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Abstract

Many countries use substantial public funds to subsidize reductions in negative externalities.
Such policy designs create asymmetric incentives because increases in externalities remain un-
priced. I investigate the implications of such policies by using a regression discontinuity design in
California’s electricity rebate program. Using household-level panel data, I find that the incen-
tive produced precisely estimated zero treatment e↵ects on energy conservation in coastal areas.
In contrast, the rebate induced short-run and long-run consumption reductions in inland areas.
Income, climate, and air conditioner saturation significantly drive the heterogeneity. Finally, I
provide a cost-e↵ectiveness analysis and investigate how to improve the policy design.
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1 Introduction

In economic theory, negative externalities can be corrected by Pigouvian taxes that internalize

external costs (Pigou, 1924). However, taxpayer opposition usually prevents the introduction of

such taxes in practice. Alternatively, regulators use substantial public funds to subsidize economic

activities that presumably induce reductions in negative externalities. For example, many countries

have failed to introduce a carbon tax on greenhouse gas emissions and decided to provide large

subsidies for energy conservation and pollution abatement.1 Likewise, regulators usually provide

subsidies for smoking cessation and public transportation in lieu of high taxes on smoking and

tra�c congestion.2

Such subsidies, however, often create asymmetric incentives because increases in negative ex-

ternalities remain unpriced. With this asymmetry, these policies may not be able to correct all

negative externalities if the marginal decisions of many individuals are una↵ected by the subsidy

incentive. This adverse e↵ect contrasts with the theory underlying Pigouvian taxation, which aims

to equalize the private and social marginal costs for all individuals. Despite the importance of this

problem, there is limited empirical evidence on this question largely because empirical analysis is

hampered by the “additionality” problem (Joskow and Marron, 1992)—some of the observed be-

havior are not “additional” if they would occur in the absence of subsidy incentives. It is, therefore,

misleading to evaluate a subsidy program’s causal e↵ect simply by analyzing those who received a

subsidy, although many previous studies take this approach.3

In this paper, I investigate these problems by applying a regression discontinuity (RD) design to

a large-scale electricity rebate program in California. For the summer of 2005, California residents

received a 20 percent discount on their monthly electricity bills if they reduced their electricity

1The American Recovery and Reinvestment Act of 2009 provided $17 billion for energy conservation programs.
U.S. electric utilities spent $26 billion on energy e�ciency programs in 1994–2011, and annual spending has been
continuously increasing since 2003 (U.S. Department of Energy, 2013)

2Many countries provide subsidies for energy-e�cient appliances (Davis, Fuchs and Gertler, Forthcoming;
Boomhower and Davis, 2014), energy-e�cient vehicles (Gallagher and Muehlegger, 2011; Sallee, 2011; Mian and Sufi,
2012; Sallee and Slemrod, 2012), and reductions in energy consumption (Reiss and White, 2008; Wolak, 2010; Boren-
stein, 2013). Carbon o↵set programs, such as the United Nations’ clean development mechanism, give firms credits if
they reduce their pollution relative to a business-as-usual baseline level (Sutter and Parreño, 2007; Schneider, 2007;
Duflo et al., Forthcoming). Financial incentives for smoking cessation are becoming a key policy instrument (Volpp
et al., 2009). Congestion pricing is still rarely implemented in the U.S. highway system, and the federal and state
governments use substantial public funds to subsidize public transit to address congestion (Anderson, Forthcoming).

3Joskow and Marron (1992) argue that many policy evaluations of utility conservation programs fail to take
into account the additionality problem. Boomhower and Davis (2014) studies how this problem a↵ects the cost-
e↵ectiveness of an energy-e�cient appliance subsidy program in Mexico.

1



usage by 20 percent compared to the summer of 2004. The program’s eligibility rule provides two

advantages for my empirical strategy. First, to be eligible for the program in summer 2005, cus-

tomers had to open their electricity account before a cuto↵ date in 2004. A strategic manipulation

of the account opening dates was impossible because until the spring of 2005 the program was not

announced. This rule created a sharp discontinuity in the treatment assignment between customers

who opened their accounts before and after the cuto↵ date. Second, all eligible customers were au-

tomatically enrolled in the program, preventing the self-selection problem, which presents a major

challenge in previous studies.4

I obtained the administrative data on customer-level monthly electricity billing records from

the electric utilities that administered the rebate program. Compared to survey data, the full

administrative billing records have the advantages of measurement accuracy and the comprehensive

coverage of customers. The data also include each customer’s nine-digit zip code, which I match

with demographic and weather data to investigate potential heterogeneity in response to the subsidy

incentive.

Using the RD design, I first estimate the rebate program’s local average treatment e↵ect (LATE).

I find that the rebate incentive reduced electricity consumption by 4 percent in inland areas in

California, where the summer temperatures are persistently high and the income levels are relatively

low. Moreover, this conservation e↵ect continued during the summers of 2006, 2007, and 2008.

In contrast, I find precisely estimated zero treatment e↵ects in coastal areas, where the summer

temperatures are moderate and the income levels are relatively high. To explore what drives the

heterogeneity in the treatment e↵ects, I estimate the interaction e↵ects between the treatment

variable and climate conditions and those between the treatment variable and income levels. The

results from the regressions suggest that the treatment e↵ect increases by 0.15 percentage points

as the average temperature increases by 1 degree Fahrenheit and decreases by 0.029 percentage

points as income levels increase by 1 percent. I also use air conditioner saturation data to show

that higher air conditioner saturation rates result in larger treatment e↵ects.

The asymmetric subsidy structure introduces the possibility that the response to the subsidy

di↵ers between households whose consumption is close to the target level of consumption and house-

4In most utility conservation programs, consumers opt-in to the programs (Joskow and Marron, 1992). This
opt-in participation creates a self-selection bias because participants in the program are likely to be di↵erent from
nonparticipants.
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holds whose consumption is far from the target. To test whether the asymmetric incentive creates

a “giving-up” e↵ect for consumers far from the target level, I estimate the quantile treatment e↵ects

on the changes in consumption. I find that most of the treatment e↵ects come from households

who are closer to the target level of consumption and that the treatment e↵ect is not significantly

di↵erent from zero for consumers who are far from the target level. This finding provides evidence

that the asymmetry in the subsidy schedule weakens the incentive for conservation when compared

to a simple Pigouvian tax.

An advantage of RD designs is that these require relatively weak identification assumptions to

estimate LATE. However, RD designs generally do not provide average treatment e↵ects (ATE)

(Angrist and Rokkanen, 2012). In my research design, the RD estimates come from customers who

opened electricity account about a year before the treatment period began. An important question

is whether the treatment e↵ect di↵ers between my RD sample and the customers who opened

accounts earlier. To address this point, I use a method that combines an RD design with three-way

fixed e↵ects. This method estimates the ATE with one additional identification assumption. In

general, residential electricity consumers have a small positive trend in their electricity consumption

after they open accounts. This trend is translated into a small trend component in my running

variable for the RD design. To estimate the ATE, I assume that the positive trend in consumption

is the same for customers who opened accounts on a certain date and those who opened accounts on

the same day during the previous year. With this assumption, I can isolate the small positive trend

from my RD design and estimate the ATE. I use this method to estimate the ATE for consumers

who opened accounts 90 days, 180 days, one year, two years, three years, and four years before

the eligibility cuto↵ date. I find that the di↵erence between the ATE and the LATE is small and

statistically insignificant. This finding suggests that the RD estimates are not significantly di↵erent

from the treatment e↵ects for consumers who opened accounts earlier than those included in my

RD sample.

This paper’s findings provide several important policy implications. First, asymmetric incentives

created by subsidy programs are likely to weaken the incentives to reduce negative externalities. The

evidence of zero treatment e↵ects in coastal areas is consistent with the theoretical prediction that

consumers do not respond to the asymmetric incentive at all if the price elasticity is below a cuto↵

level. Second, the di↵erence between my RD estimates and naive estimates of the treatment e↵ect
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shows that the additionality problem is a central concern in evaluations of subsidy programs (Joskow

and Marron, 1992; Boomhower and Davis, 2014). While my RD estimates show precisely estimated

zero causal e↵ects in coastal areas, the naive estimates that ignore the additionality problem indicate

that a significant number of consumers responded to the incentive. This result provides evidence

that careful empirical analysis is critical for evaluating energy conservation programs (Allcott and

Greenstone, 2012). This is particularly important for recent U.S. energy policy because public

spending for energy conservation programs has been growing rapidly.5 Finally, my analysis of

the program’s cost-e↵ectiveness suggests that the heterogeneous treatment e↵ects result in quite

di↵erent levels of costs among coastal areas (94.5 cents per kWh reduction) and inland areas (2.5

cents per kWh reduction). However, because substantial rebates were paid to customers in the

areas in which I find nearly zero treatment e↵ects, the overall program cost is 17.5 cents per

kWh reduction and $381 per ton of carbon dioxide reduction, which is unlikely to be su�ciently

cost-e↵ective to reduce negative externalities for a reasonable range of the social marginal cost of

electricity.

2 Conceptual Framework

2.1 The Asymmetric Incentive Structures of Conservation Subsidies

In this section, I use a simple framework to characterize the theoretical predictions of consumer

behavior in the presence of subsidies for energy conservation. Suppose that consumers have quasi-

linear utility functions u(yi, ni) = v(yi) + ni for electricity consumption yi and a numeraire con-

sumption good ni. Consumers with income Ii and electricity price p maximize v(yi) + Ii � pyi and

consume y0, where v0(y0) = p.

Suppose that regulators consider that electricity price p does not properly reflect the social

marginal cost of electricity. For example, p may not reflect the negative environmental externalities

from generating electricity or may not reflect the higher marginal cost of supplying electricity when

the system faces a supply shortage. The first-best solution is to increase the price by the cost of

the externalities ⌧ . That is, increasing the electricity price by ⌧ lets consumers choose y⇤, where

5For example, the American Recovery and Reinvestment Act of 2009 provided $17 billion for energy conservation
programs. U.S. electric utilities spent $26 billion dollars on energy e�ciency programs in 1994–2011, and the annual
spending has been continuously increasing since 2003 (U.S. Department of Energy, 2013).
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v0(y⇤) = p + ⌧ .6

However, regulators often prefer to implement conservation subsidies instead of introducing

a price increase. In conservation subsidy programs, regulators first determine the rebate baseline

consumption bi, which is usually a function of consumer i’s past consumption level. Then, they o↵er

a subsidy based on bi and yi. For example, figure 1 illustrates the subsidy schedule of the California

20/20 rebate program.7 Consumers receive a 20 percent discount on their summer electricity bills

if they consume 20 percent less than their baseline, which is their consumption in the summer

month during the previous year. This subsidy creates a notch in the household’s budget constraint

because it changes both the marginal and infra-marginal prices if consumers reach 80 percent of

their baseline. In another type of conservation subsidy program, consumers receive a marginal

subsidy for each unit of their conservation relative to a certain baseline level. Examples of this type

of subsidy schedule include peak-time rebate programs in dynamic pricing (Wolak, 2006, 2011;

Faruqui and Sergici, 2010; Borenstein, 2013). In these cases, the subsidy schedule creates a kink at

the baseline rather than a notch. In both cases, consumers are subsidized for reducing consumption,

but are not penalized for increasing consumption. This asymmetry creates important di↵erences

between such conservation subsidies and the first-best solution.

An inherent feature of such a subsidy schedule is that it creates asymmetry in the incentive

to change consumption. In the case with the first-best solution, consumers have a simple price

increase of ⌧ , which gives all consumers the same change in the marginal incentive irrespective

of where their consumption falls in the budget constraint shown in Figure 1. In contrast, the

introduction of conservation subsidies creates di↵erent incentives for consumers depending on 1)

where they fall in the budget constraint, 2) how price-elastic they are, and 3) how much uncertainty

in consumption they have.8

6The constant Pigouvian tax ⌧ is the first-best solution given the assumption that electricity users are homogeneous
in the externalities they generate. For example, the marginal cost of supplying electricity is generally higher in peak
hours than during o↵-peak hours. Suppose that the marginal price p does not reflect this time-varying marginal cost.
Then, if some customers tend to use electricity more during peak hours, the externalities are higher than those of
others, and therefore, their ⌧ has to be set higher than that of others.

7The figure shows the case that features a linear electricity price. In practice, residential electricity customers
in California have increasing block pricing (Ito, 2014). However, the insights from this section do not change with
increasing block pricing because the rebate incentive changes both the infra-marginal and marginal prices by 20
percent. This implies that both the marginal and average prices change by 20 percent (note that residential electricity
customers in California have zero or negligible fixed charges).

8Borenstein (2013) provides a detailed description of similar problems for peak-time rebate programs in dynamic
electricity pricing.

5



2.2 Theoretical Predictions of Consumer Behavior

I begin with a simple case that makes two assumptions which may not be realistic in practice: (a)

consumers have no uncertainty about their consumption, and (b) their baseline bi is set reasonably

close to y0, which is their optimal consumption in the absence of the subsidy incentive.

First, consumers do not respond to the subsidy incentive at all if the price elasticity in absolute

value is smaller than a certain cuto↵ level. To illustrate this point, suppose that consumers have a

quasi-linear and iso-elastic utility function, u(yi, ni) = ↵i ·
y
1+1/e
i
1+1/e + ni, where ↵i is a heterogeneous

taste parameter and e  0 is a constant price elasticity. In Figure 1, I illustrate two indi↵erence

curves, A and B, with |eB| > |eA|. With inelastic price elasticity eA, households make no change

in their consumption levels because the indi↵erence curve does not reach the notch point. Price

elasticity eB is the minimum elasticity required for consumers to change their consumption. This

prediction implies that the subsidy incentive induces no change in consumption when the price

elasticity is smaller than |eB| in absolute value. This result contrasts with the result in the first-

best solution. When consumers have a simple price increase of ⌧ , the new budget constraint in the

figure would have a steeper slope. Accordingly, all consumers would reduce consumption based on

the new slope.

Second, given assumptions (a) and (b), there should be a bunching of consumers if the price

elasticity is larger than |eB| in absolute value. In Figure 1, all indi↵erence curves that have larger

price elasticities than |eB| would have the optimal consumption at the notch point in the presence

of the subsidy incentive.

However, in reality, assumptions (a) and (b) are unlikely to hold in the case of residential

electricity demand. I begin with assumption (a). Electricity consumers have significant uncertainty

about their monthly electricity consumption. When faced with this uncertainty, rational consumers

do not respond to the exact nonlinear budget constraint (Saez, 1999; Borenstein, 2009; Ito, 2014).

Instead, they incorporate the uncertainty and respond to the expected price schedule, which is

presented as the smoothed dotted line in Figure 1. The response to the smoothed schedule changes

the first and second predictions above. First, the price elasticity’s cuto↵ point has to be even larger

than the standard case with no uncertainty. In the previous example, consumers who have price

elasticity eB no longer respond to the subsidy incentive. Second, because the smoothed schedule
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no longer has a notch, there can be no bunching of consumers even if the price elasticity is nonzero.

Finally, the subsidy’s incentive can be further weakened if the rebate baseline bi is set far

below y0i , which is consumer i’s optimal consumption in the absence of the subsidy. Conservation

subsidy programs usually do not adjust bi for changes in weather or idiosyncratic shocks to each

consumer. As a result, if the base year’s weather is more moderate than the target year’s weather,

consumers are more likely to have harder baselines to reach. Similarly, if consumers experience

idiosyncratic negative shocks in consumption in the base year, they have harder baselines to reach.

This endogenous baseline can introduce a “giving-up” e↵ect because consumers whose electricity

usage is far above the baseline consider the subsidy unachivable (Wolak, 2010; Borenstein, 2013).

Conversely, when consumers have consumption shocks in the opposite direction, bi can be closer to

y0i . In this case, they reduce consumption by less than 20 percent because they are now closer to

the cuto↵ point. That is, the endogenous baseline makes the marginal incentive depend on where

the rebate baseline falls in the household’s budget constraint. These predictions contrast with the

prediction for the first-best solution, which produces the same marginal incentive for all consumers.

In the following sections, I empirically test these theoretical predictions by applying a regression

discontinuity design to the California 20/20 rebate program. In the next section, I describe the

research design and data used in my empirical analysis.

3 Research Design and Data

This section provides the institutional background and research design. First, I provide a brief

history of the California 20/20 electricity rebate program. Second, I discuss evidence from existing

studies and their empirical challenges. Finally, I describe how I address these challenges using a

regression discontinuity design to analyze the e↵ects of the California 20/20 rebate program in 2005.

3.1 The California 20/20 Electricity Rebate Program

The California 20/20 electricity rebate program was originally implemented by Governor Gray

Davis during the 2001 California electricity crisis.9 To prevent rolling blackouts, the California

9By August 2000, wholesale energy prices had more than tripled since the end of 1999, causing price spikes in retail
electricity rates and financial losses to California electric utilities. See more details in Joskow (2001); Borenstein,
Bushnell and Wolak (2002); Borenstein (2002).
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Public Utility Commission (CPUC) ordered the state’s three largest investor-owned electric utilities

(IOUs)—Pacific Gas and Electric (PG&E), Southern California Edison (SCE), San Diego Gas &

Electric (SDG&E)—to o↵er customers financial incentives to reduce electricity consumption. Every

month during June, July, August, and September in 2001 and 2002, customers received a 20 percent

discount on their monthly electricity bill if their consumption was 20 percent lower than their

consumption during the same month in 2000. With a slight change in the scheme, the CPUC

ordered the same program in 2005. The original month-based rule was replaced by a summer-based

rule. Customers received a 20 percent discount on their entire summer bills if their consumption

over the summer months was 20 percent lower than their consumption over the summer months in

2004.10 This rebate program was among the largest electricity conservation rebate programs in the

United States in terms of its expenditure and the number of customers who received rebates. In the

2005 program, about 8 percent of residential customers of the three IOUs received a rebate. The

total rebate expenditure was about $25 million, excluding marketing and administrative costs.11

Despite the substantial expenditure, the program’s e↵ectiveness was highly controversial. Pro-

ponents have claimed that its simplicity makes it straightforward for customers to undertake energy

conservation.12 It is politically more favorable to o↵er a rebate program rather than raise electric-

ity prices because the economic burden is much less salient to customers.13 However, the 20/20

program scheme created two key concerns.14 First, the program did not incorporate di↵erences in

weather between the base and target years. If the target year happened to be cooler than the base

year, many customers received a rebate simply because of the change in weather. Second, even

if there was no significant di↵erence in weather between the two years, many customers received

a rebate because of random fluctuations in their electricity consumption. For example, customers

who had a friend visit during the base year or customers who traveled during the target year could

reduce their electricity consumption in the target year by 20 percent for reasons unrelated to their

10Consumers received information about their total energy savings on their monthly bills and about how much
additional energy savings were required to qualify for the rebate.

11Table A.1 shows more details about the scale of the 2005 rebate program. More customers received at least one
rebate in 2001 and 2002 because the program was month-based. Reiss and White (2003) report that about 39 percent
of SDG&E customers’ monthly bills qualified for a rebate in June, July, August, and September 2001. For the same
2001 rebate program, Goldman, Barbose and Eto (2002) find that about 33 percent of consumers received a rebate.

12For example, CPUC (2001) estimated that the program would help reduce energy consumption by up to 3,500
gigawatt hours in total and by up to 2,200 megawatt hours during critical summer peak consumption periods.

13Although the rebate expenditure is eventually paid by customers through future price increases, this burden is
usually much less salient than raising the electricity price.

14See Faruqui and George (2006) for details.
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conservation e↵orts.

Table 1 shows data related to the two concerns. I use household-level consumption data to

calculate the fraction of customers who reduced their summer electricity usage by more than 20

percent between summers when there was no rebate program. From 2003 to 2004, the median

customer reduced consumption by 1.7 percent because in 2004 the summer was cooler than in

2003. More importantly, 14.3 percent of customers reduced their consumption by more than 20

percent. This statistic suggests that 14.3 percent of customers would have received a rebate for

reasons unrelated to their conservation e↵orts if a rebate program had been o↵ered in 2004. The

second row provides the same statistic for the warmer summer in 2000 relative to 1999. As a result,

the median customer increased consumption by 7.7 percent. However, even in this case, 6.8 percent

of customers reduced consumption by 20 percent. This evidence implies that random fluctuations in

electricity consumption necessarily create substantial rebate expenditures in this program design.15

3.2 Using a RD Design to Address Empirical Challenges

In general, there are two fundamental challenges in evaluating the causal e↵ect of rebate programs.

First, many rebate programs are o↵ered to self-selected customers. Evaluating this type of program

is di�cult because households that self-select into the program are likely to be di↵erent from other

households in terms of observable and unobservable factors. Second, when a rebate program is

o↵ered to all customers, it eliminates self-selection bias but creates another challenge—there is no

clean control group because all customers are a↵ected. This lack of a clean control group makes it

di�cult to distinguish a program’s causal e↵ect from other factors unrelated to the program.16

To address these challenges, I exploit a discontinuity in the eligibility rule for the California

20/20 rebate program in 2005. To be eligible for the program, households had to open their

electricity account by the program’s eligibility cuto↵ date in 2004. For example, the eligibility cuto↵

15This evidence implies that it is misleading to make conclusions about the program’s e↵ectiveness simply by
calculating the number of customers receiving a rebate or the total reduction in consumption achieved by these
customers. Yet, such statistics are often used in utility company reports and newspaper articles.

16For example, researchers need to control for changes in the weather, changes in the electricity price, other
conservation programs, and macroeconomic shocks. Previous studies acknowledge this di�culty in evaluating the
original 20/20 rebate program in 2001 and the later program in 2005. For example, Reiss and White (2008) and
Goldman, Barbose and Eto (2002) note that it is particularly challenging to control for the e↵ects of other conservation
programs that were active during their study periods. For evaluating the 20/20 rebate program in 2005, Wirtshafter
Associates (2006) uses survey data to adjust for factors unrelated to the program. The adjustment results in a wide
range of the estimated e↵ects: the cost per kWh savings range from 29 cents to $1 per kWh.
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date for Southern California Edison customers was June 5, 2004. Customers who opened electricity

accounts on or before June 5, 2004 received a notice in the spring 2005 and were automatically

enrolled in the program. Customers who began their service after the cuto↵ date (e.g., June 6,

2004) were not eligible for the program in 2005 and did not receive the notice.17

The eligibility rule includes two additional key features. First, it was impossible for customers

to anticipate the 2005 rebate program when they started their electricity service in 2004 since the

program was only announced in the spring of 2005. It was, therefore, impossible for customers to

strategically choose their start date in consideration of the rebate program. Second, all eligible cus-

tomers automatically participated in the program, which eliminated any self-selection bias. Finally,

the electric utilities that administered the program strictly enforced the rules without exception.

The discontinuous eligibility rule generated an essentially random assignment of the program

for customers who opened their accounts near the cuto↵ date. The program rules allow me to use

a regression discontinuity design to estimate the program’s causal e↵ect given the assumption that

the conditional expectation of the outcome variable is smooth at the cuto↵ date. In the empirical

analysis section, I provide more details about the empirical strategy.

3.3 Data

The primary data for this study come from the panel data of customer-level monthly electricity

billing records for the three largest investor-owned electric utilities in California. Under a confi-

dentiality agreement, Pacific Gas & Electric (PG&E), Southern California Edison (SCE) and San

Diego Gas & Electric (SDG&E) provided the complete billing history for essentially all residential

customers in their service areas.18 I focus on SCE in this paper and present the results for the

other two utilities in the online appendix. The conclusions are consistent across all three utilities.19

The monthly records include each customer’s account number, premise ID, billing start and

end dates, monthly consumption, monthly bill, tari↵ type, climate zone, and nine-digit zip code.20

17Figure A.1 graphically explains how this eligibility rule was applied. The cuto↵ date was June 1, 2004 for PG&E
customers and June 30, 2014 for SDG&E customers.

18A very small number of customers are not individually metered in this area. The billing data sets include only
individually metered customers.

19The three utilities provided a similar rebate program but the programs di↵ered substantial di↵erences in two
elements. First, the eligibility cuto↵ dates were di↵erent. Second, the way they calculated the outcome variable was
di↵erent. Because of these di↵erences, I conduct my analysis separately for each utility. Details are provided in the
appendix.

20During my sample period, residential customers in California did not have smart meters. Therefore, it was not
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The data also include each customer’s account opening and closing dates, which are key variables

for my RD design. Each day in California, about 10,000 residential customers open electricity

accounts—thus there are a substantial number of observations for fairly narrow bandwidths. I use

the customers who opened their electricity accounts within 90 days before and 90 days after the

cuto↵ date for my main estimation and examine the robustness with di↵erent bandwidth choices.

The billing data do not include each customer’s address and demographic information. To obtain

demographic information, I match the nine-digit zip codes to census block groups from the 2000

U.S. Census data. I also use daily weather data from the Cooperative Station Dataset published

by the National Oceanic and Atmospheric Administration’s National Climate Data Center.21 The

dataset includes the daily minimum and maximum temperatures recorded at 370 weather stations

in California. I match each household’s zip code with the nearest weather station by following the

matching mechanism in Aroonruengsawat and Au↵hammer (2011); Chong (2012). Finally, I collect

air conditioner saturation data from the 2003 Residential Appliance Saturation Study (RASS) to

examine whether the program’s treatment e↵ects vary by air conditioner saturation.22

4 Empirical Analysis and Results

In this section, I first use a regression discontinuity design to estimate the program’s local average

treatment e↵ect. Second, I examine heterogeneity in the treatment e↵ects by investigating how

income and weather a↵ect the treatment. Third, I estimate whether the nonlinearity in the subsidy

schedule induces a “giving-up” e↵ect for consumers who are far from the 20 percent target level.

An important question raised from RD estimation in general is whether the treatment e↵ects are

di↵erent in my RD sample and the overall population. In the final part of this section, I use a

method that combines an RD design with three-way fixed e↵ects to estimate the average treatment

e↵ect.

possible for customers to see their hourly consumption data.
21I thank Anin Aroonruengsawat, Maximilian Au↵hammer, and Howard Chong for sharing the data.
22RASS was funded and administered by the California Energy Commission and is based on 21,920 individually

metered California customers in 2003. The variable of air conditioner saturation provides the ratio of customers who
own air conditioners at the five-digit zip code level.
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4.1 A Regression Discontinuity Design to Estimate LATE

I define customer i ’s natural log of electricity consumption by yit for billing month t before and dur-

ing the California 20/20 program. Let Di = 1{i 2 treatment group}, Dt = 1{t 2 treatment period},

and Dit = Di ·Dt. If the treatment is randomly assigned, the program’s average treatment e↵ect

can be obtained by a fixed e↵ect estimation,

yit = ↵ ·Dit + ✓i + �t + uit, (1)

by the ordinary least squares (OLS), where ✓i is the customer fixed e↵ects, �t is the time fixed

e↵ects, and uit is an error term. However, the treatment assignment was not random in the

California 20/20 program. Instead, it was assigned by an eligibility rule, Di = 1{xi  0}, where xi

is customer i’s account opening date relative to the eligibility cuto↵ date. Because the treatment

variable is a function of xi, the estimation in equation (1) is biased if uit is correlated with xi. With

the RD design, I can explicitly control for the smooth relationship between the running variable

xi and the dependent variable and can estimate the program’s local average treatment e↵ects by

using the discontinuity of Dit in xi:

yit = ↵ ·Dit + ft(xi) + ✓i + �t + ⌘it. (2)

The identification assumption is that the error term ⌘it has to be uncorrelated with treatment Dit

conditional on a smooth control function ft(xi) and other covariates.

The customer fixed e↵ects absorb the time-invariant e↵ects of xi. Therefore, the potential

confounding factors are the time-varying e↵ects of xi. Consider ỹit, which is consumption demeaned

by customer fixed e↵ects. In consumption data for residential electricity, customers have a general

tendency to gradually increase their electricity consumption after opening electricity accounts. This

tendency creates a very small and smooth relationship between ỹit and xi. Hence, I use a smooth

control function ft(xi) to control for the relationship. Imbens and Lemieux (2008) describe two

approaches to specifying ft(xi). The first approach is to include a flexible parametric function. The

second approach uses a local linear regression with a triangular kernel to put more weight on data

closer to the cuto↵ point. I use the first approach for my main result, then use the second approach
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to show that my estimation is robust for both approaches. To avoid misspecifing ft(xi) as much

as possible, I focus on the data close to the cuto↵ date. For my main result, I use customers who

opened their accounts within 90 days before or after the cuto↵ date. I also use 60-day and 120-day

bandwidths to show the robustness.

4.2 Testing the Validity of the Regression Discontinuity Design

A threat to the validity of RD designs is that the identification assumption is violated if there

is self-selection at the cuto↵, although this is unlikely to be the case for my research design. In

summer 2004, no households knew that the California 20/20 program would be implemented in

the following summer. Therefore, there was no way for customers to self-select by strategically

choosing the opening date for their electricity account.

Still, it is important to examine if there is a discontinuous di↵erence between customers around

the cuto↵ date. To assess the validity of the RD design, I first plot the number of new accounts

opened per day in Figure 2. The horizontal axis is the account opening date relative to the eligibility

cuto↵ date, which is July 5, 2004. Every dot shows the mean number of new accounts per day over

the 15-day bandwidth. Every day about 1,500 customers opened accounts with SCE. The solid line

shows the local linear fit and the dashed lines are the 95 percent confidence intervals. Over the

90-day period, there is a slight upward trend in the number of new accounts, although the slope is

not statistically di↵erent from zero. The figure shows that there is no discontinuous jump at the

cuto↵ date.

Figure 2 plots the customer characteristics against the account opening date relative to the

eligibility cuto↵ date. I match the nine-digit zip codes in the billing data with the census block

group to obtain the demographic and housing characteristics. The figures include the mean over

the 15-day bandwidth, the local linear fit, and its 95 percent confidence intervals.23 None of the

three variables show a statistically significant discrete jump at the cuto↵ date.

23Because the variables are from the 2000 U.S. Census at the census block group level, I cluster the standard errors
at the census block group level.
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4.3 RD Estimates of the Program’s Treatment E↵ects

In RD estimation, graphical analyses play an important role in quantifying the magnitudes of the

treatment e↵ects as well as testing the validity of the identification strategy. I begin by presenting

graphical analysis and then show the regression results. In California, summer electricity consump-

tion di↵ers between coastal and inland climate areas. In coastal areas, consumers do not have or

rarely use air conditioners because the summer temperatures are moderate. In inland areas, how-

ever, consumers regularly use air conditioners because the summer temperatures are persistently

high.24 To analyze the rebate incentive’s heterogeneous treatment e↵ects, I begin by examining the

RD estimates for coastal and inland climate zones separately, according to the climate zones defined

by SCE. Then I use pooled data from all the climate zones to investigate whether heterogeneous

treatment e↵ects can be explained by di↵erences in observable variables such as climate conditions

or household income levels.

Figure 3 presents a graphical analysis of the RD estimation for billing in September, which is

the last month of the treatment period. Using the data for before and during the treatment period,

I first estimate the demeaned consumption by ỹit = yit � ✓̄i. I then calculate the local mean of

ỹit for each fifteen-day bandwidth over the running variable xi. The local means are presented as

dots in the figure. Finally, I fit a local linear regression and a quadratic function to estimate ft(xi)

for each side of the cuto↵ date. The dashed line is the local linear fit and the solid line is the

quadratic fit. On the horizontal axis, the treatment group is on the left-hand side of the cuto↵ date

because customers who opened accounts before the cuto↵ date participated in the rebate program.

Therefore, if the rebate incentive had an e↵ect, there should be a discontinuous jump in the outcome

variable at the cuto↵ point.

Figure 3 provides important insights. First, there is a slight upward trend in ỹit over xi, which

is the account opening date relative to the cuto↵ date. This upward trend comes from the general

tendency in residential electricity consumption data already noted—customers tend to increase

their usage gradually after they open their accounts. Because ignoring this relationship creates an

estimation bias for the treatment e↵ect, it is important to control for the trend. The fitted lines of

the local linear regression and the quadratic regression over xi indicate that the RD estimates are

24As a reference, I present cooling degree days (CDD) at the five-digit zip code level for August 2005 in Figure A.3.
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likely to be robust between the local linear regression and the quadratic regression.

Second, Panel B shows evidence that the rebate incentive had a significant e↵ect on lowering

electricity consumption in the inland climate zones. There is a clear discontinuous change in

consumption between the treatment and control groups at the cuto↵ point. Visually, the treatment

group’s usage is about 5 percent less than the control group’s consumption. In contrast, Panel A

suggests that the rebate incentive did not significantly alter consumption in the coastal climate

zones. There is no discontinuous change in consumption between the treatment and control groups

at the cuto↵ point.

Table 2 presents the RD estimates for the e↵ect of subsidy incentives on energy conservation.

In columns 1 and 3, I estimate the program’s overall treatment e↵ect during the entire treatment

period.25 In columns 2 and 4, I allow the treatment e↵ects to di↵er for each billing month in the

treatment period. I report RD estimates with 90-day bandwidths and quadratic controls for ft(xi).

Using di↵erent bandwidths and the local linear regression do not change my results, as I show in

the table 3. To adjust for serial correlation in the electricity consumption data, I cluster standard

errors at the customer level.26

In coastal climate zones, the treatment e↵ects are essentially zero with tight standard errors.

Because of the tightly estimated point estimates, the 95 percent confidence intervals do not include

1 percent treatment e↵ects, suggesting that the 20/20 program did not have a significant e↵ect on

customers in coastal climate zones. In contrast, the subsidy incentive had a significant e↵ect on

electricity consumption in the inland climate zones. The overall treatment e↵ect is about 4 percent

and the treatment e↵ect of each month ranges between 4 percent and 5 percent.27

Because I have data for several months before the treatment period began, a useful robustness

check is to produce the RD estimates for the billing months before the treatment period. Figure 4

presents the RD estimates of the di↵erence in log consumption between the treatment and control

25The actual treatment billing months for the 20/20 rebate program were the June, July, August, and September
billing months. However, because of the billing cycle systems, many May billing days fall in the calendar month
of June. For example, if a customer’s May billing cycle starts on May 31, most of the billing days fall in June.
If customers focus on the calendar months instead of their billing cycles, a treatment e↵ect can appear in their
consumption for the May billing month. Therefore, I include the May billing month as a treatment period. To
strictly focus on the actual treatment billing months, one can see the treatment e↵ects for June through September.

26In fact, ignoring the serial correlation produces very small standard errors.
27I find similar results for PG&E and SDG&E customers, although the definitions of the running variable and

outcome variables di↵er between the three companies (see the appendix for details). In PG&E, I find nearly zero
e↵ects for coastal customers and 3 percent to 4 percent e↵ects for inland customers. In SDG&E, the majority of
customers are in coastal areas, and I find a nearly zero e↵ects for them.
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groups for the billing months of January 2005 through October 2005. In the coastal climate zones,

the RD estimates are essentially zero both before and during the treatment period. In inland climate

zones, the RD estimates are not statistically di↵erent from zero before the treatment period. In

contrast, the estimates during the treatment period suggest that the customers in the treatment

group reduced their usage by about 5 percent. This figure provides evidence that the reduction in

consumption is unlikely to come from factors unrelated to the program.

Another important robustness check is to examine how the choice of bandwidths and the method

to control for ft(xi) a↵ects the estimates.28 In Table 3, I present RD estimates with 60-day and

120-day bandwidths and the RD estimates with the local linear regression. Consistent with the

suggestive evidence presented in Figure 3, these estimates are not sensitive to the bandwidth choice

or to the method used to control for ft(xi). While the standard errors change slightly when using

di↵erent bandwidths, the RD estimates are fairly stable between di↵erent bandwidth choices.29 In

addition, using the local linear regression instead of quadratic controls does not significantly change

the estimates.

4.4 Heterogeneity in the Treatment E↵ect

4.4.1 Income, Climate Conditions, and Air Conditioner Saturation

In the previous section, I find significant treatment e↵ects for inland customers and do not find

significant e↵ects for coastal customers. This section explores what drives the rebate program’s

heterogeneous treatment e↵ects. In particular, I examine whether climate conditions, income dif-

ferences, and air conditioner saturation can explain the heterogeneous treatment e↵ects.

A significant di↵erence between inland and coastal California is the summer climate. Summer

temperatures are persistently high in inland areas but quite moderate in coastal areas.30 Inland cus-

28Although many studies, including Lee and Lemieux (2010), recommend reporting a number of specifications to
illustrate the robustness of the results, another approach is to use the Akaike information criterion (AIC), which
provides guidance on the choice for the polynomial. In my RD estimation, the quadratic controls produce the lowest
AIC, although it is not substantially di↵erent from linear or third-order polynomial control functions. This is because
the relationship between the running variable and the outcome variable is smooth and approximately linear in the
data (see figure 3).

29As Figure 3 suggests, using even narrower bandwidths (30-day bandwidths, for example) also does not change
the RD estimates. Narrower bandwidths result in larger standard errors compared to the estimates with the baseline
bandwidths.

30Figure A.3 shows the cooling degree days (CDD) by five-digit zip code areas. For example, the average daily
maximum temperatures are 69, 71, 73, 74, and 74 degrees Fahrenheit for May, June, July, August, and September
for Santa Barbara (which is in a coastal climate zone), which are quite moderate. In contrast,they are 96, 104, 108,

16



tomers, therefore, typically use air conditioners (AC) throughout the summer, while many coastal

customers rarely use AC. It is likely to be a challenge for customers who do not use AC to reduce

their summer electricity consumption by 20 percent. In contrast, if customers constantly use AC,

a 20 percent reduction can be achieved by changing the temperature settings or the length of their

AC usage.

Demographic characteristics are another significant di↵erence between inland and coastal Cal-

ifornia. For instance, income levels tend to be higher in the coastal areas than the inland areas.

Many previous studies of residential electricity demand find slightly larger price elasticity estimates

for low-income customers (Reiss and White, 2005). Because the 20/20 rebate program is essen-

tially a price-discount rebate program, lower-income customers may be more likely to respond to

the incentive if their price elasticity is larger than that of higher-income customers.

To examine how climate conditions and income levels a↵ect the program’s treatment e↵ects, I

pool data from all climate zones and estimate the interaction e↵ects. First, I calculate the average

temperature at the nine-digit zip code level by calculating the mean of the daily mean temperature

for the summer days in 2004 and 2005. Second, I obtain the median per-capita income at the census

block group level from the 2000 U.S. Census. Column 1 of Table 4 shows the RD estimate of the

interaction term between the treatment variable and the average temperature in degrees Fahrenheit.

The estimate implies that the treatment e↵ect increases by 0.15 percentage points with an increase

in the average temperature of 1 degree Fahrenheit. The estimate in Column 2 implies that the

the treatment e↵ect decreases by 0.029 percentage points with a 1 percent increase in income.31

These two interaction e↵ects remain the same when both terms are included in the regression in

Column 3. Finally, I examine the interaction e↵ect with the air conditioner saturation. The 2003

RASS data provide the proportion of customers who own air conditioners at the five-digit zip code

level. Column 4 shows evidence that higher AC saturation rates result in larger treatment e↵ects.

Overall, these results indicate that climate conditions, income levels, and air conditioner saturation

107, and 102 degrees Fahrenheit for May, June, July, August, and September for Palm Springs (which is in an inland
zone), which are quite high.

31The income variable is the median income at the census block group level. Each census block group in my
sample consists of about 500 households. The income variable from the census data may have a measurement error in
the sense that I observe the median household income instead of each household’s income. This measurement error
implies that the estimated interaction e↵ects in the paper are possibly underestimated. If the income variable includes
a classical measurement error, my estimate of the interaction e↵ect will be attenuated toward zero. Therefore, my
estimate can be considered as a lower bound.
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have statistically significant e↵ects on the program’s treatment e↵ect.

4.4.2 Nonlinearity in the Subsidy Schedule

A theoretical prediction in Section 2 implies that the nonlinearity in the subsidy schedule may

induce a “giving-up” e↵ect. Even if a consumer has a large price elasticity, the consumer may not

respond to the incentive at all if the consumption is far from the cuto↵ point required to earn the

rebate. This implies that the treatment e↵ect may not come from all consumers equally. Consider

�yit, the change in log consumption from 2004 to 2005. If there is a giving-up e↵ect, I expect

the di↵erent parts of the distribution of �yit will have di↵erent treatment e↵ects. In particular,

I would expect there to be no change in consumption for higher percentiles in the consumption

distribution because the treatment intervention is likely to have no e↵ect on these percentiles if

there is a giving-up e↵ect. To test the prediction, I estimate the quantile treatment e↵ects in my

RD design (Frandsen, Frölich and Melly, 2012):

�yit = ↵ ·Di + f(xi) + �t + ✏it, (3)

where Di = 1{xi  c}. Note that this is a quantile regression on the changes in consumption—it

estimates how the treatment intervention changes the distribution of the changes in consumption. I

estimate the equation for the changes in consumption during August and September for customers

in inland climate zones.

Table 5 presents the quantile treatment e↵ects for the 5th, 10th, 25th, 50th, 75th, 90th, and

95th percentiles.32 The treatment e↵ect is larger in the lower tails of the distribution for the change

in consumption. In contrast, the treatment e↵ect is not statistically significant in the median and

the higher tails of the distribution. This evidence suggests that the treatment e↵ect mainly comes

from the lower tail of the distribution and that customers whose consumption is relatively far from

the 20 percent reduction target are likely to give up responding to the incentive. In theory, the

rebate incentive can increase consumption in the left tail of the distribution because if consumers

are sure to receive a rebate, the rebate program acts as a decrease in price for these consumers. I

find a positive point estimate for the 5th percentile, but the estimate is too noisy in the tails of the

32Note that the customers with a 20 percent reduction in consumption fall near the 25th percentile.
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distribution to be statistically di↵erent from zero.

4.5 Potential Long-Run E↵ects

While the rebate program was in e↵ect only during the summer of 2005, the program may have had

a long-run impact on future summer electricity consumption.33 Customers may have learned how

to become more energy e�cient and then reduced their subsequent electricity consumption during

future summers. Another possibility, though probably less plausible, is that the program may have

induced marginal consumers to undertake capital investments in energy-e�ciency that pay o↵ over

multiple years. Because the electricity billing data do not include information on a household’s

durable goods purchases, I cannot distinguish between the two potential e↵ects. However, I can

test for the overall long-run e↵ects by using consumption data for the treatment and control groups

in the summers of 2006, 2007, and 2008.

I use the RD estimation in equation (2) with one modification. Instead of using summer 2005, I

use subsequent summers as a treatment period. For example, to estimate the e↵ect for the summer

of 2006, I define Dit = 1 if i 2 treatment group and t 2 the summer of 2006, and Dit = 0 otherwise.

From the dataset used for the main RD estimation, I exclude the data for the summer of 2005 and

include the data for the summer of 2006. The rest of the procedure is the same as for the main RD

estimation.

Table 6 shows the rebate program’s long-run e↵ects. Consistent with the main RD estimation,

I find nearly zero treatment e↵ects for coastal customers. In contrast, I find long-run conservation

e↵ects for inland customers, resulting in about a 4 percent reduction in consumption. Although the

long-run e↵ects are slightly di↵erent from the short-run e↵ects, these are not statistically di↵erent

at conventional significance levels. The results imply that for inland customers the rebate program

induced persistent conservation e↵ects.34

33I thank a referee for suggesting this analysis. The billing data allow me to test the potential long-run e↵ects for
2006, 2007, and 2008, which is the final year of the available data.

34The persistent e↵ects are consistent with the findings in Ito, Ida and Tanaka (2014). In their randomized field
experiment, consumers who received economic incentives continued to conserve energy after the treatment period
ended. Ferraro, Miranda and Price (2011) and Allcott and Rogers (Forthcoming) also find similar persistent e↵ects
on water and energy conservation from information about peers’ consumption.
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4.6 Using an RD Design with Three-Way Fixed E↵ects to Estimate ATE

An advantage of RD designs is that these require relatively weak identification assumptions to

estimate local average treatment e↵ects. However, RD designs generally do not provide average

treatment e↵ects. For example, my RD estimates are the LATE for customers who opened accounts

a year before the program began. Is the LATE di↵erent from the ATE for customers who opened

accounts earlier? This is an important question because if possible the policy should be evaluated

based on the entire a↵ected population, and because the di↵erence between the LATE and ATE is

not obvious without empirical investigation.35

In RD designs, it is challenging to estimate the treatment e↵ects for samples that are away from

the treatment cuto↵, although recent studies provide several potential approaches to address this

important question (Jackson, 2010; Angrist and Rokkanen, 2012). In my research design, ATE can

be estimated by making an additional identification assumption. I use a method that combines an

RD design with three-way fixed e↵ects. The idea behind this method is similar to the approach

used in Jackson (2010).

Recall that in my RD estimation there is a slight upward trend of the outcome variable over the

running variable. As mentioned above, this trend comes from the general tendency for residential

electricity customers to gradually increase their consumption after opening electricity accounts.

Consider that customer i’s consumption can be modeled as yit = ✓i +�t +g(t�di)+ ✏it, where di is

the account opening date. Consumption depends on customer fixed e↵ects, time fixed e↵ects, and

the growth of consumption g(t� di). The actual functional form of g(t� di) is unknown. Consider

that customer A opened his account on the date of di in a year and that customer B opened her

account on the exact same date in the previous year. The identification assumption that I make in

this section is that g(t� di) is common to customers A and B.

To estimate the ATE, I make two datasets. The first dataset is the electricity consumption data

for summer 2005. This is the same dataset used for the main RD estimation. Recall that the running

variable (xi = di � c) is the account open date (di) relative to the enrollment cuto↵ date (c = June

35The di↵erence between the LATE and ATE is not obvious because many factors can a↵ect them in di↵erent
directions. For example, one could expect that the ATE may be larger than the LATE (in absolute value) if customers
who had lived longer in their homes were less likely to move and therefore had a larger incentive to invest in energy
e�ciency in response to the program. However, such customers may have already made this investment prior to the
program (because they had resided there longer). Then, the ATE may be smaller than the LATE because newer
residents had a larger incentive to invest in response to the program.
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5, 2004). I define a series of 10-day bins for the running variable. For j = ...,�20,�10, 0, 10, 20, ...,

I construct binj , which includes customers whose running variables satisfy j < xi  j + 10. For

example, binj=0 includes customers who opened accounts between June 6 and June 15 in 2004.36

The second dataset is the electricity consumption data for the summer of 2004. For this dataset,

I define the running variable by xi = di � c2003, where c2003 is June 5, 2003. Using this running

variable, I define binj in the same way as the first dataset. For example, binj=0 includes customers

who opened accounts in 2003 between June 6 and June 15. Thus, the second dataset can be

considered a placebo dataset as if there was a rebate program for the 2004 summer based on an

enrollment cuto↵ date in 2003.

Let yisjt be electricity consumption for customer i in dataset s = {1, 2} in bin j for billing

month t.37 Define the treatment dummy variable by Disjt, which equals one if s = 1, j < 0, and

t 2 treatment period. Pooling the first and second datasets, I estimate

yisjt = ↵ ·Disjt + ✓i + �st + µjt + ⌘isjt. (4)

Given my identification assumptions, ↵ provides the program’s ATE. I include three-way fixed

e↵ects: customer-level fixed e↵ects (✓i), time fixed e↵ects that are specific to each dataset (�st),

and those that are specific to each bin (µjt). The idea is that µjt controls for potential confounding

e↵ects of the running variable in a nearly non-parametric way given that the growth pattern of

consumption is shared among customers who opened accounts on a specific day and those who did

so on the same day during the previous year.

I begin by estimating the ATE for customers with �180  xi  90. This estimation includes

customers who opened accounts in the period that was 180 days before and 90 days after the cuto↵

date.38 Similarly, I estimate the ATE for customers with xi � �365 (one year before the cuto↵

date), xi � �730 (two years), xi � �1095 (three years), and xi � �1460 (four years) to examine

36Using a narrower bin size does not significantly change the estimation results.
37I define t for the first and second datasets as follows. Suppose that I set t = 0 for the June 2005 billing month

for the first dataset. Then, t = 0 for the June 2004 for the second dataset. By defining t in this way, I can use bin
fixed e↵ects µjt to control for the running variable in a nearly nonparametric way.

38To understand the intuition, it is useful to consider the four groups that are included in the estimation: (1)
the treatment group (whose account open dates were between January 5 and June 5, 2004), (2) the control group
(between June 6 and September 5, 2004), (3) the placebo treatment group (between January 5 and June 5, 2003), and
(4) the placebo control group (between June 6 and September 5, 2003). Bin fixed e↵ects (µjt) are used to controls
for the running variable given that the growth pattern of consumption is common between customers who opened
accounts on a day and those who did so on the same day in the previous year.
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how the treatment e↵ects di↵er for customers who opened accounts earlier than those households

used in my RD sample.

Table 7 presents the LATE and the ATE for inland climate zones. Panel A reports the overall

treatment e↵ects for all summer billing months and Panel B reports the separate estimates for each

month. As a reference, column 1 shows the LATE from the previous section. Column 2 shows the

ATE for customers who opened accounts in the period that was 180 days before and 90 days after

the cuto↵ date. The ATE and LATE are not statistically di↵erent, although their point estimates

are slightly di↵erent. The standard errors are slightly tighter for the ATE because the ATE is

estimated from a broader range of samples, while the LATE is estimated from the samples close to

the eligibility cuto↵ date.

In columns 2 through 6, I include the customers who opened accounts earlier than 180 days

before the cuto↵ date. For example, column 6 includes customers who opened accounts four years

before the rebate program began. I find that the point estimates of the ATE are not statistically

di↵erent from the LATE at conventional significance levels, although their point estimates are

slightly di↵erent. The results imply that the program’s overall treatment e↵ect is about a 4 percent

reduction in consumption both for the RD sample and for customers who opened accounts earlier

than those included in the RD sample.39

5 Policy Implications

5.1 The Rebate Program’s Cost-E↵ectiveness

In the literature, evaluations of energy conservation programs usually report two measures of cost-

e↵ectiveness: (1) the program’s cost per unit of energy saved and (2) the program’s cost per ton

of emissions abated (Joskow and Marron, 1992; Boomhower and Davis, 2014). Although these are

not direct measures of welfare, these provide a valuable starting point and are widely used in policy

discussions. I provide these values below and discuss their welfare implications in the next section.

Table 8 shows the program’s cost-e↵ectiveness based on the RD estimates of the e↵ect of rebate

incentives on energy conservation.40 The third row shows the direct cost for the rebate payment,

39Similarly, I find that the ATE is not significantly di↵erent from the LATE for coastal customers.
40I use the LATE from my RD estimation. Using the ATE from the previous section does not significantly change

the results because my ATE and LATE are not statistically di↵erent.
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which is the total rebate amount paid to customers. Note that this direct cost does not include

indirect costs such as administrative and marketing costs. This direct cost also does not include costs

undertaken by households who reduced their energy consumption. Therefore, the cost-e↵ectiveness

measure in this analysis should be considered a lower bound of the program’s cost. The fourth

row shows the estimated reductions in consumption based on the RD estimates. The fifth row

translates the estimates into reductions in carbon emissions by using the average carbon intensity

of electricity consumed in California, which is 0.9 lb. per kWh (California Air Resources Board,

2011). The sixth row shows the program cost per kWh of electricity saved. The seventh row

provides the program cost per ton of carbon dioxide abated, which may be overestimated because

non-carbon externalities are also abated (e.g., particulate reductions). In the final row, based on

Greenstone and Looney (2012) I calculate the noncarbon external benefits, subtract these from the

program cost, and divide the adjusted program cost by the abated carbon dioxide.41

The results provide important implications. First, the program’s cost-e↵ectiveness di↵ers sub-

stantially between coastal and inland areas. In coastal areas, the program is a very expensive way

to reduce electricity consumption. This is because the program did not induce significant reduc-

tions in usage but paid substantial rebates to consumers who reduced their consumption for reasons

unrelated to the program’s incentive. The program cost, 94.5 cents per kWh, is large relative to

any reasonable range for the marginal cost of electricity. In contrast, the program cost per kWh

reduction is much smaller in inland areas, where it costs 2.5 cents to obtain a kWh reduction in

consumption.

Second, the overall program was unlikely to be cost-e↵ective within a reasonable range of as-

sumptions regarding the private and social costs of electricity. The overall program cost was 17.5

cents per kWh reduction. The average cost of electricity supplied by SCE was 13.37 cents per kWh

in 2005. To justify the program’s cost-e↵ectiveness by the externality from carbon emissions, the

social cost of carbon has to be larger than $92 per ton of carbon dioxide. If I subtract the noncarbon

41Table 1 in Greenstone and Looney (2012) provides estimates for the non-carbon external cost from electricity
generation from existing coal plants (34 cents/kWh) and natural gas plants (2 cents/kWh). In 2005, 33.6 percent
of electricity consumed in California came from natural gas and 9.8 percent came from coal (California Energy
Comission, 2014). I assume that other types of power plants have zero external cost, although this assumption might
be invalid when taking into account other external costs, such as the cost from potential nuclear accidents. With
these numbers, the non-carbon external benefits from the estimated reductions in consumption are $39,739 (coastal),
$202,950 (inland), and $242,689 (total). I subtract them from the direct program cost to calculate the adjusted
program cost. This adjustment does not change my results substantially because only small amount of the electricity
consumed in California comes from coal.
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external benefits from the program cost, the social cost of carbon emissions has to be larger than

$82 per ton of carbon dioxide, which is larger than most estimates in the literature (Greenstone,

Kopits and Wolverton, 2011). In addition, this calculation does not include the program’s indirect

costs such as administrative and marketing expenses. According to the study by Wirtshafter As-

sociates (2006), SCE spent about $4 million to administer and advertise the program. The overall

program cost is 24.1 cents per kWh including the indirect costs.42

Note that I use the estimates for short-run treatment e↵ects to calculate the cost-e↵ectiveness

shown in Table 8. For inland areas, I also find significant long-run treatment e↵ects for the summers

of 2006, 2007, and 2008. How does the cost-e↵ectiveness change if I account for the long-run e↵ects?

Given a set of assumptions, I calculate the long-run cost-e↵ectiveness for the inland areas.43 The

estimates of the long-run treatment e↵ects imply that the program produced reductions in electricity

consumption by 156,305 GWh and carbon dioxide by 70,337 tons in the four years from 2005 to

2008. With a discount rate of 4 percent, the long-run program cost for the inland areas is 0.9 cents

per kWh and $20 per ton of carbon dioxide. This calculation implies that it is important to consider

the programÕs potential long-run e↵ects when conducting the cost-benefit analysis. However, even

with accounting for the long-run considerations, the program’s overall cost is still expensive ($160

per ton of carbon dioxide) because the long-run treatment e↵ects were essentially zero in coastal

areas.

5.2 Welfare Implications

The high program cost found in the previous section does not necessarily mean that the program is

not welfare improving because the rebate expense can be considered a transfer between customers.

The utility companies passed the cost to customers by increasing the electricity price afterward.44

42An important caveat is that the California 20/20 rebate program provided a rebate for consumers based on their
monthly electricity consumption. The marginal cost of electricity is generally higher in peak hours and lower in
o↵-peak hours. If the reductions mostly come from peak hour usage, the benefit comes not only from reductions in
emissions but also from savings of the relatively high marginal cost of electricity. In this case, the cost-e↵ectiveness
would be better than in my calculation. On the other hand, if the reduction mostly comes from o↵-peak usage, the
cost-e↵ectiveness would be worse than in my calculation. The number of reductions that come from peak and o↵-peak
hours cannot be quantified from the monthly billing data.

43Every year, about 15 percent of customers terminate their electricity accounts when they move. The reductions
in consumption in future years come from customers who maintained the same electricity account. I use a discount
rate to compare the rebate expense in 2005 and benefits in future years. I use the Federal Reserve’s discount rate,
which was 4 percent in the summer of 2005.

44Most utility conservation programs in the United States recover the cost by increasing the electricity price. This
is a notable di↵erence from the energy-e�cient appliance replacement program in Mexico (Boomhower and Davis,
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The rebate expense, therefore, can be considered a transfer from all customers to rebated customers

through the electricity price.

Consider two simple cases. Suppose that customers pay a linear electricity price that is lower

than the social marginal cost of electricity. In this case, the rebate program can improve social

welfare even if there is no treatment e↵ect. The rebate expense slightly increases the electricity

price afterward and can improve welfare if the new price is closer to the social marginal cost of

electricity. Conversely, if customers pay a linear electricity price that is higher than the social

marginal cost of electricity, the rebate program is likely to lower welfare because there is a greater

price distortion after the electricity price increases.

Increasing block pricing complicates the welfare analysis of the California 20/20 program (Boren-

stein, 2012; Ito, 2014). Here, the marginal price of electricity is an increasing step function of a

household’s monthly consumption. That is, customers pay a higher marginal price when they con-

sume more electricity during their billing month. In 2005 and 2006, the marginal prices for the

first through fourth tiers were 12, 14, 17, and 20 cents per kWh. A key question then becomes

what is the correct social marginal cost of electricity. To estimate this, I make three assumptions.

First, suppose that the long-run private marginal cost of electricity is equal to the average cost

of electricity under the existing tari↵ schedule. Then, the private marginal cost is 13.37 cents per

kWh for SCE in 2005. Second, suppose that the externality from carbon emissions is 0.95 cents and

that the noncarbon externality is 0.4 cents per kWh.45 Then, the social marginal cost of electricity

is 14.72 cents per kWh.

In the billing data, about half of the customers are in the first and second tiers and half are in

the third and fourth tiers. Half the customers, therefore, pay marginal prices that are slightly lower

than the social marginal cost, while the other half pay marginal prices that are significantly higher

than the social marginal cost of electricity. In theory, the rebate program can improve welfare if the

cost is recovered from the two lower tiers. However, in practice, California’s electric utilities have

taken the opposite approach because of a regulatory constraint. After the 2000–2001 California

2014), where the cost is paid by tax revenue.
45I use Greenstone, Kopits and Wolverton (2011) for the social marginal cost of a ton of carbon emissions ($21

per ton), California Air Resources Board (2011) for the average carbon intensity of electricity consumed (0.9 lb. per
kWh), and Greenstone and Looney (2012) for the noncarbon external cost for generating electricity from existing
coal plants (34 cents/kWh) and natural gas plants (2 cents/kWh). In 2005, 33.6 percent of electricity consumed in
California came from natural gas and 9.8 percent came from coal (California Energy Comission, 2014)
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electricity crisis, regulators and state legislators were concerned about the impact of price increases

on lower-income customers, and the first two tiers were virtually frozen. In fact, SCE increased only

the third and fourth tier rates in 2006 (from 17 to 23 cents and from 20 to 32 cents), while it did not

change the first and second tier rates. It is therefore di�cult to argue that the program improved

social welfare unless the externality from electricity is substantially larger than the estimates in the

literature.

6 Conclusion

Subsidy policies that intend to correct negative externalities often create asymmetric incentives

because increases in externalities remain unpriced. I study the implications of such asymmet-

ric incentives by using a RD design for the California 20/20 electricity rebate program. Using

customer-level administrative data, I find precisely estimated zero causal e↵ects in coastal areas

and a significant 4 percent consumption reduction in inland areas. In addition, I find evidence that

income, climate conditions, and air conditioner saturation significantly drive the heterogeneity and

that asymmetric subsidy structures weaken incentives because consumers whose usage is far from

the rebate target respond very little to the program.

The heterogeneous treatment e↵ects result in the program’s cost-e↵ectiveness being very dif-

ferent between coastal areas (94.5 cents per kWh reduction) and inland areas (2.5 cents per kWh

reduction). However, because substantial rebates were paid to customers in the areas for which I

find nearly zero treatment e↵ects, the overall program cost was 17.5 cents per kWh reduction and

$381 per ton of carbon dioxide reduction. Therefore, the cost of the program was unlikely to be

e↵ective in reducing externalities over a reasonable range of the social marginal cost of electricity.

This paper’s findings imply that one way to improve the program’s cost-e↵ectiveness is to

target lower-income customers and customers in areas with high summer temperatures. Another

important way to improve the program’s e�ciency is to target consumption during peak hours,

when the marginal cost of electricity is likely to be high. For the 2005 California 20/20 rebate

program, regulators could not target peak hours because residential customers in California did not

have smart meters, which record their hourly electricity consumption. Recently, a growing number

of customers in many countries have gained access to smart meters, which makes it possible for
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regulators to target consumption in particular hours.46 This new technology can be also used to

inform consumers about their real-time consumption, which is likely to enhance their response

to economic incentives. However, even with smart meters, some of the fundamental problems

characterized in this paper remain if regulators continue to provide asymmetric incentives that

subsidize reductions in consumption but do not address increases in consumption.47

46See Wolak (2010); Ito, Ida and Tanaka (2014); Jessoe and Rapson (Forthcoming)
47Despite this problem, in practice, peak-time rebate (PTR) programs are often politically favored over peak-time

pricing in ongoing policy discussions of dynamic electricity pricing. There is strong political opposition to peak-time
pricing. In contrast, there is relatively less political opposition to PTR programs, which is equivalent in principle to
the California 20/20 rebate program in the sense that the rebate subsidizes reductions in consumption but does not
penalize increases in consumption (Borenstein, 2013).
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Figure 1: Theoretical PredictionsFigure 1: Theoretical Predictions
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Note: This figure illustrates the theoretical predictions of consumer behavior when they are faced with the
conservation subsidy schedule of the California 20/20 rebate program. The subsidy makes a notch in the
budget constraint. If consumers respond to the expected price because of the uncertainty in consumption,
the budget constraint based on the expected price becomes the dotted smooth line.
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Note: This figure shows the service area of California electric utilities. Source: California Energy Commission.
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Note: This figure illustrates the theoretical predictions of how consumers behave when they are faced with
the conservation subsidy schedule of the California 20/20 rebate program. The subsidy makes a notch in the
budget constraint. If consumers respond to the expected price because of the uncertainty in consumption,
the budget constraint based on the expected price becomes the dotted smooth line.
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Figure 2: Testing the Validity of the Regression Discontinuity Design
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Note: The horizontal axis shows the account open date relative to the cuto↵ date of the program eligibility,
which was June 5, 2004. Each dot shows the local mean with a 15-day bandwidth. The solid line shows the
local linear fit and the dashed lines present the 95 percent confidence intervals. The confidence intervals for
the fitted lines for variables from Census data are adjusted for clustering at the census block group level.
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Figure 3: The E↵ects of Subsidy Incentives on Energy Conservation in September 2005
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Note: This figure presents the RD estimates of the e↵ect of subsidy incentives on energy conservation for
the September 2005 billing period. The horizontal axis shows customers’ account opening date relative to
the cuto↵ date for program eligibility, which was June 5, 2005. The vertical axis presents the log electricity
consumption in September 2005, in which I subtract customer fixed e↵ects by using the consumption data
from billing months before the treatment period. Each dot shows the local mean with a 15-day bandwidth.
The solid line shows the local linear fit and the dashed line shows the quadratic fit.
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Figure 4: The Di↵erence in Log Consumption between Treatment and Control Groups
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Note: This figure presents the RD estimates of the di↵erence in log consumption between the treatment
and control groups. Customer fixed e↵ects are subtracted by using consumption data before January 2005.
I use a 90-day bandwidth and quadratic controls for the trend of the running variable, which is the same
specification used to obtain my main estimation results shown in Table 2.
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Table 1: Changes in customer-level Consumption When There Was No Rebate Program

Year Weather Median of the percent change in Percent of customers who had
conditions customer-level consumption 20 percent or more reductions

2003 to 2004 Cooler in 2004 -1.7% 14.3%
1999 to 2000 Warmer in 2000 7.7% 6.8%

Note: This table shows the distribution of the percent change in customer-level electricity consumption
between two summers in which no rebate program was in e↵ect. I use customer-level monthly consumption
data for summer billing months (June, July, August, and September billing months) in Southern California
Edison (SCE). Note that although there was the California electricity crisis in 2000, SCE customers did not
experience a price spike because their retail rates were capped (Ito, 2014).

Table 2: RD Estimates of the E↵ect of Rebate Incentives on Energy Conservation

(1) (2) (3) (4)

Treatment Effect -0.001 -0.042
(0.002) (0.013)

Treatment Effect 0.003 -0.034
in May (0.003) (0.015)

Treatment Effect -0.001 -0.055
in June (0.003) (0.017)

Treatment Effect 0.004 -0.041
in July (0.004) (0.019)

Treatment Effect -0.003 -0.037
in August (0.004) (0.018)

Treatment Effect -0.004 -0.056
in Septermber (0.003) (0.016)

Observations 2,540,472 2,540,472 208,537 208,537

Coastal Climate Zones Inland Climate Zones

Note: This table shows the RD estimates of the e↵ect of rebate incentives on energy conservation. The
dependent variable is the log of electricity consumption. I estimate equation (2) with a 90-day bandwidth
and quadratic functions to controls for the running variable. The standard errors are clustered at the
customer level to adjust for serial correlation.
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Table 3: Robustness Checks: Alternative Bandwidths and Specifications

(1) (2) (3) (4) (5) (6)

Treatment Effect 0.004 0.003 0.005 -0.034 -0.039 -0.029
in May (0.004) (0.003) (0.004) (0.015) (0.014) (0.017)

Treatment Effect -0.002 -0.001 -0.003 -0.055 -0.059 -0.05
in June (0.004) (0.004) (0.004) (0.017) (0.016) (0.019)

Treatment Effect 0.004 0.005 0.005 -0.041 -0.039 -0.042
in July (0.004) (0.004) (0.005) (0.019) (0.017) (0.022)

Treatment Effect -0.004 -0.005 -0.003 -0.036 -0.034 -0.035
in August (0.004) (0.004) (0.004) (0.018) (0.016) (0.020)

Treatment Effect -0.005 -0.003 -0.004 -0.056 -0.053 -0.052
in Septermber (0.003) (0.004) (0.004) (0.016) (0.015) (0.018)

Controls for f(x) Local linear Quadratic Quradratic Local linear Quadratic Quradratic 
Bandwidth 90 days 120 days 60 days 90 days 120 days 60 days
Observations 2,540,472 3,325,388 1,707,589 208,537 237,264 162,067

Coastal Climate Zones Inland Climate Zones

Note: This table shows RD estimates with di↵erent bandwidth choices and alternative controls for the
running variable. The dependent variable is the log of electricity consumption. The standard errors are
clustered at the customer level to adjust for serial correlation.
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Table 4: RD Estimates Interacted with Income, Climate, and Air Conditioner Saturation

(1) (2) (3) (4)

Treatment 0.095 -0.297 -0.199 -0.478
(0.051) (0.055) (0.077) (0.056)

Treatment*Ave.Temp.(F) -0.0015 -0.0016
(0.0007) (0.0008)

Treatment*ln(Income) 0.029 0.031 0.044
(0.005) (0.005) (0.003)

Treatment*Air Conditionar -0.014
(0.005)

Observations 2,749,009 2,749,009 2,749,009 2,749,009
Note: This table presents the RD estimates of the e↵ect of rebate incentives on energy conservation inter-
acted with income, climate conditions, and air conditioner saturation. The dependent variable is the log
of electricity consumption. I use a 90-day bandwidth and quadratic controls for the trend in the running
variable. Income is at the census block group level. Average temperature and air conditioner saturation (the
ratio of customers who own air conditioners) are at the five-digit zip code level. The standard errors are
clustered at the customer level to adjust for serial correlation.

Table 5: Quantile Regressions on the Change in Log Consumption for Inland Climate Zones

p5 p10 p25 p50 p75 p90 p95

Treatment 0.034 -0.099 -0.078 -0.007 -0.020 -0.019 -0.025
(0.056) (0.035) (0.018) (0.018) (0.019) (0.033) (0.063)

Observations 37,914 37,914 37,914 37,914 37,914 37,914 37,914
Note: This table presents the quantile RD estimates of the e↵ect of rebate incentives on energy conservation.
The dependent variable is the change in the log of electricity consumption from 2004 to 2005. I use a 90-day
bandwidth and quadratic controls for the trend in the running variable. The standard errors are clustered
at the customer level to adjust for serial correlation.

37



Table 6: Potential Long-run E↵ects

2005 2006 2007 2008 2005 2006 2007 2008

Treatment Effect -0.001 0.001 -0.002 0.002 -0.042 -0.040 -0.048 -0.043
(0.002) (0.003) (0.004) (0.004) (0.013) (0.018) (0.021) (0.022)

Coastal Inland

Note: This table shows the RD estimates of the potential long run e↵ect of rebate incentives on energy
conservation. The dependent variable is the log of electricity consumption. The treatment variable is the
interaction of the treatment group and the summer of 2006, 2007, and 2008, which are one, two, and three
years after the rebate program. The standard errors are clustered at the customer level to adjust for serial
correlation.

Table 7: Average Treatment E↵ects (ATE) for Inland Climate Zones

Estimates: LATE ATE ATE ATE ATE ATE
Bandwidth: 90 days 180 days 1 year 2 years 3 years 4 years

(1) (2) (3) (4) (5) (6)
Panel A: All months
Treatment Effect -0.042 -0.041 -0.043 -0.042 -0.037 -0.034

(0.013) (0.010) (0.009) (0.008) (0.008) (0.008)

Treatment Effect -0.034 -0.036 -0.037 -0.042 -0.036 -0.037
in May (0.015) (0.011) (0.009) (0.009) (0.009) (0.008)

Treatment Effect -0.055 -0.046 -0.050 -0.048 -0.041 -0.038
in June (0.017) (0.013) (0.011) (0.010) (0.010) (0.010)

Treatment Effect -0.041 -0.037 -0.039 -0.037 -0.030 -0.027
in July (0.019) (0.013) (0.012) (0.011) (0.011) (0.010)

Treatment Effect -0.037 -0.040 -0.041 -0.035 -0.030 -0.024
in August (0.018) (0.013) (0.011) (0.010) (0.010) (0.010)

Treatment Effect -0.056 -0.048 -0.053 -0.052 -0.050 -0.047
in Septermber (0.016) (0.012) (0.010) (0.009) (0.009) (0.009)

Observations 208,537 420,149 640,415 978,707 1,257,978 1,508,618

Panel B: Each month

Note: The dependent variable is the log of electricity consumption. Given the identification assumptions
described in the main text, this estimation produces the average treatment e↵ect (ATE) for the samples
included in each estimation. Standard errors are clustered at the customer level to adjust for serial correlation.
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Table 8: Program Cost Per Estimated Reductions in Consumption and Carbon Dioxide

Coastal Inland Total

Number of Customers 3,190,027 299,178 3,489,205

Consumption in Summer 2005 (kWh) 8,247,457,920 1,154,292,248 9,401,750,168

Direct Program Cost for Rebate ($) 9,358,919 1,250,621 10,609,540

Estimated Reduction (kWh) 9,908,840 50,605,714 60,514,555

Estimated Reduction in Carbon Dioxide (ton) 4,459 22,773 27,232

Program Cost Per kWh ($/kWh) 0.945 0.025 0.175

Program Cost Per Carbon Dioxide ($/ton) 2,099 55 390

Program Cost Per Carbon Dioxide ($/ton) 2,090 46 381
(Adjusted for non-carbon external benefits)

Note: This table reports the cost-benefit analysis of the 20/20 program for SCE’s coastal areas, inland areas,
and all service areas. Row 1 shows the number of residential customers who maintained their accounts in the
summer of 2004 and 2005. Row 2 presents the aggregate consumption in the summer months. Row 3 reports
the aggregate amount of rebate paid to customers. Row 4 shows the estimated kWh reduction from the
treatment e↵ect of the program. Row 5 translates this reduction into the reduction in carbon emissions by
using the average carbon intensity of electricity consumed in California, which is 0.9 lb. per kWh according
to California Air Resources Board (2011).
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Online Appendix (Not For Publication)

Figure A.1: Eligibility Rule of the California 20/20 Rebate Program in 2005

Time!
Summer 2005!

June 5, 2004!
(Cutoff date)!

Treatment!

Control!

Start Electricity Service!
 on or before June 5, 2004!

Notice Letter!

Start Electricity Service!
 after June 5, 2004!

Note: Consumers who opened their electricity account on or before the cuto↵ date received a notice letter
around April 2005. The letter informed them that they were going to receive a 20 discount on their entire
summer electricity bill if they could reduce electricity consumption by 20 relative to their consumption in
the summer of 2004. Those who opened their account after the cuto↵ date were excluded from the program.
This eligibility rule created a sharp discontinuity in program enrollment because it was strictly enforced by
the power companies.
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Figure A.2: California Electric Utility Service Areas

Figure 2: California Electric Utility Service Areas
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Note: This figure shows the service area map of California electric utilities. Source: California Energy
Commission.
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Note: This figure shows the service area for California’s electric utilities. Source: California Energy Com-
mission.
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Figure A.3: Cooling Degree Days in August 2005 in California

Note: This figure shows the cooling degree days (CDD) in August 2005 in California by zip code.
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Table A.1: Aggregate Consumption and Rebates in the Summer Billing Months in 2005

Utility Consumption Revenue customers Rebate
(kWh) ($) Receiving Rebates ($)

PG&E 10,065,216,512 1,320,995,584 8.24% 10,786,594
SCE 9,401,883,648 1,257,056,768 7.91% 10,609,540

SDG&E 2,284,046,848 363,180,320 9.07% 4,325,000

Note: This table reports the statistics based on the residential billing data for June, July, August, and
September 2005 billing months. I include customers who maintained their account in both the summers
of 2004 and 2005. The rebate expenditure does not include the administrative and advertising costs of the
program. All expenditures are in nominal 2005 dollars.

Table A.2: Eligibility cuto↵ dates for the California 20/20 rebate program

SDG&E
SCE

June 30,2004
June 5,2004
June1,2004PG&E
Cut-off dateUtility

SDG&E
SCE

June 30,2004
June 5,2004
June1,2004PG&E
Cut-off dateUtility

Time

Start Electricity Service 
on June 6, 2004

Summer 2005June 5, 2004

Treatment

Control

Start Electricity Service 
on June 5, 2004

Notice Letter
Note: This table shows the eligibility cuto↵ dates for the California 20/20 rebate program. The eligibility
cuto↵ dates were di↵erent between customers in the three companies. It was June 5 for SCE, June 1 for
PG&E, and June 30 for SDG&E. It means that the definition of the running variable has to be di↵erent
between customers for the three companies. In addition to the eligibility cuto↵ date, there is one more
substantial di↵erence between the rebate programs of the three utility companies; the way that the companies
calculated the outcome variable (the change in electricity consumption at the customer-level) was di↵erent.
SCE used each customer’s June, July, August, and September billing cycles to calculate the average daily
electricity use (ADU). It means that the exact treatment period depends on each customer’s billing cycle,
because customers have di↵erent billing cycles (e.g. a customer’s June billing cycle starts on June 1, while
other customer’s June billing cycle starts on June 30). SDG&E calculated ADU in the same way but their
treatment periods were July, August, September, and October billing cycles, which were di↵erent from SCE’s
period. Finally, PG&E calculated ADU by using a common period to all customers. The period was from
June 1 to September 30. When a customer’s billing days overwrapped May and June or September and
October, PG&E prorated the monthly consumption. PG&E notified customers this calculation method
before the rebate program started.
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Table A.3: RD Estimates of the E↵ect of Rebate Incentives on Energy Conservation in PG&E and
SDG&E

(1) (2) (3)
PG&E PG&E SDG&E
Coastal Inland Coastal

Treatment Effect in May 0.001 -0.031*** 0.001
(0.003) (0.010) (0.007)

Treatment Effect in June -0.002 -0.041*** -0.002
(0.002) (0.011) (0.007)

Treatment Effect in July -0.001 -0.043*** -0.001
(0.003) (0.010) (0.008)

Treatment Effect in Aug. 0.002 -0.042*** 0.002
(0.003) (0.011) (0.008)

Treatment Effect in Sep. 0.003 -0.035*** 0.003
(0.003) (0.009) (0.007)

Observations 2,764,960 867,884 1,234,346

Note: This table presents the RD estimates of the e↵ect of rebate incentives on energy conservation for
samples in PG&E and SDG&E. Note that the program eligibility cuto↵ date is June 1, 2004 for PG&E and
June 30, 2004 for SDG&E. In SDG&E, the vast majority of consumers live in coastal areas. The dependent
variable is log of electricity consumption. I use the 90-day bandwidth and quadratic controls for the trend
in the running variable. Standard errors are clustered at the customer level to adjust for serial correlation.
The symbols ***, **, and * show 1%, 5%, and 10% statistical significance respectively.
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