from a range of $3/Wp–$5/Wp to a range
of $0.33/Wp–$0.55/Wp. This would be a radical change. Even with a more conservative
long-run learning rate of 0.1, the costs would drop to $1/Wp–$1.75/Wp. These reductions
in the installed cost of solar would greatly outweigh the increased costs due to integration
in an optimized electricity system.

These medium-run analyses consider the implications of near-term policies to promote
solar PV, but policies will increasingly be driven by long-run carbon goals. The next section
examines solar’s role in achieving these goals.

5 The long run: Twenty-first century climate targets

The need to reduce greenhouse gas emissions increasingly shapes the energy sector. De-
veloped countries have announced goals of reducing emissions by as much as 80% by 2050,
which would require the energy sector to decarbonize almost completely. Integrated assess-
ment models (IAMs) analyze this energy transformation by coupling energy, macroeconomic,
and emission modules. While previous sections have discussed many complexities pertinent
to assessing the cost-e↵ectiveness of solar technologies over the next decade or two, IAMs’
long time horizons and comprehensive coverage limit them to more simplified representations.
We here discuss how they model the evolution of capital costs, the costs imposed by inter-
mittency, and the interaction between solar and other forms of land use. We also describe
general conclusions about solar’s role in achieving long-run climate targets. To our knowl-
edge, this is the first survey of a specific technology’s implementation in energy-economy
IAMs.32

Energy-economy IAMs are broadly classified along two dimensions. First, “top-down
models” consist of an aggregated macroeconomic growth model adjusted for energy and
pollution stocks, “bottom-up models” select investments from a suite of detailed technologies
to meet current and future demand, and “hybrid models” link a bottom-up energy sector

32Several models lack complete public descriptions. Others have evolved beyond their last public de-
scriptions. We have pieced this survey together from peer-reviewed publications, reports, web sites, and
communication with modeling teams. All communication happened by email between June and November
of 2012. We refer to models by their standard acronyms.
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module to a top-down macroeconomic module (e.g., Hourcade et al., 2006).33 Top-down
models include macroeconomic feedbacks from changing energy prices, but they use highly
stylized representations of the energy sector and are not suited for analyzing the evolution
of particular technologies. Bottom-up models capture substitution between technologies
over time, but they ignore macroeconomic feedbacks and their substitution possibilities are
restricted to the set of modeled technologies. Hybrid models have emerged over the last
decade as an attempt to combine the best of both worlds. In reviewing solar electricity
implementations, we necessarily focus on bottom-up and hybrid models.

The second dimension for classifying IAMs describes whether they optimize or evaluate
policy (e.g., Kolstad, 1998). “Cost-benefit analyses” determine an optimal policy path by
trading o↵ the costs and benefits of greenhouse gas emissions over time. Their climate
modules convert emission paths into warming paths, and their damage functions translate
warming into welfare changes, typically via reductions in economic output. A forward-
looking policymaker allocates each period’s output to reducing emissions insofar as the future
climatic benefits justify the current mitigation costs. The cost of the last unit of optimal
abatement indicates that period’s social cost of carbon. Historically, policy-optimizing IAMs
have tended to be top-down models, but an increasing number of models include both cost-
benefit capacity and explicit representations of multiple energy technologies. In contrast,
“cost-e↵ectiveness analyses” find the least-cost investment and deployment path that satisfies
exogenously specified emission constraints, warming constraints, or carbon price paths. In
order to conduct policy evaluations, IAMs do not require a damage function to translate
warming into welfare because they do not need to calculate the benefits of climate policy.
The value of displaced emissions derives from the shadow value of emissions under the given
constraints. Policy evaluation models analyze how the cost of a policy target changes with the
level of the target, with coordination among nations, and with the set of energy technologies.

The evolution of a technology-rich IAM’s energy sector depends on the evolution of de-
mand and on the relative cost of each supply technology. We begin by describing IAMs’
representations of installation costs, including how recent implementations of learning endo-
genize cost declines and how R&D could further lower costs. We then survey two constraints
on solar’s long-term evolution: the cost of grid integration and the availability of land for
solar installations. We conclude by surveying results about the growth of solar electricity
and the role of R&D policies.

5.1 Technology Costs

Models measure the installation costs of solar sources in two ways: dollars per unit of rated
or peak power, and dollars per unit of energy generated.34 We begin with the power measure
as it directly reflects the cost of manufacturing and installing solar equipment. Figure 3 plots
installation cost in several models. For reference, we include the cost of concentrating solar
power (CSP) as it often competes with PV in these models. The change in installation cost
over time reflects exogenous technological change in some cases (AIM, DNE21, GCAM, and

33Macroeconometric models estimate systems of equations from time-series data. In this scheme, they fit
somewhere between a top-down model and a hybrid model.

34Several models also include small ongoing operations and maintenance costs.
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MESSAGE) and reflects learning-by-doing along a representative installation path in others
(ReMIND and IMAGE).

Across these models, the cost of PV in 2005 ranges from $3.50/W to almost $6/W. For
comparison, the range of installation costs for thick film silicon for 2010–2012 from Table 1 is
$3/W to $5/W. CSP is relatively cheap in some models (GCAM and MESSAGE) but much
more expensive than PV in others (ReMIND and WITCH). PV’s range of costs narrows
over time because costs decrease strongly in all models. In fact, PV usually costs less than
$2/W in 2050. The results with endogenous costs (ReMIND and IMAGE) demonstrate the
importance of technological change: solar becomes much cheaper in scenarios with stringent
greenhouse gas targets because it gets used more. In fact, were we to plot the cost evolution
under IMAGE’s business-as-usual path, we would see almost no cost decline because solar is
barely used (personal communication). Finally, adding storage imposes large additional costs
in GCAM. The high cost of storage ensures that grid integration is an important constraint
on the growth of solar electricity, as we will see below.

The second measure of solar’s cost, and the one that lends itself to direct comparison
with other technologies, is the cost per unit of energy generated. This cost depends on the
insolation over the plant’s lifetime at the location in which the plant is installed.35 In terms
of Table 2, the productivity factor s varies by location. A given PV panel will produce
more energy in Arizona or the Sahara than in San Francisco or Germany. Its LCOE will
therefore be lower in the sunnier locations. While some models (e.g., EPPA, MERGE-ETL,
and GRAPE) directly specify solar’s cost in terms of LCOE, most models specify the cost per
unit power and then convert it to LCOE using other parameters or inputs to the model. In
particular, many use GIS data to estimate average insolation over predefined regions or grid
cells.36 Another approach, taken by E3MG, directly assumes the capacity factor (Anderson
& Winne, 2004). In WITCH, capacity factors di↵er by region (Bosetti et al., 2007) and
exogenously increase over time (Bosetti et al., 2009).

Finally, some models further distinguish “resource costs” or “resource grades” for solar.
The resource cost is like a supply curve for the land needed for solar installations. In
particular, GCAM uses a GIS-based analysis to estimate the maximum resource for each
type of solar in each region and, for rooftop PV, to estimate a resource supply curve (Pacific
Northwest National Laboratory, 2012). Models that use resource grades convert variations in
insolation and transmission access into a discretized supply curve for that region’s insolation
(i.e., a discretized plot of the capacity factor against the total solar resource). Examples
include AIM (Masui et al., 2010), IMAGE (de Vries et al., 2007), and MESSAGE (personal
communication).

5.1.1 Learning-by-doing in IAMs

The strong cost decreases in Figure 3 are often exogenous. Aside from developing hybrid
IAMs, the major structural advance of the last decade has been endogenizing installation

35These IAMs typically use a plant lifetime of 30–40 years.
36These models include AIM (Masui et al., 2010), GCAM (Pacific Northwest National Laboratory, 2012),

GRAPE (personal communication), IMAGE (de Vries et al., 2007), MESSAGE (personal communication,
based on Hoogwijk (2004)), and ReMIND (Pietzcker et al., 2009).
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costs.37 The most common method captures learning-by-doing via the traditional experience
curve formulation described in Section 4.2. The key parameter is the learning rate. The
standard formulation assumes complete spillovers between regions, so that each region’s
costs fall with global installation capacity. Some models extend the basic experience curve
to include a “floor cost”. This is implemented either as a lower bound on costs or by applying
the learning model to the gap between current cost and the floor cost rather than to the
entire current cost.

Learning-by-doing is thought to be most important for immature technologies like solar.38

Figure 4 plots the floor cost against the learning rate. When there are no floor costs, learning
rates cluster around 10% (MERGE-ETL and MESSAGE). These rates are lower than the
estimated range of 17%–22% reported in Section 4.2. When models use higher learning rates,
they typically have higher floor costs (E3MG, IMACLIM, ReMIND, and WITCH) or have
the learning rate decline exogenously over time towards that same 10% level (IMAGE). All
else equal, solar is more attractive in models with higher learning rates and less attractive
in models with higher floor costs. It is not clear how these two e↵ects net out in the models
with higher learning rates and higher floor costs.

Estimating learning-by-doing is challenging because we seek a causal relation, whereas
statistical correlations between cost and installed capacity pick up other factors such as
exogenous cost declines. Moreover, even if historical learning curves can be confidently
identified and estimated, there is no underlying theory that implies they should hold in the
future. Nordhaus (2009) emphasizes that learning representations can skew model outcomes:
estimated learning rates are probably biased upwards, and a higher learning rate tilts a model
towards that technology. This tilt happens because, in a forward-looking model, a higher
learning rate produces a shadow benefit to installation by lowering future costs. Magné
et al. (2010) find that greater learning rates accelerate deployment in MERGE-ETL but do
not strongly a↵ect long-run deployment, which is determined first and foremost by climate
goals. However, the model comparisons in Krey & Clarke (2011) suggest that learning rates
do strongly a↵ect the long-run mix of technologies used to achieve climate goals. Regardless
of whether the mix of technologies is sensitive to the learning rate, Tavoni et al. (2012)
show that total mitigation cost is sensitive to learning. In a policy-optimizing model, lower
mitigation costs imply lower optimal emissions, and scenarios with lower emissions favor
increased solar deployment. Therefore, in a policy-optimizing (or “cost-benefit”) setting,
greater learning rates for solar technologies would increase solar installation not only by
raising the shadow benefit of that technology but also by lowering optimal emissions.

5.1.2 R&D in IAMs

Learning-by-doing reflects incremental changes in the cost of solar technology, but R&D is
also an important driver of technical change over multidecadal timescales. A few models

37Endogenizing some aspects of technological change need not eliminate a role for exogenous technological
change, which can still capture spillovers from other technologies or basic science research (Clarke et al.,
2006).

38For this reason, models typically assume that solar has more scope than wind for technological improve-
ment.
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endogenize technical change by allowing direct investments in R&D: MERGE-ETL allows
investment into, among others, solar R&D (Magné et al., 2010), and WITCH has included
R&D investments for energy e�ciency and innovative low-carbon technologies (Bosetti et al.,
2006, 2009). We here describe recent estimates of the e↵ectiveness of future R&D. Section 5.4
surveys model implementations of these estimates.

Each of the PV technologies described in Section 2 could be advanced by targeted R&D
funding from private firms or from the government. Data on privately funded R&D is
notoriously hard to obtain. The level of governmental R&D funding is clearer. In 2010
the U.S. Department of Energy spent about $175 million on solar PV, system integration,
and market development, while the U.S. Department of Defense spent $787 million on solar
(although much of this was probably deployment rather than R&D specifically) (Anadon
et al., 2011). Recently the European Union has also been spending about $163 million per
year (Bosetti et al., 2012).

These sums show that governments are spending a significant amount on R&D. There has
been recent interest in applying science to science policy. In order to do this, analysts must
estimate the returns to R&D investments. This is di�cult, since the outcomes of research
are inherently uncertain and di�cult to predict given only historical data: one breakthrough
does not predict another, nor does a lack of breakthroughs predict future failure.39

Given this empirical challenge and the ongoing need to make funding decisions, the Na-
tional Research Council (2007) recommends that the U.S. Department of Energy use prob-
abilistic assessment based on expert elicitations of R&D programs. Expert elicitation is a
formal, structured method for assessing expert judgment (Morgan & Henrion, 1990). For so-
lar technologies, one particular goal is to obtain probability distributions for the e↵ectiveness
of R&D spending at reducing the cost of solar energy.

There have been a number of recent expert elicitations targeted towards solar. Table 4
summarizes the information about the di↵erent studies. Here we present the major findings.
Baker et al. (2009) found that a search for new inorganic semiconductors appears promis-
ing: a low R&D investment ($15m/year) was estimated to achieve success by 2050 with a
probability of about 40%, where success was defined as achieving a cost of $50/m2 with
15% conversion e�ciency and a 20-year lifetime. This success translates into a power cost of
about $0.38/W or a levelized cost of electricity of about $0.02/kWh, not including balance of
system costs. Anadon et al. (2011) asked each expert to provide a recommended amount of
R&D funding and had each expert assess the technology they thought most promising. On
average, they recommended funding of $410 million per year, or about 4 times the current
amount. The median estimates of the cost of utility-scale PV in 2030 ranged from $0.35/W
to $1.25/W under business-as-usual funding and from $0.30/W to $0.85/W under the rec-
ommended funding. Bosetti et al. (2012) focused on European funding and assessed mostly
European experts. They found that the median estimates for the levelized cost of electricity
in 2030 ranged between $0.075 and $0.145 per kWh for the business-as-usual funding trajec-
tory of $163 million per year and between $0.07 and $0.11 per kWh when the funding was

39One of the main attempts to estimate the e↵ectiveness of solar R&D was Nemet’s work described in
Section 4.2.
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increased by 50% to $245 million per year. Curtright et al. (2008) assessed 26 di↵erent tech-
nologies and found that only about half of the 18 experts felt that there was a “better than
even chance of any PV technology achieving US$0.30/Wp” in either 2030 or 2050, though a
few experts were more optimistic about 2050 than 2030. The results from the EERE study
have not been made public.

There are two avenues for future research in this direction. One involves updating the
studies to take account of the recent drops in the cost of solar. Note that given a current
cost of $0.7/Wp and a learning rate of 20%, a mere 10-fold increase in the demand for
solar would reduce costs to $0.34/Wp. Thus, the numbers from the elicitations appear fairly
conservative in comparison with today’s prices and potential industry growth. The second
avenue for future research is to harmonize these studies by carefully reviewing assumptions
so that their numbers are directly comparable.

5.2 Approximating the costs of grid integration

As discussed in Section 4, solar’s intermittency can impose additional costs on grid manage-
ment. These costs become increasingly important as solar reaches high penetration rates.
Many IAMs have solar generating a large fraction of electricity in carbon-constrained fu-
tures. These high-penetration scenarios make it imperative that IAMs represent the extra
costs imposed by intermittency. The challenge is that they must do so without the grid
models necessary to calculate the capacity credits and reliability measures described in Sec-
tion 4.1.

Many IAMs account for intermittency by exogenously adjusting solar’s cost to include
ancillary costs. These ancillary costs increase with the fraction of solar in a region’s grid. A
forward-looking policymaker accounts for these future costs when making installation deci-
sions. For instance, GCAM makes the required backup capacity a logistic function of total
solar capacity, with each new unit of solar requiring 1 full unit of backup capacity once
solar reaches 20% of grid capacity (Pacific Northwest National Laboratory, 2012).40 This is
equivalent to assigning solar a capacity credit of zero once it reaches high penetration levels.
IMAGE requires both backup capacity and spinning reserves (van Vuuren et al., 2006): inter-
mittent sources receive reduced capacity credits once they provide greater than 5% of total
grid capacity, and spinning reserve requirements are 15% of the total intermittent capacity
(as compared to 3.5% of capacity for standard plant). A couple of models exogenously limit
the share of solar: GRAPE limits it to 20% (personal communication) and DNE21 limits it
to 15%, though PV with storage is allowed to reach 20% (personal communication). AIM
(personal communication) and E3MG (Anderson & Winne, 2004) both require that solar
installations pay an additional cost for storage once capacity exceeds 20% of the market.

As an extension of these approaches, ReMIND imposes additional costs depending on
the timescales over which a solar technology creates intermittency (Pietzcker et al., 2009).
Each type of intermittency requires its own storage technology, where the need for storage
increases with penetration. Intermittency on a daily scale requires redox-flow batteries;

40GCAM also provides the option of building more capital-intensive plant that has integrated energy
storage. These units with storage cost more up front but do not pay the intermittency penalty that otherwise
restrains solar at high levels of penetration.
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intermittency on a weekly scale requires hydrogen electrolysis or backup combined-cycle gas
turbine capacity; and intermittency on a seasonal scale requires su�cient grid capacity to
always meet demand. The storage cost per unit of PV electricity increases linearly with PV
penetration, which makes total PV storage cost increase with the square of PV penetration.
Importantly, CSP does not need to o↵set daily intermittency with batteries because its
built-in thermal storage already smooths generation over the daily cycle.41

An alternate approach to capturing intermittency is to combine generation types in a pro-
duction function for electricity. The macroeconometric model E3MG (Anderson & Winne,
2004) and computable general equilibrium model EPPA (Paltsev et al., 2009) make PV an
imperfect substitute for fossil-fueled and nuclear electricity in a nested constant elasticity
of substitution structure. This imperfect substitutability means that combining one unit of
solar electricity with one unit of gas-fired electricity is less useful than combining one unit of
coal-fired electricity with one unit of gas-fired electricity. Because additional solar capacity
displaces fewer units of fossil or nuclear electricity as its share of generation increases, the
e↵ective capacity credit decreases with increasing penetration.42

Finally, the MESSAGE team and NREL have moved towards connecting a grid model to
a tractable IAM to capture the resource adequacy and system security concerns described
in Section 4.1.2 (Sullivan et al., forthcoming). To represent resource adequacy, they require
that firm capacity be a multiple of average load, where the multiplier varies by region.
Renewable sources contribute their capacity credits, which decline with penetration. To
represent system security concerns, they run a unit-commitment model of a limited grid
under a range of penetration scenarios to develop “flexibility coe�cients” for each potential
source of electricity.43 These coe�cients define the ability of each source to provide ancillary
services. For example, simple-cycle gas turbines and electricity storage receive coe�cients of
1, combined-cycle gas turbines have a coe�cient of 0.5, a nuclear plant has a coe�cient of
0, solar PV has a coe�cient of -0.05, and wind has a coe�cient of -0.08. When MESSAGE’s
energy sector is constrained to maintain some minimal degree of flexibility (i.e., some fraction
of load must be met by flexible generation), the shadow value on the constraint combines
with the flexibility coe�cient to yield the cost of solar’s intermittency. This approach comes
closest to capturing the full range of e↵ects discussed in Section 4. A next step would model
each region’s grid under a wider range of penetration scenarios and approximate flexibility
coe�cients as functions of solar’s penetration or even of the complete set of generators.

5.3 Land as a scarce resource

While future technologies and ancillary costs will certainly a↵ect future installations, current
installation decisions reveal the importance of land. Solar installations generate relatively
little energy per unit of land, which can make acquiring land for generation and transmission

41See Section 5.3 for how this representation of storage a↵ects technology deployment.
42The hybrid model WITCH also has a nested structure where aggregated fossil-fueled electricity is com-

bined with nuclear and renewables via an elasticity of substitution (Bosetti et al., 2007). It also has a cost
of integrating renewables based on renewables’ share of electricity generation (personal communication).

43Solar PV was actually not included in the unit-commitment model. Its coe�cient was presumably
estimated based on understanding of its flexibility relative to other sources included in the model.
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a particular hurdle for central station plant. Yet most IAMs account for land only as a
potential quantity of sunshine, not as a scarce resource in its own right. This lack of attention
to land requirements stands in stark contrast to the careful focus on land in bioenergy
modeling. As future generations of models allow for greater resolution and coupling, land
use modules should begin to interact with a broader set of energy technologies.44

Some models have already taken steps beyond the standard GIS-based assessments of
insolation and resource supply curves. First, IMAGE (de Vries et al., 2007) and AIM (Masui
et al., 2010; Silva Herran, 2012) explicitly adjust insolation for land cover. A given quantity
of sunlight has di↵erent implications depending on whether it arrives at the desert or the
forest. de Vries et al. (2007) note that land-use assumptions matter because renewable
sources sometimes compete with each other for land, but in practice they find that PV’s role
depends more on the technology’s development.

In addition to the physical interaction between land cover types and solar arrays, there
is also an opportunity cost to using land for solar arrays. This opportunity cost arises when
solar arrays exclude other energy and non-energy uses. The computable general equilibrium
model EPPA represents land’s opportunity cost by making land an input to production func-
tions, including the production function for solar electricity (Paltsev et al., 2009). A future
advance could combine these GIS-based and general equilibrium approaches by adjusting
the land input for its land cover type and by additionally making land an input to ecological
services and values.

A third approach to treating land scarcity appears in ReMIND (Pietzcker et al., 2009).
Here CSP and PV compete for sites: the total area in a region devoted to CSP and PV must
not exceed the total area available for solar installations, as determined from geographical
and social restrictions. The opportunity cost of PV is the chance to install CSP. This
competition between solar technologies generates interesting dynamics. When CSP is an
available technology, it largely crowds out PV and becomes the dominant electricity source in
scenarios with a 2�C warming constraint. This occurs despite CSP having higher investment
costs per unit of peak power (Figure 3) and slower learning rates (Figure 4). The reason
CSP competes so successfully is that it has greater load hours and lower storage costs.45

When renewable technologies compete for land, deployment paths become more sensitive to
model assumptions that a↵ect their relative costs.

5.4 Solar generation and R&D for future climate targets

Two general conclusions emerge from practically every technology-rich energy-economy IAM:
there is no silver bullet, and greenhouse gas policy drives the use of solar electricity. To the
first point, no one energy technology is the one that will solve global warming. Solar, wind,
biomass, carbon capture and sequestration, and nuclear all have roles to play in these models’
least-cost pathways. To the second point, the no-policy scenario (called the business-as-usual

44Solar installations do not a↵ect albedo in any of the surveyed models.
45Recall that ReMIND requires PV installations to buy battery capacity to o↵set daily intermittency,

whereas CSP uses its built-in thermal storage to counter daily intermittency. In this model, CSP can almost
fully compensate for removing PV from the set of available technologies, but PV’s storage requirements
hinder it from compensating for CSP.
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or reference scenario) typically has solar’s share of generation increase as energy demand
expands and solar’s costs decline, but solar’s role remains trivial at a global level without
the spur of emission goals. But when greenhouse gas emissions are constrained, some models
have solar technologies forming the backbone of the energy system by 2050.

Model intercomparisons implement similar scenarios in several models in order to learn
which features are consistent across models and to discover which factors drive interesting
di↵erences. For instance, baseline solar use is low across all models in the ADAM intercom-
parison but for di↵erent reasons (Edenhofer et al., 2010): solar is simply uncompetitive in
MERGE, it is costly to scale up in IMAGE, and POLES constrains rooftop PV by surface
space and central station solar by transmission. Baseline solar use is greatest in ReMIND
because that model has costs fall quickly with cumulative installation. Krey & Clarke (2011)
find that solar energy production increases strongly over time in most model runs but with
patterns that di↵er by solar technology (Figure 5). In the reference scenario (dark boxes),
solar PV is almost nonexistent. While adopting stringent CO2 targets (gray and white boxes)
strongly increases CSP in several models, it more strongly a↵ects PV: the highest values for
solar PV far exceed the highest values for the other solar technologies. Care must be taken
because di↵erent models include di↵erent sets of technologies, but these results suggest that
solar PV is especially sensitive to model assumptions.

Technological progress is also an important piece of these models. For instance, the
RECIPE intercomparison demonstrates that estimates of total mitigation cost are sensitive
to the calibration of technological progress (Tavoni et al., 2012). Low rates of learning-by-
doing strongly increase costs relative to the baseline calibrations, and fast learning rates
decrease costs. Solar technologies typically have the highest learning rates because they are
deemed immature, but they are often not the most crucial technologies for attaining low
mitigation costs.46 McJeon et al. (2011) find that breakthroughs in solar are less valuable
than breakthroughs in carbon sequestration or nuclear. This is in large part because they
assume that solar’s intermittency limits its potential share of generation. Similarly, Pietzcker
et al. (2009) find that solar is less valuable than carbon sequestration or biomass options
because these help decarbonize transportation, while the electricity sector has several po-
tential decarbonization pathways beyond solar. The most valuable technologies are those
which help in sectors with fewer options, for which operating costs are independent of scale,
and for which installation costs decrease in scale. Solar meets the third condition through
learning-by-doing, but it requires electrified vehicles or fuel cell vehicles to meet the first
condition and requires cheap electricity storage or hydrogen electrolysis to meet the second
condition.

R&D portfolio models have used the elicitation data from Section 5.1.2 to learn about
the optimal size and allocation of R&D budgets. Baker & Solak (2011) implement the data
from Baker et al. (2009) on solar PV (as well as data on carbon sequestration and nuclear)
in a reduced R&D portfolio model. The objective is to minimize the cost of greenhouse gas
abatement plus climate damages for a given R&D budget constraint. They use GCAM to

46Note that removing a technology can radically alter the evolution of the energy sector without strongly
a↵ecting total mitigation cost (e.g., Paltsev et al., 2009).
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derive the impact of technical change on the cost of abatement. They find that for a given
budget, the composition of the optimal portfolio is robust to stochasticity in climate damages.
Solar PV funding focuses first on new inorganics, then organics, and finally on other third-
generation technologies. However, the optimal amount of R&D funding depends on climate
damages. Building on this model, Baker & Solak (forthcoming) implement the same data
in a version of the DICE model, which is the benchmark top-down, policy-optimizing IAM.
They find that optimal investment searches for new organic and inorganic semiconductors.
The optimal portfolio is robust to the policy environment, to damage stochasticity, and to
assumptions about the opportunity cost of R&D funding.

In another study building on elicitation data, Anadon et al. (2011) use the elicitation
data from one “representative” expert for each of several technology categories to determine
an optimal allocation for di↵erent budget levels. They consider multiple goals, including to
minimize cost for a given cap on CO2; to minimize the cost of clean energy credits under a
standard; and to maximize consumer surplus. This study relies on the MARKAL-US model
to generate the societal impacts of technical change. They find that the optimal investment
in solar varies considerably depending on the objective. Solar dominates the energy R&D
portfolio when the objective is to minimize the cost of a clean energy standard; it has a more
modest role when the objective is to minimize the cost of a cap and trade policy; and it
plays almost no role when the objective is to maximize consumer surplus. The authors go on
to make an overall recommendation, qualitatively combining these di↵erent objectives, the
range of expert opinion, and the impacts on deployment. In this recommendation, the share
of solar energy R&D is about the same as it is in the current federal budget (7–8%), but the
dollar amount is more than two and a half times higher. As a comparison, the recommended
budget allocation increases the share of electricity storage R&D to 5% from its current share
of 1%. This increase presumably occurs because storage is an enabling technology that can
“accommodate the variability of solar PV” as well as wind.

An important question is how to balance di↵erent types of technology policies.47 Demand-
pull policies, such as subsidies or renewable portfolio standards, work directly on production
e↵ects such as learning-by-doing. Technology-push policies, such as government-funded R&D
or R&D tax credits, work directly on innovation. Nemet & Baker (2009) combine the results
from an expert elicitation on purely organic solar cells with a bottom-up manufacturing cost
model to compare the e↵ects of R&D funding and demand subsidies. They find that R&D
funding is more e↵ective than subsidies in reducing the costs of organic PV, but subsidies
still have value as a hedge against R&D failure.

5.5 Summary—The long run

The results of these technology-rich IAMs and R&D portfolio models suggest that solar
electricity has a large role to play in a carbon-constrained future and that near-term R&D
funding is crucial to minimizing the cost of carbon constraints. In the IAMs, the cost of

47Lemoine et al. (2012) find that optimal funding for research into “carbon-free” R&D like solar panels
is primarily driven by the stringency of long-term climate goals and the corresponding need for high levels
of emission reductions. Weakening emission limits or developing cheap negative emission technologies tilts
optimal R&D funding towards “emission intensity” technologies.
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grid integration often limits the role of solar while learning-by-doing increases its role. Many
models represent grid integration costs by exogenously limiting solar’s share of grid capacity
to 15–20% or by imposing significant penalties on solar capacity once its share reaches
these levels. However, the medium-run analyses in Section 4.1 suggest that the cost of grid
integration depends strongly on how the grid is managed. If grid operators follow rule-of-
thumb policies, solar’s integration costs can be quite large, but if investment, operations, and
demand management decisions are properly optimized in light of solar’s penetration, then
grid integration costs can be relatively small even when solar’s share of capacity reaches
15% or more. Whether IAMs should approximate costs for an optimized grid or for a rule-
of-thumb grid depends on their objectives. Future work should explore models’ sensitivity
to assumptions about grid integration costs while calibrating approximations to the richer
grid models used in short-run and medium-run analyses. On the technology side, models
either use learning rates below those reported in Section 4.2 or apply a floor cost that limits
the scope for learning. Future work should clarify the trade-o↵ between floor costs and
learning rates, and it should refine models of technological change to combine incremental
learning-by-doing e↵ects with R&D-assisted step-changes in technology.

6 Conclusions

This review has shown that economic analyses of solar electricity have improved understand-
ing of the costs imposed by solar’s intermittency, of the emission benefit from increasing solar
capacity, of the potential for technological change, and of the key factors influencing solar’s
role in attaining 21st century climate targets. We have also seen how analyses focused on
di↵erent timescales not only answer di↵erent questions but take di↵erent approaches in do-
ing so. Short-run analyses answer questions about incremental changes in solar capacity
using relatively realistic models of the electric grid. Medium-run analyses answer questions
about strong solar policies and high penetration rates using more simplified models of grid
operation while also potentially accounting for incremental changes in technology. Long-
run analyses answer questions about the multidecadal evolution of the energy sector using
reduced representations of intermittency and potentially dramatic technology dynamics.

Further progress may come from linking these timescales. How do the short-run costs
and benefits of incremental solar capacity change as the energy system changes around it?
To what extent do high-penetration scenarios become less costly when grid operators can
take advantage of geographic diversity and the full set of solar technologies? How does the
additional cost imposed by adjusting for intermittent solar resources change when energy
infrastructure is optimized for longer-term climate targets? What short- or medium-run
feature should be the key constraint on solar’s growth in a long-run model? We hope that
this review not only brings these questions to light but establishes the connections between
analytic frameworks that will help answer them.
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Table 1: Module costs for commercial and near‐commercial PV technologies 
 
Technology  Module 

Cost 
($/Wp) 

life‐
time 
(yrs) 

LCOE module 
($/kWh) 

Efficiencyk 
(used for 
BOS 
estimate) 

BOSm 
($/W) 

LCOE total 
($/kWh) 

         i=3%  i=15%        i=3%  i=15% 
Thick film Silicon Low  0.70a  30g  0.02  0.07  14.5%  2.32  0.10  0.29 
Thick film Silicon High  1.78b  30  0.06  0.17  14.5%  3.25  0.16  0.48 
Thin film inorganic 
Low 

0.76c  20h  0.03  0.08  14.0%  2.40  0.13  0.31 

Thin film inorganic 
High 

1.65d  20  0.07  0.16  6.0%  7.87  0.40  0.95 

Thin film organic Low  0.75e  5j  0.10  0.14  11.0%  3.06  0.52  0.71 
Thin film organic High  3.22f  5  0.44  0.60  5.0%  9.44  1.72  2.36 
a News reports 2012; b Little and Nowlan 1997; c News reports 2012; d Zweibel 1999; e Smestad 1994; f 
Meyer 1996;  g Branker et al 2011; h Typical warranty period; j Kalowekamo and Baker 2009; k DOE 
2012; m Calculated based on values in Goodrich et al 2012, Low values based on utility, High values 
based on residential. 
 

Table 2: Components of short‐run analysis 
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Table 3: Short‐run analysis of solar PV at four sites 
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Table 4: Expert elicitations targeted towards the effectiveness of solar R&D 
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 Figure 1 : Daily profiles for simulated electricity generation, emission displacement, and economic value at the four sites
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Figure 2: Break‐even installation costs corresponding to each social cost of carbon 

 

Notes: .  All calculations are for south‐facing panels.
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Figure 3: Installation costs by model and solar electricity technology 

 

Notes: Installation costs by model and solar electricity technology. Costs evolve exogenously except in 
E3MG, IMACLIM, and WITCH (for which only initial costs are plotted) and in ReMIND and IMAGE (where 
cost trajectories use representative installation paths). AIM's horizon only extends to 2050. AIM, DNE21, 
IMAGE, MESSAGE, ReMIND, WITCH PV/CSP: personal communication. E3MG (Anderson and Winne, 
2004}. IMACLIM(Bibas and MEjean, 2012);  WITCH Wind (Bosetti et al, 2009). Plotted MESSAGE costs are 
for North America, and WITCH Wind\&{}Solar is a global average. As far as can be determined, dollars 
are constant dollars. 
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Figure 4: Learning rates and floor costs for models with endogenous 
technological change in solar electricity generation 

 
Notes: E3MG: Anderson & Winne (2004). IMACLIM: personal communication. IMAGE: Edenhofer et al. 
(2010). MERGE: Magne et al. (2010). MESSAGE: Riahi et al. (2011). ReMIND: Luderer et al. (2011). 
WITCH: Bosetti et al. (2006, 2007, 2009). MESSAGE's plotted rate is constructed for a high‐emission 
scenario. E3MG's  floor cost is actually specified in units of energy, but it is based on long‐term 
projections of 1000‐1500 $/kW. 
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Figure 5: Solar energy across integrated assessment models and scenarios 

 
Notes: This is Figure 9 in Krey & Clarke (2011). Scenarios are grouped according to the CO2 
concentration in 2100. The blackline gives the median, boxes give the interquartile range, and whiskers 
give the total range. Solar thermal heat" refers to non‐electricity (water heating) applications. 
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