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Abstract

In electricity markets, the price paid by retail customers during periods of peak
demand is far below the cost of supply. This leads to overconsumption during peak
periods, requiring the construction of excess generation capacity compared to first-
best prices that adjust at short time intervals to reflect changing marginal cost. This
paper investigates the response of small commercial and industrial establishments to
a four-hour increase in retail electricity prices invoked by individual utilities during
peak demand periods 15 times per year. This policy is intended to reduce electricity
consumption when generation costs are highest. I find that the approximately tripled
prices reduce establishment peak electricity usage by 13.5 percent. Using a model of
capacity investment decisions, I find the program delivers 44 percent of the benefits of
the first-best policy of continuously varying prices and suggest two simple improvements
in program design that could nearly double these welfare gains.
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1 Introduction

Supplying electricity during periods of peak demand is expensive. Because electricity

storage is not cost e↵ective, su�cient generation capacity must exist to satisfy demand at all

moments in time. To avoid blackouts, electricity providers regularly invest in power plants

that operate only on the few highest demand days of the year. Electricity prices, however, do

not reflect the high cost of meeting peak demand. Most retail prices reflect the average cost

of providing power and do not vary based on when this power is consumed. As a result, most

retail electricity customers are undercharged for their electricity at peak times, leading to

ine�ciently high consumption (Boiteux 1949; Steiner 1957).

In the long run, higher peak consumption necessitates additional generation capacity. In

most U.S. electricity markets, capacity investment decisions are made by regulators through

the “resource adequacy” process (Joskow and Tirole 2007), where the regulator uses past

demand levels to determine generation capacity requirements for electricity providers. If

retail prices were adjusted to reflect the full cost of generation during peak periods, this new

price would reduce both peak demand and the regulator’s capacity requirement. Borenstein

(2005) and Borenstein and Holland (2005) estimate the e�ciency loss due to flat retail prices

to be 5 to 10 percent of wholesale electricity costs.

The first-best policy is to charge a price that reflects the short-run marginal scarcity

value during periods of peak demand. In the case of electricity, this policy is “real-time

pricing,” under which the retail price changes hourly or more frequently to reflect the time-

varying marginal cost of supply. Real-time pricing is technologically feasible at low cost for

most commercial and industrial customers because of the wide-scale deployment of smart

meters (Joskow and Wolfram 2012).1 Despite its large potential benefits, however, real-time

pricing remains politically infeasible. Because many customers receive large cross-subsidies

under existing flat-pricing schemes relative to real-time pricing, mandatory real-time pricing

would be di�cult to implement without politically unpopular transfer payments (Borenstein

2007).

The inability to implement real-time pricing suggests two important questions. First,

how large are the potential benefits of real-time pricing? These benefits depends on the

extent to which customers would respond to short-run price changes. If demand is su�ciently

price inelastic, then any potential costs of implementing real-time pricing could outweigh the

benefits. Borenstein (2005), however, shows that, for most plausible elasticities, the benefits

1Smart meter deployment may be financially justified because the meters eliminate the need to pay
employees to manually check electricity usage every month. As of 2016, the smart meter penetration for
C&I customers in California and the rest of the U.S. was 80 percent and 45 percent, respectively (Energy
Information Administration 2016a).
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are very likely to outweigh the costs. Second, to what extent can second-best policies achieve

the benefits of real-time pricing? This paper addresses the second question by examining

a common second-best policy that raises electricity prices on high-demand days and by

measuring this program’s e↵ectiveness compared with the first-best, real-time pricing policy.

I study the largest peak demand program to date in the U.S., which includes commercial

and industrial (C&I) establishments in the Pacific Gas & Electric (PG&E) Northern California

service territory. Programs like PG&E’s “Peak Pricing” are among the most common time-

varying pricing policies in the U.S. The popularity of such programs has grown with the

recent deployment of advanced smart meter technology. Peak pricing programs also have the

potential to facilitate the integration of renewable resources such as wind and solar at lower

costs by, for example, charging higher prices when renewable generation quickly changes (e.g.,

when the sun sets). They also could be used in times of emergency, such as during wildfires,

to help balance supply and demand when transmission or generation infrastructure is o✏ine.

The peak pricing implementation I study is focused on reducing peak demand. It

gives PG&E the ability to declare up to 15 “event days” per summer, during which the

retail electricity price more than triples between 2:00 p.m. and 6:00 p.m. Customers are

notified 1 day before each event day, and they receive a small discount on all other summer

consumption in exchange for their participation in the program. My analysis focuses on

small C&I establishments because the way in which the program was implemented for these

customers created a quite similar—and exogenous—control group to which the treated group

could be compared.

To identify the impacts of this peak pricing program, I leverage the rules that governed

its rollout. PG&E placed establishments on peak pricing by default only after they satisfied

a set of non-manipulable eligibility criteria. The establishments are allowed to opt out at any

time. I compare establishments that satisfied the eligibility criteria for the first wave of peak

pricing to similar establishments that just missed being eligible by not satisfying the eligibility

criteria. I provide supporting evidence that assignment to peak pricing is as-good-as-random,

using data from before program implementation. I estimate program impacts using a panel

fixed e↵ects instrumental variables design with an eligibility instrument.

Using hourly electricity consumption data, I find that peak pricing reduces electricity

consumption for non-coastal establishments by 13.5 percent on event days compared with a

control group. This estimate is likely a lower bound on the long-run impact of peak pricing

because establishments were given “bill protection” during the program window I evaluate.

Bill protection guarantees that customers do not pay more than if they were not on peak

pricing, suggesting establishments may have exerted less e↵ort toward reducing consumption
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knowing they would not be responsible for a higher bill. Even with this backstop in place,

establishments in warmer regions significantly reduced their consumption.

I estimate that the program would reduce PG&E peak demand by 118 MW during

summer months among small C&I customers when fully implemented by 2018, thereby

reducing the need for one or more specialized power plants that are constructed with the sole

purpose of generating electricity during the highest demand hours of the year. To evaluate

the welfare impacts of peak pricing, I model the regulatory resource adequacy process that

governs the amount of capacity built specifically to meet peak demand. I find that the

estimated reduction in peak demand increases welfare on the PG&E grid by 159 million

over a 30-year period because of avoided generation capacity investments.

To put these welfare e↵ects in perspective, I compare my estimated peak demand

reductions with a first-best real-time price. Using the empirical estimates of demand response,

I calculate that the current program recovers 44 percent of the first-best welfare gains. I then

consider simple adjustments to the policy to better target the highest demand days and show

that substantial welfare gains would likely result from reducing the number of event days

and increasing the event-day price. This better-targeted peak pricing policy could achieve 83

percent of first-best welfare gains.

This paper makes two distinct contributions to the economics literature. First, no

previous academic research has estimated the impacts of day-ahead peak pricing on the U.S.

C&I sector, which is responsible for two-thirds of California and U.S. electricity demand

(Energy Information Administration 2016b). The program rollout that I study caused more

business establishments to permanently move to peak pricing than any similar program in

the U.S. Previous empirical work has focused on temporary peak pricing pilot programs in

the residential sector (Bollinger and Hartmann 2019; Burkhardt et al. 2019; Fowlie et al.

2017; Ito et al. 2018; Jessoe and Rapson 2014; Wolak 2007, 2010).

Second, I also contribute to the literature on long-run investment e�ciency in electricity

markets by estimating the welfare impacts of peak pricing. In particular, I model how demand

reductions caused by peak pricing impact the long-run capacity construction decisions in

electricity markets—a necessary input to any full welfare analysis of peak pricing. Previous

papers studying time-varying electricity pricing have focused on real-time pricing using stylized

models that assume prices, demand, and capacity construction can respond instantaneously

to balance supply and demand (Borenstein 2005, 2012; Borenstein and Holland 2005; Holland

and Mansur 2006). These assumptions preclude the existing models from evaluating the

welfare consequences of peak pricing because in practice building additional power plants

takes years of planning, which requires grid operators to keep excess capacity in reserve to

avoid blackouts.
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I develop a new model based on the regulatory mechanisms that actually drive power

plant construction decisions in electricity markets, which enables me to estimate welfare

impacts under a more realistic set of assumptions. This new model is needed because the

existing models are not able to e↵ectively evaluate the impacts of critical peak pricing in

the presence of regulatory constraints that exist across most of the U.S.2 My model is also

able to decompose how welfare depends on specific program design features, allowing me to

propose design improvements informed by my empirical estimates.

The rest of the paper is organized as follows: Section 2 discusses the electricity industry,

related literature, and the peak pricing program in detail. Section 3 outlines the data used

in the analysis. Section 4 describes the empirical strategy, and Section 5 presents results.

Section 6 proposes a model for calculating the welfare impacts of peak pricing programs,

discusses potential improvements, and benchmarks the outcomes to the first-best, real-time

price. Section 7 concludes.

2 Background

Most electricity in the U.S. is sold to retail customers at a constant flat rate that

does not reflect the time-varying marginal cost of producing another kilowatt-hour (kWh).

In most cases, the marginal cost consists of two components. The first is the short-run

marginal production cost (SRMC), which includes the fuel costs associated with producing

an additional kWh. The second is due to a regulatory process in most states that requires

an electricity supplier to demonstrate it has adequate capacity to meet the peak demand it

serves. These resource adequacy requirements are generally based on previous peak demand

quantities. As a result, each additional kWh consumed on the highest demand days of the

year increases future capacity requirements, adding significant costs.

The welfare costs of the current system of flat-rate pricing and the benefits of real-time

pricing are well studied in the economics literature. The research shows that real-time pricing

could provide large, long-run e�ciency gains compared with the current flat-rate pricing by

reducing total quantity demanded (load) during high-demand hours and increasing load when

generation costs are low (Holland and Mansur 2006). By reducing peak demand, real-time

pricing reduces the need for costly power plants specifically built for the hottest few days of

the year (Borenstein 2005, 2012; Borenstein and Holland 2005).

Despite the large potential welfare gains from real-time pricing, implementation is

politically challenging. Less than 1 percent of C&I customers in the U.S. are on some form

2My approach complements the work of Boomhower and Davis (2020), who use capacity market payments
to value the benefits of energy e�ciency at peak hours.
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of real-time pricing (Energy Information Administration 2018).3 In the absence of real-time

pricing, policymakers have introduced a number of other policies that pass through some

portion of time-varying prices to customers without unexpected volatility. Time-of-Use

(TOU) pricing adjusts the price of electricity in a prescribed manner by hour, day, and season,

but does not pass through high-price events. For example, a previously flat retail price of

.20/kWh could be changed to a TOU rate of .25/kWh between noon and 6:00 p.m., when

demand is generally high, and .15/kWh at night. A number of studies have examined

how C&I electricity customers respond to TOU prices. Some have found little response to

TOU prices (Jessoe and Rapson 2015), while others have found small reductions in peak

consumption or substitution to o↵-peak hours when prices are increased (Aigner et al. 1994;

Aigner and Hirschberg 1985; Qiu et al. 2018). TOU prices can capture some of the average

shape of marginal costs, but they do not adjust when wholesale costs spike on the highest

demand days of the year. It is during these highest-demand hours that real-time pricing is

the most valuable, and TOU pricing is not able to capture most of the benefits. Borenstein

(2005) uses a simulation model to show that TOU captures only 20 percent of the e�ciency

gains of real-time pricing.

Peak pricing programs, like the one studied in this paper, are designed to address the

costs associated with the highest demand days of the year. To date, however, research on

consumer response to peak pricing programs has focused on the residential sector. Existing

studies find that households reduce their energy consumption when facing high prices during

peak hours, though the estimated response magnitude varies across studies and depending

on the use of automation technology. There has been no published research to date on peak

pricing in the C&I sector.4 Because firms are responsible for twice the electricity usage of the

residential sector, this paper fills an important gap.

The existing residential peak pricing studies have been run as temporary utility experi-

ments and pilot programs. Fowlie et al. (2017) partnered with the Sacramento Municipal

Utility District in California to study the impacts of opt-in versus opt-out peak pricing

programs. They find that households in the opt-out program reduce their electricity usage

by 13.2 percent during peak pricing events. Households that chose to opt in to peak pricing

reduced their usage by 26.5 percent. Other residential peak pricing research has focused on

the importance of information and technology in responding to peak pricing. Jessoe and

3Form EIA-861, which collects this data, records the number of customers on dynamic pricing but does not
break out how many customers are on each type of time-varying pricing. To account for this data limitation
in the calculation, I exclude customers from Southern California Edison, which has widespread time-varying
pricing but low real-time pricing enrollment.

4The existing studies on TOU pricing are not predictive of how an establishment will respond to peak
pricing. TOU prices are in e↵ect every day, and the prices are significantly lower than the level used in peak
pricing programs.
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Rapson (2014) find that providing households with detailed usage data results in substantially

larger reductions than just the price alone. Burkhardt et al. (2019) examine a residential

field experiment in Texas and find a 14 percent reduction from peak pricing, with 74 percent

of the response coming from air conditioning. Bollinger and Hartmann (2019) investigate

how automation technology that adjusts consumption in response to higher prices a↵ects

the response to peak pricing. They find that households are more than twice as responsive

when they are given automation technology and higher prices along with price information,

compared with price information alone. My paper is the first to investigate whether a similar

overall response to peak prices is also found among U.S. commercial and industrial customers.

2.1 PG&E’s Peak Pricing Program

The PG&E peak pricing program for small C&I customers raises the price of electricity

from the normal price of .25/kWh to .85/kWh from 2:00 p.m. to 6:00 p.m. on 9 to

15 “event days” per year. The program runs between June 1st and October 31st each year.

Enrolled establishments receive a discount of .01/kWh on all other consumption during the

summer to compensate them for participating. PG&E determines when event days are called

based on day-ahead weather forecasts.5 Establishments are notified by 2:00 p.m. the day

before an event via e-mail, text message, and/or phone call. Establishments are told about

Monday event days on the prior Friday.

Establishments are given bill protection for the first summer they are enrolled. This

protection guarantees that customers do not pay more in their first summer as a consequence

of the peak pricing rates. If their total utility bill is higher between June 1st and October 31st

on peak pricing than it would have been if they had opted out, the customer is refunded the

di↵erence. PG&E sent establishments a letter in November 2015 informing of them of how

much money they saved or would have lost during the first year of the program. The letter

explained that the bill protection credit would be dispensed on their November 2015 bill and

that they would no longer receive bill protection going forward. In Section 5, I discuss the

potential impact of bill protection on the estimates of price response.

The enrollment data suggest that customers will remain in the peak pricing program

after they no longer have bill protection. In the first summer of peak pricing, 89 percent of

establishments in my sample would have lost money if not for bill protection. The average

loss for these establishments was 104 over the summer of 2015.6 Despite these losses, only an

5When the forecasted maximum temperature at a set of five specified weather stations exceeds a given
“trigger” temperature, an event day is called. See Appendix Section A for specific details on this process.

62015 was the first year that small C&I establishments were included in peak pricing. The program is
designed to be revenue neutral with respect to enrollees, suggesting that the .01/kWh subsidy for non-event
hours may need to be increased in future years.
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additional 5.5 percent of establishments dropped out between their bill protection payment in

November 2015 and the most recent data from October 2016. This low percentage suggests

that even after the first summer, when establishments no longer have bill protection, they do

not choose to leave the peak pricing program.

Unlike the existing peak pricing research that has focused on short-term pilots, the

PG&E program is a permanent policy where all C&I customers in the service territory will

eventually be enrolled. Establishments will remain on peak pricing indefinitely unless they

opt out. I study the first wave of enrollments in which PG&E placed 29 percent of small

C&I establishments on peak pricing. Enrolled establishments could opt out at any time using

a simple web interface.7 Only 5.9 percent of the establishments in the first wave opted out

before the first summer. An additional 5.3 percent of establishments dropped out during

the first summer of the program. There was no pattern to the establishments that opted

out, with both high and low peak usage establishments opting out at similar rates. The high

number of people remaining in the program reflects both the role of default bias and the

impact of bill protection. A large economics literature documents the impact that changing

the default can have on choice, including Abadie and Gay (2006), Choi et al. (2004), Johnson

et al. (2002), and Madrian and Shea (2001), among many others.

3 Data

I use confidential data provided by PG&E for this analysis. The data consist of hourly

electricity usage data for 19,071 establishments for the summers of 2014 and 2015. These

establishments are used in the analysis because their smart meter data started within 6

months of September 1, 2011, which is a key feature of the identification strategy and is

described in the following section. I classify establishments in the sample as being in coastal

or inland areas based on a PG&E designation. This classification is used frequently in my

analysis of peak pricing because the two regions have vastly di↵erent climates. The coastal

region, which runs the length of the coast in PG&E’s service territory, has much milder

summers compared to the inland region.8

To construct the final data set, I combine hourly usage data with establishment

characteristics. Exact establishment latitude and longitude coordinates were provided by

7See Appendix Figure A1 for an example of the letter sent to establishments 30 days before the program
started, with directions on how to opt out.

8Appendix Section B describes the creation of the dataset in detail. See Appendix Figure A2 for a map of
the 7,435 establishments used in the primary specification and their region designation.
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PG&E and are used to match establishments to hourly weather data obtained from Mesowest.9

I observe when a customer was placed on the opt-out tari↵ and whether they decided to

opt out. I also observe industry classification in the form of North American Industry

Classification System (NAICS) codes for 89.2 percent of establishments in the sample.

PG&E categorizes its C&I customers based on electricity consumption. This paper

focuses on the smallest nonresidential PG&E rate, the A-1 tari↵, because the peak pricing

rollout for this group allows me to causally identify program impacts.10 I remove smaller

individual meters that consumed below 800 kWH/month in the summer of 2014.11 This filter

leaves me with the 19,071 establishments used in the analysis. The average customer in the

sample consumed 87 kWh/day and spent 560/month on electricity in the summer of 2014.

This amount is larger than the average residential household, which consumed 21 kWh/day.

Figure 1 shows the average summertime hourly consumption profile of the establishments in

the sample where the vertical lines indicate the peak pricing window.

There are approximately 283,000 C&I customers of this size profile in the PG&E service

territory. These establishments make up 82 percent of the load of the small C&I class. In total,

small C&I customers constitute about 2,000 MW of peak load, which is around one-tenth of

PG&E’s total peak load. The customers in my sample are typically smaller businesses for

which energy is not a major input, including restaurants, barber shops, bakeries, corner stores,

small retail shops, strip mall storefronts, law o�ces, and doctors’ o�ces. Energy intensive

establishments from industries such as food processing, cement manufacturing, aluminum

smelting, or commercial establishments with large refrigeration needs are on di↵erent tari↵s

and are not studied because they face di↵erent electricity prices and event-day prices.12

4 Empirical Strategy

4.1 Natural Experiment in Peak Pricing Enrollment

The nature of PG&E peak pricing does not permit the use of an OLS selection-on-

observables design to carry out a simple comparison between enrolled customers and those

9The hourly weather station data were cleaned to remove any weather stations with unreliable data
and are matched to the closest establishment. The final dataset contained measurements from 297 weather
stations over 2014 and 2015.

10Establishments are placed on the A-1 tari↵ if they consume less than 150,000 kWh/year and have peak
usage of less than 75 kW. The average PG&E residential customer consumes around 8,000 kWh/year. PG&E
imposes a demand charge for its larger non-residential customers. This charge is based on the customer’s
maximum flow of electricity in a given month. A-1 establishments do not pay a demand charge.

11I drop low-usage meters because most are not associated with an establishment. A full accounting of how
the final dataset was constructed and cleaned is provided in Appendix Section B.

12Most larger establishments were moved to peak prices using di↵erent criteria before 2015. As a result of
how this was done, there is no way to reliably identify the impacts of peak pricing on their usage.
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yet to be enrolled. Peak pricing is an opt-out program, allowing any customer to remove

themselves from the program at any time. Even with the low opt-out rate, comparing enrolled

customers to those not on peak pricing would likely result in a comparison between dissimilar

establishments and therefore biased estimates of program impacts. To avoid potential bias, I

use an instrument that leverages a natural experiment in the rollout of peak pricing for the

summer of 2015.

PG&E used a set of rules to determine when an establishment would be placed on

peak pricing. They evaluated their customer base once per year starting in November 2014

to determine which establishments were eligible. This paper examines the first wave of

this rollout. The regulator required that an establishment had a history of high-frequency

metering data before PG&E placed them on peak pricing so that customers could be informed

about the potential price impacts and could make informed decisions.

Specifically, establishments’ smart meter data needed to have started before September 1,

2011, to be eligible for the 2015 rollover to peak pricing. Figure 2 provides a timeline of this

process. I classify establishments in two groups: those that were eligible for peak pricing in

2015 because their smart meter data started before September 1, 2011, and those that were

not. PG&E deemed those establishments with high-frequency data starting after September

1, 2011, as ineligible to be placed on peak pricing in 2015. These ineligible establishments

are the control group in my empirical strategy.

The impacts of this eligibility status can be seen more than three years after the

September 1, 2011 threshold, when treatment started.13 In November 2014, PG&E moved a

portion of the eligible establishments to peak pricing.14 In contrast, PG&E did not move any

of the ineligible establishments, which had to wait for subsequent rollovers.

To illustrate the transition to peak pricing, Figure 3 breaks down the eligible and

ineligible groups by the week their smart meter data were first collected. The horizontal axis

shows weeks relative to the September 1, 2011 cuto↵. The vertical axis displays the percent

of each bin that was placed on peak pricing for the summer of 2015. PG&E moved a portion

of the establishments to the left of the September 1, 2011 threshold to peak pricing, while no

establishments to the right were moved.15

13The long time lag was due to a number of requirements that the regulator had given PG&E about the
information that had to be available to an establishment before it was transitioned to peak pricing. See
Appendix Section C for more details on these requirements.

14Which establishments were moved depends on technological factors, which are described later in this
section.

15The proportion of establishments that were moved to peak pricing by PG&E in Figure 3 does not reflect
any opt-out decision made by establishments. Establishments made their choice to opt out after PG&E
placed them on peak pricing.
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The date an establishment’s smart meter data began is based on when its smart

meter was installed. PG&E started installing smart meters in 2008, long before planning

began for the peak pricing program rollout. PG&E treated installations as general capital

upgrades, with installation decisions based on factors such as labor availability and logistical

constraints. Installations typically took 5 to 15 minutes and did not require the account

holder to be present. The smart meter installation date was not related to consumption or to

any observable characteristics of a given establishment.16

The nature of the smart meter rollout suggests that establishments on either side

of the September 1, 2011 threshold are similar. The peak pricing eligibility cuto↵ was

not known when the smart meters were installed, suggesting that establishments had no

reason to strategically adjust their installation date. While the installations are as good

as random over short periods of time, there are longer-term patterns to consider. PG&E

installed smart meters across California during this time period, but certain areas of the

state were emphasized earlier in the rollout compared to others. I select customers within

an eight-week bandwidth of the September 1, 2011 threshold to avoid potential bias from

long-term installation trends. This bandwidth is indicated as the dashed vertical lines in

Figure 3 and cuts the sample to 7,435 establishments.17 Table 1 shows the summary statistics

for a number of characteristics broken out by peak pricing eligibility. The table shows that

establishments within eight weeks of the September 1, 2011 cuto↵ are observationally similar

to each other.

One noteworthy feature of the September 1, 2011 cuto↵ is that eligible establishments

closer to the threshold were less likely to be rolled over. This pattern is due to technical

requirements that govern when high-frequency usage data is considered usable. PG&E

requires that the “remote meter reads become stable and reliable for billing purposes” before

they can be used for any o�cial purpose (Pacific Gas & Electric 2010).18 The stability of

the remote meter reads is not related to the consumption patterns of the establishment and

only relates to quality of the data transmitted from the smart meter to the receiver. The

validation process can be quick for some establishments but can take a number of months to

complete for others. For this reason, establishments that had high-frequency data for longer

(farther to the left in Figure 3) are more likely to be placed on peak pricing in the summer

16See Appendix Section C.1 for more details on the smart meter rollout, including quotes from annual
reports describing the process.

17I consider alternate bandwidths in the results section as robustness checks.
18PG&E still sends employees to physically read the meters monthly until this validation is complete. See

Appendix Section C.1 for more details on the validation process. Some establishments may not have reliable
smart meter data during the validation process, but this has no impact on the analysis because it happened
over two years before the study period.
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of 2015.19 The final set of establishments that are placed on peak pricing both had their

smart meter installed and their data satisfy the technical data stability requirements before

September 1, 2011. The eligible establishments that missed peak pricing in the summer

of 2015 due to technical requirements were scheduled to be moved over for the summer of

2016.20

To identify peak pricing program impacts, I instrument for peak pricing participation

with whether an establishment’s smart meter was installed before September 1, 2011, limiting

my sample to establishments getting smart meters within eight weeks. This approach uses

establishment fixed e↵ects to control for time-invariant characteristics. Establishments that

PG&E placed on peak pricing and opted out before or during the first summer remain in the

data. Their treatment status reflects their enrollment status at each peak pricing event. The

unit of observation is the establishment-hour. In most specifications, I limit the sample to

2:00 p.m. to 6:00 p.m. on event days in the summer of 2014 and 2015. In the summer of

2014, PG&E called event days using the same methodology, but they did not apply to the

establishments I study. This makes the summer of 2014 an ideal set of pre-period control

days that are similar to the 2015 event days.

4.2 Empirical Approach

I estimate the impact of peak pricing using the following two equations via 2SLS:

Qit = �1
[Peakit + �2Tempit + �3Temp2it + ⇣t + �ihd + ✏it (1)

Peakit = ↵1{Eligible⇥ Post}it + ↵2Tempit + ↵3Temp2it + ⇣t + �ihd + ⌘it (2)

Equation (1) is the second stage. [Peakit is an indicator of whether establishment i is on peak

pricing in hour-of-sample t, which is predicted in the first stage regression (Equation 2) using

the eligibility instrument (Eligible) interacted with the 2015 dummy (Post).

Qit is the log of electricity consumption for establishment i in hour-of-sample t. Hourly

temperature is controlled for with Tempit and Temp2it.
21 Hour-of-sample fixed e↵ects, which

control for any contemporaneous shocks that a↵ect all establishments, are captured with

19Engineers at PG&E confirmed that the data stability requirement generates the downward sloping
pattern seen in Figure 3 independent of the location of the cuto↵. This observation suggests that the control
establishments would have experienced the same pattern of enrollment and that the research design compares
similar establishments on either side of the threshold. There is not data available on when a meter satisfied
the stability requirement.

20I do not have access to current data to verify which customers were moved over in subsequent waves.
21The temperature controls are used to increase precision, but the results are robust to their omission.
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⇣t. �ihd is a set of establishment fixed e↵ects that control for time-invariant factors. Each

establishment has a separate establishment fixed e↵ect for each hour of day (h) and day of week

(d) combination because these are both significant dimensions across which establishments

change their energy consumption. �1 is the coe�cient of interest and represents the average

hourly reduction across peak event hours for treated establishments in 2015 compared with

the control group. The identifying variation comes from within-establishment variation in

peak electricity consumption following the implementation of the peak pricing program in

2015.

✏it is the error term in the second stage, and ⌘it is the error term from the first stage.

The panel nature of this analysis makes each of the errors potentially correlated both over

time and across establishments. To account for this two-way errors dependence, I two-way

cluster at the establishment and hour-of-sample level, as suggested by Cameron et al. (2011).

As a result, the errors are robust to both within-establishment and within-hour-of-sample

correlation.

The identifying assumption underlying the 2SLS estimation is that peak pricing el-

igibility is not correlated with peak electricity consumption, conditional on fixed e↵ects

and temperature controls, through any other mechanism than being placed on peak pricing.

Formally, this is written as cov(Peak Eligibilityit , ✏it | Xit) = 0, where Xit represents the

covariates and fixed e↵ects that are controlled for in Equation (1). The exclusion restriction

could be violated if there are time-varying trends that di↵erentially a↵ect establishments

in the two eligibility groups.22 The estimation also requires a valid first stage, for which I

provide evidence in Section 5.1.

Evidence of the validity of the research design restriction is provided in Figure 4, which

shows the average summer 2014 (pre-period) consumption by eligibility group on event days

after controlling for establishment-level fixed e↵ects. The figure shows similar consumption

patterns on event days in the year before these establishments are on peak pricing, indicating

that the eligible and ineligible establishments function as good comparison groups conditional

on the establishment fixed e↵ects like those used in Equation (1).23 Table 1 shows summary

statistics by eligibility group for establishments in the eight-week bandwidth on either side of

22I also employ a regression discontinuity approach, which explicitly controls for an establishment’s distance
in days from the September 1, 2011 discontinuity in the post period by using a trend line. The regression
discontinuity specification is described in Appendix Section C.2. I prefer the approach in Equation (1), because
the treatment e↵ect is estimated across the entire 8-week sample, instead of focusing on establishments close
to the September 1, 2011 cuto↵.

23The comparison shown in Figure 4 is the relevant comparison for the validity of Equation (1) because it
reflects the remaining variation after the establishment fixed e↵ects are absorbed. Appendix Figure A4 shows
the comparison using raw electricity usage and shows that the pre-period consumption patterns are similar,
particularly between 2:00 pm and 6:00 pm.
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the September 1, 2011 threshold. I cannot reject that eligible and ineligible establishments

are statistically the same across all observables.

5 Results

5.1 Main Results

Table 2 shows the first stage results from estimating Equation (2). Column (1) shows

the results for the sample that spans the PG&E service territory. The first stage has a value

of .223 and is significant with an F-statistic of 406, providing evidence of a valid first stage.

Columns (2) and (3) report the first stages for the coastal and inland regions separately. The

results show a significant impact of eligibility on peak pricing enrollment for all specifications.

Table 3 shows impacts of peak pricing on electricity consumption using the primary

specification. The sample for analysis comprises the 7,435 establishments with high-frequency

data starting within eight weeks of the September 1, 2011 cuto↵. Column (1) shows that

peak pricing causes a small reduction in consumption between 2:00 p.m. and 6:00 p.m. on

event days but with a p-value of .10. Columns (2) and (3) split the results by region, showing

that the impact of peak prices varies substantially by geography and temperature. Coastal

regions, which are characterized by lower electricity usage and temperatures, show almost

no response to peak prices. In contrast, inland establishments reduce peak usage by 13.5

percent, which is significant at the 5 percent level.24 This corresponds to an elasticity of -.119

with a p-value of .002 when the same regression is estimated using log price instead of the

peak pricing indicator. The results provide evidence that, in the warmer inland regions of

California, peak pricing significantly impacts electricity usage. Coastal customers, however,

do not seem to be as responsive. The regional nature of the results is consistent with Ito

(2015), who finds that inland households are more price elastic than coastal customers. The

size of the reduction for inland customers is similar to the 13.2 percent reduction in peak

demand that Fowlie et al. (2017) find in a residential opt-out peak pricing program in a

neighboring region with a similar climate.25 My inland establishment elasticity estimate is

slightly larger than the medium-long run price elasticity estimate of -0.088 for residential

24Percent reductions reflect antilog transformed coe�cients. See Appendix Section D.1 for the regression
discontinuity specification results. It yields larger impacts of peak pricing on usage, but I cannot reject that
the two results are statistically the same. Appendix Table A9 shows the intent-to-treat results of the 2SLS
results estimated in Table 3.

25The peak pricing program in Fowlie et al. (2017) is similar, but the utility they study charges a peak
price that is .10/kWh lower.
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households in Southern California found in Ito (2014). While not directly comparable, my

findings suggest that C&I customers have similar responses to residential customers.26

The role of bill protection is important to consider when interpreting the results in this

paper. Establishments know they cannot lose money in the first year of the program. This

creates incentives similar to those in Ito (2015) where establishments, far from making money

under the program, may choose to “give up,” take the bill protection, and not respond to

the price. The role of bill protection can be seen by examining the financial impacts of peak

pricing in its first year. Only 11 percent of establishments in my sample saved money in

the 2015 peak pricing program, with the remainder receiving the help of bill protection. As

discussed in Section 2.1, only 5.5 percent of establishments dropped out between the time

they received the bill protection credit in November 2015 and the end of the second year of

the peak pricing program. The low dropout rate after most establishments would have lost

money in the first year, combined with the lack of bill protection in future years, suggest

that my results are a lower bound for future peak pricing impacts. If establishments are

exposed to potential monetary losses, they have a larger incentive to reduce their usage. It is

possible that additional establishments may opt out of peak pricing after losing money, which

could reduce future aggregate impacts. However, the low observed opt-out rate after the first

summer suggests that this impact may not be very large. Future years of program data are

necessary to determine the impact that opt-out behavior might have on program impacts.27

The results should be interpreted as local average treatment e↵ects around the September

1st, 2011 cuto↵. It is possible that the average treatment e↵ect across all small C&I customers

could be smaller or larger than those found here.28 Observationally, the establishments in

the eight-week bandwidth are similar to those in a 27-week bandwidth, which is my complete

sample. Appendix Figure A8 compares the pre-period consumption of these two groups and

shows similar load shapes.29

The primary specification uses an eight-week bandwidth around the September 1, 2011

cuto↵, but the results do not change substantially at di↵erent bandwidths, as shown in

Panel A of Appendix Figure A7. The results in this section are robust to a number of other

specification and clustering choices, as shown in Appendix Section D. Appendix Section D.2

shows the non-instrumented OLS results, which finds a smaller impact of peak pricing.

26In the long run, C&I establishments may be more elastic if they invest in ways to further respond to
peak pricing.

27I am not able to estimate the causal impact of peak pricing without bill protection in future years because
the control group used in my identifications strategy will have rolled onto peak pricing.

28It is also not possible to know how the results would compare to a mandatory peak pricing program.
However, given the low opt-out rates, it likely would be similar to the opt-out program I study.

29I do not estimate treatment e↵ects for customers outside the 8 week bandwidth because the longer-term
geographic patterns in meter installations could introduce bias.
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5.2 Spillovers to Non-Event Hours

The analysis to this point has only focused on the change in usage between 2:00 p.m.

and 6:00 p.m. on event days. This time frame ignores the scope for establishments to

re-optimize their usage during o↵-peak hours. Figure 5 shows the treatment e↵ects for inland

establishments by hour of day. The results suggest that establishments begin to reduce their

energy usage around 11:00 a.m., with the reductions becoming statistically significant by 1:00

p.m. This pattern of reductions is consistent with establishments making event-day changes

that spill over to non-event window hours. For example, an establishment may adjust its

air conditioner set point from the normal 72 degrees up to 76 degrees on event days. This

behavior would reduce the overall demand for cooling on event days, leading to the reductions

seen before 2:00 pm. Immediately after the event window ends, usage returns to the level of

the control group. Many small C&I businesses close around 6:00 pm, which might explain

the return to control consumption levels.

It is also important to consider if peak pricing impacts usage patterns on non-event

days. Fowlie et al. (2017) find significant reductions during the 4:00 p.m. to 7:00 p.m. event

window period on non-event days for residential customers. The authors suggest that this

could be due to habit formation, learned preferences, or a fixed adjustment cost. Table 4

reports the results from estimating Equation (2) on summer non-event weekdays between

2:00 p.m. and 6:00 p.m. The results show a small reduction in the inland region that is

significant at the 10 percent level and is less than half the event day impact.30 The lack

of large and significant responses suggest that the peak pricing program is not having a

noteworthy impact on non-event day electricity consumption between 2:00 p.m. and 6:00

p.m.

5.3 Impacts of Temperature

The outdoor temperature on event days is much higher in the inland regions of California

than on the coast.31 This di↵erence suggests that temperature could play a role in an

establishment’s demand elasticity. Reiss and White (2005) show that residential customers

with air conditioners have more elastic demand than those without. Ideally, I would measure

the impacts of peak pricing on establishments with air conditioning separately from those

without, but this is not possible with the data available. Instead, I focus on the role that

temperature plays in event-day reductions.

30It is important to note that these insignificant impacts are estimated from 95 non-event days in 2015,
which is a much larger sample than the 15 event days in the main analysis.

31See Appendix Figure A3 for a map showing temperatures on event days.
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Table 5 presents the results from interacting temperature with the treatment e↵ect in

Equation (1). Temperature does not appear to play a role in how coastal establishments

respond to peak pricing. For inland establishments, the interaction term in Column (3) is

negative and significant, indicating that peak reductions get larger as temperature increases.

The estimated impacts are relative to a 75 degree day.32 The results show that, on average,

higher reductions for inland establishments come from higher outdoor temperatures. This

finding is significant because the highest demand days of the summer typically fall on the

hottest days of the summer. As a consequence, the peak pricing program may provide larger

reductions on the hottest event days when the grid is most stressed. This finding is relevant

to program design because, if event days occurred only on the hottest few summer days, then

reductions might be higher than the average impacts measured in Section 5.1.33

5.4 Firm Heterogeneity

Small C&I establishments use electricity to produce a wide range of goods and services

in their day-to-day operations. For example, retail establishments have di↵erent patterns of

electricity usage than o�ce spaces or doctors’ o�ces (Kahn et al. 2014). In this subsection, I

use the industry classification information provided by PG&E to test how di↵erent types

of establishments respond to peak pricing. Specifically, I test how customer-facing and non-

customer-facing establishments each respond to peak pricing. I hypothesize that customer-

facing businesses such as retail establishments or movie theaters may be less likely to reduce

air conditioning usage if it a↵ects business. Customers may choose a di↵erent movie theater or

store if the indoor temperature is above expectations. On the other hand, non-customer-facing

establishments, such as o�ce spaces, may be more willing to reduce peak usage if it is easier

for employees to adapt. For example, an employer could inform their sta↵ of an event day in

advance and encourage them to dress for a warm o�ce.

I classify establishments as customer-facing or non-customer-facing using the first two

digits of their North American Industry Classification System (NAICS) industry code. To

determine which two-digit industries are customer-facing, I use the U.S. Bureau of Labor

Statistics classification of service-providing industries.34 From this list, I define the set of

service industries that are customer-focused. This list includes retail trade (NAICS 44-

45), health care (NAICS 62), leisure and hospitality (NAICS 71), and accommodation and

food services (NAICS 72). All other NAICS codes are classified as non-customer-facing.

32I re-center temperature at 75 degrees for ease of interpretation; this does not impact the peak pricing
times temperature coe�cient.

33I do not estimate treatment e↵ects for individual event days because the sample is not large enough to
reliably estimate these impacts.

34http://www.bls.gov/iag/tgs/iag07.htm.
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These include industries such as goods manufacturing (NAICS 11-31), transportation and

warehousing (NAICS 48-49), and o�ce spaces (NAICS 52-56).35

Table 6 shows the results separately for customer-facing and non-customer-facing

industries. In all cases, the customer-facing industries do not show a significant response

to peak pricing. This result is in contrast to the non-customer-facing industries, where the

impacts are larger than previously found when considering all industries together in Table 3.

Inland customer-facing establishments show the largest response to peak pricing, reducing

their peak usage by 18.0 percent.

It is not possible to identify how establishments are reducing their peak demand.

However, the large response in non-customer facing establishments in warmer regions suggests

that establishments are reducing peak demand by using their air conditioners less on event

days. This is supported by the findings in Section 5.3 that show event-day reductions increase

with temperature because reducing air conditioner usage can provide relatively larger savings

on the hottest days. The results also show that a similar peak pricing program will likely be

e↵ective in warmer regions of the country with high air conditioning penetration. In other

states where peak pricing is not structured as an opt-out program, it may be optimal to

target non-customer-facing establishments for enrollment to generate the largest program

impacts.

5.5 Aggregate Impacts

The previous subsections estimated the impacts of peak pricing on a subset of small

C&I establishments in the PG&E service territory. Importantly, these customers are part of

a utility-wide rollout that will place all small C&I establishments on peak pricing by 2018,

which has the potential to generate large peak reductions.

To better understand the impacts of the fully deployed peak pricing program, I ex-

trapolate my savings to all small C&I customers. There are three main assumptions that I

make for this calculation. First, as discussed in Section 5.1, the estimate is a local average

treatment e↵ect. It is not possible to prove that the local average treatment e↵ects estimated

in the previous sections reflect the behavior of all small C&I establishments in California,

but the estimates are the best available and are useful for back-of-the-envelope calculations.

Second, these estimates capture only the short-run impacts of peak pricing in the

summer of 2015. It is possible that establishment demand will become more elastic as

peak pricing continues. For example, customer-facing establishments may be able to reduce

35The NAICS codes that I have are often imprecise, which limits the ability to finely cut the data into
many di↵erent industries. See Appendix Table A3 for a breakdown of establishments by two-digit NAICS
code.
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peak consumption by upgrading their air conditioners to more e�cient models or improving

insulation. Third, I assume the estimated savings reflect future program year savings when

there is no bill protection. This assumption could result in my estimates understating

aggregate impacts, as discussed in Section 5.1.

I extend the savings estimates for inland customers from Column (3) of Table 3. I

focus on the inland establishments and assume that coastal establishments in the PG&E

service territory will not provide any peak reductions. I assume that the establishments in the

8-week bandwidth are representative of all small inland C&I customers (e.g., the proportion

of customer-facing versus non-customer-facing establishments is the same), and that long-run

opt-out rates will be similar to those observed in the first two years of my sample. I combine

this with customer-count information provided by PG&E to estimate the projected total

impacts when the program is fully rolled out by the summer of 2018.36 Using this technique,

I find that small C&I establishments will, on average, provide reductions of 118 MW in peak

load on peak pricing event days.

5.6 Environmental impact

The peak pricing program is designed to improve grid e�ciency, but it also a↵ects power

plant emissions. Holland and Mansur (2008) found that real-time pricing has a relatively

small impact on emissions. The authors highlight that the change in emissions depends on

which type of generation was previously meeting peak demand. In California, peak demand

is typically satisfied by natural gas turbine generators, which have a moderate CO2 emissions

rate and low SO2 and NOX emissions rates. To better understand the magnitude of the

impacts of peak pricing on CO2 emissions, I conduct a simple back-of-the-envelope calculation

using my estimates of the impact of peak pricing on demand along with estimates from the

California Energy Commission on emissions rates (California Energy Commission 2015). I

find that the peak pricing program will cause a reduction of around 4,000 metric tons of CO2

per summer when the policy is fully implemented.37 The calculation also assumes that the

peak pricing program will not increase consumption during non-event hours. The annual

reduction in CO2 emissions, while not insignificant, is only .11 percent of California’s daily

electricity sector emissions (California Air Resources Board 2019). Using a 50/ton social

36A full accounting of the assumptions and calculations can be found in Appendix section E.1.
37This is a relatively small CO2 reduction compared to California’s total emissions of 440 million metric

tons in 2015 (California Air Resources Board 2019). This calculation of the peak pricing program’s e↵ect
is made using the CO2 emissions rate of 1,239 lbs/MWh from a conventional single cycle plant. This is a
conservative assumption because the other generation options, such as a combined cycle plant or hydropower,
have lower or zero emissions rates. The use of hydropower to meet peak demand, while causing no emissions
at the time of generation, has an opportunity cost that likely will lead to non-zero emission impacts in the
long run.
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cost of carbon, the reductions translate to around 200,000 per year in benefits (Revesz et al.

2017).38 I include these benefits in the welfare calculations conducted in the subsequent

section. Overall, the carbon reduction benefits are a small fraction of the overall value

provided by the peak pricing policy.

6 Welfare Impacts of Peak Pricing

In this section, I first introduce a new model to evaluate the welfare impacts of the

peak pricing program, which I calibrate using the empirical peak demand reductions from the

previous section. Using this approach, I consider changes to the current peak pricing program

to better target the long-run investment ine�ciencies that result from flat-rate pricing. I find

that, by changing when event days are called, and adjusting the event hour price, program

outcomes can be greatly improved. I conclude by benchmarking the impacts of peak pricing

against the first-best, real-time price using a simple theoretical energy-pricing model.

6.1 A Model of Welfare Impacts from Peak Prices

The model is based on the current regulatory process in California, which is responsible

for capacity construction decisions. Most other states follow a similar process. In the model,

peak pricing reduces the level of summer peak demand, which in turn reduces long-run

capacity requirements and saves costs by avoiding power plant construction. This framework

allows me to calculate the welfare benefits of peak pricing in a manner that reflects how

capacity construction decisions in electricity markets are made. The existing literature

typically calculates the welfare impacts of alternative pricing policies using a “stylized model”

approach of electricity prices and power plant construction (Borenstein 2005, 2012; Borenstein

and Holland 2005; Holland and Mansur 2006).39 The stylized model provides insight on the

welfare impacts of real-time pricing but uses assumptions that do not realistically portray

the nature of the binding capacity constraint in electricity markets.

The structure of electricity markets is defined by the lack of cost-e↵ective storage, which

requires supply and demand to be balanced in real time. This feature introduces a capacity

constraint equal to the total capacity of generators; blackouts will result if demand exceeds

this constraint at any time. The stylized models of electricity markets do not consider this

38The impacts on SO2 and NOX are small enough that I do not include them in the benefits calculations.
For example, I find that peak pricing will reduce NOX emissions by less than 1 ton per year and SO2 emissions
by .05 tons. California’s carbon emissions are capped, but the cap is not currently binding. As a result, any
additional emissions reductions from peak pricing will reduce total emissions. If the cap is binding in future
years, the welfare benefits from reducing carbon emissions will be lower.

39I will refer to the general approach used in the literature as the stylized model going forward for simplicity.
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constraint and assume that the price and demand for electricity are able to adjust quickly

enough to avoid shortfalls.40 Additionally, such models assume a cost to build new generators,

but not construction time. In practice, it can take six years from the initial proposal for a

power plant to begin generating electricity. Much of this process is governed by the regulator

that sets the amount of generation capacity that a utility must have in reserve to avoid

blackouts. The stylized model approach used in the existing literature does not include the

need for reserves because they assume price can increase in an unconstrained manner to clear

the market.41

The assumption in the stylized model that supply and demand can instantaneously

balance (including capacity construction decisions) equates the wholesale price to the full

long-run cost of providing a kWh of electricity. This setup is central to how papers like

Borenstein and Holland (2005) model real-time pricing and estimate benefits.42 However,

any estimates that use these simplified assumptions may not accurately capture the e↵ects of

time-varying pricing in existing electricity markets. In most wholesale electricity markets,

capacity construction decisions are not based on generating companies responding to wholesale

market prices and building capacity until a zero-profit condition binds, but are based on other

mechanisms including resource adequacy requirements where the regulator mandates how

much peak generation capacity the utility must have on hand (Joskow and Tirole 2007).43

The regulatory process is an important consideration when evaluating time-varying

pricing, because the majority of the welfare benefits of raising prices during periods of peak

demand comes from the long-run reduction in power plant construction and maintenance. In

particular, it is the reduction of “peaker” power plants, which have a relatively low capital

cost but a high marginal cost of generation. Some of these plants run for only a few hours

on the hottest day of the year. A large amount of peaker capacity is expensive to build

and maintain. The conditions in existing electricity markets, including time-invariant retail

pricing and a risk-averse regulatory process, result in the construction of more peak capacity

40In the models, this is done by raising wholesale prices high enough that new generators are built to meet
demand.

41Most electricity markets also have price caps that would prevent prices from increasing to the levels
necessary to balance supply and demand without reserves. For example, almost half of the scenarios simulated
in Borenstein and Holland (2005) have peak prices above the 1000/MWh price cap in the California market.

42Borenstein and Holland (2005) assume that generation capacity will enter the wholesale market as long
as profits are positive.

43Some markets use secondary mechanisms called capacity markets that pay generators to provide and
maintain capacity. Capacity markets are a similar tool to resource adequacy requirements, but in many
markets are less transparent and harder to evaluate. In many cases, capacity markets are used as a subsidy
to generators to make it less expensive for a utility to reach its resource adequacy goal. See Boomhower
and Davis (2020) for a discussion of capacity markets and how they can be used to measure the value of
generation capacity.

20



than a stylized model predicts. Existing stylized models are likely to undervalue the benefits

of peak pricing by not capturing these critical determinants of peak capacity construction.

I solve this problem by introducing a model that is based on the resource adequacy

process that drives most capacity construction decisions.44 Typically, the regulator forecasts

future peak demand using historical data and load growth projections. Using this forecast

and a valuation of blackouts, they set a resource adequacy level for the utility in the coming

year. The model I introduce is based on how peak pricing a↵ects the resource adequacy

process. The model proceeds in three steps that happen yearly.

In step 1, no peak pricing program has been implemented. The regulator has informa-

tion about the distribution of historical peak loads and temperatures, which also includes

information about the peak load from the previous summer. I denote this information set as

L0. The regulator uses this information to determine how much peak capacity is needed, using

the decision function F(), which does not change over time.45 I assume this is a well-defined

process known to all market participants and that the regulator sets capacity high enough

that there will be no generation shortages in the coming year.46 I define this peak capacity

requirement as X1 = F(L0).

In step 2, the utility acquires capacity X1 at cost C(X1). I assume that the utility must

fulfill this requirement and that the regulator perfectly observes the utility’s behavior. The

cost function is linear and does not change over time. For simplicity, it reflects the utility’s

yearly cost to acquire capacity.

Step 3 is when the demand for the year is realized. In the absence of peak prices,

demand would have reached a peak level of L1. However, with the implementation of peak

prices and their corresponding demand reductions, the new load is fL1, such that fL1 < L1. I

assume peak pricing reduces peak load on all event days in a summer by the same amount

and that this amount remains constant from year to year. This is a conservative assumption

with respect to program benefits for two reasons. First, it is likely that establishments will

become more elastic in the long run, as they have more time to adjust to the new prices.

44The process I model is based on the California resource adequacy process, but is representative of how
capacity requirements are set in most regions.

45If the regulator were an optimal social planner, the F() decision function would balance the benefits of
reliability against the costs of acquiring capacity, and pick an optimal capacity requirement for the utility. In
practice, most regulators are risk averse and put a very high cost on supply shortfalls that result in localized
blackouts. As a consequence, regulators typically set high reserve requirements for utilities. I do not take a
stand on the exact approach the regulator should use. I simply assume they follow the same rule each year.

46Blackouts from demand exceeding capacity are rare. The current California process requires capacity at
1.15 times the projected peak load. This level is su�ciently high to assure that capacity limits will never be
reached. See Joskow and Tirole (2006) and Joskow and Tirole (2007) for a discussion of optimal capacity
with the possibility of rationing. In California and states with restructured electricity markets where the
utility does not directly own generation capacity, the regulator requires the utility to contract for su�cient
capacity with independent power producers.
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Second, Section 5.3 showed that peak pricing reductions are larger at higher temperatures,

which typically happen on the highest demand days of the year. This finding suggests that

peak pricing will cause the highest reductions when they are the most valuable.

The majority of the benefits from peak pricing come from this reduction in summer

peak demand. This can be seen in Panel A of Figure 6, using a simplified peaker capacity

supply curve. By reducing the total peak demand, peak pricing reduces the total generation

capacity necessary to satisfy demand. This saving in capacity cost reflects the high costs

associated with building generation capacity and is the main driver of savings under the peak

pricing program.47

The second impact from peak pricing is the net consumer surplus loss that results

from changes in customer behavior when paying higher prices on event days.48 For example,

establishments may choose to run their air conditioner less, leading to a less comfortable

indoor environment. It may seem counterintuitive to count a reduction in air conditioner

usage as a cost during periods when the flat electricity price paid by the establishment is

below the cost of providing that electricity. However, the (much larger) benefits from reducing

peak demand are captured by the capacity cost savings (shown in Panel A of Figure 6).

To properly calculate the full e↵ect of peak pricing, I must separately account for the net

consumer surplus loss.

The consumer surplus impact can be seen graphically in Panel B of Figure 6. To

calculate this impact, I first recognize that the electricity still sold at the peak price (to

the left of Q1) induces no change in total surplus, as it is just a transfer from consumers to

producers. For units that go unsold due to the price increase (to the right of Q1 and to the

left of Q0), the change in surplus is the area under the demand curve minus the resource

savings from not producing these units. In this case, the resource savings are equal to the

fuel savings of the peaker plants that would otherwise be used to generate this electricity.

I value the reduction in fuel used to run a peaker plant at its short-run marginal

production cost (SRMC), which I assume to be .102/kWh, based on current natural gas

prices (California Energy Commission 2015). I use the SRMC for this calculation because

I assume the regulatory process dictates that su�cient capacity is available at all hours of

the year, meaning the surplus losses are net of the short-run costs associated with running a

47In cases where there is older excess generation capacity available, the decision faced by regulators may be
to prevent retirements instead of building new plants. This would make my estimates an upper bound on the
benefits from peak pricing. In many cases older excess capacity is being forced to close for environmental
reasons (e.g. the phase out of once-through cooling in California or local politics) or in the case of older
technologies like coal is not able to be dispatched quick enough to meet peak demand.

48I include the small increase in consumer surplus from the .01/kWh discount given in non-peak hours in
this calculation to match the structure of the PG&E program. The benefits of the discount are much smaller
than the costs of higher prices on event days.
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peaker plant.49 The existing capacity guaranteed by the resource adequacy process prevents

me from using wholesale market prices to make this calculation.50

The set of calculations leaves what I term the “net consumer surplus loss,” which is

represented by the shaded triangle in Panel B of Figure 6. I use a linear demand curve for

simplicity and because it provides a conservative upper bound on the net CS losses compared

to other concave alternatives such as modeling demand as constant-elasticity, which I use as

a robustness check. I define the net consumer surplus loss in year 1 as CS1.

The process now restarts at step 1 in year 2. In the world with peak pricing, the

regulator observes peak load fL1 and sets peak capacity requirements for the coming year eX2

= F(fL1). In the non-peak pricing scenario, the regulator observes peak load L1, resulting in

peak capacity requirement X2 > eX2. In step 2 of year 2, the utility must acquire capacity

at cost C( eX2) and C(X2) for the peak and non-peak pricing scenarios, respectively. This

process continues and repeats for both scenarios over time.

To calculate the welfare impacts of the peak pricing program, I subtract the costs in

the peak pricing scenario from the costs in the non-peak pricing scenario. The benefits are

calculated over T periods on N event days per year using discount rate r. The change in

welfare from implementing peak pricing is defined as follows:

�Welfare =
TX

t=1

C(Xt)� C( eXt)�N ⇥ CSt

(1 + r)t
(3)

This calculation compares the cost of peak generation capacity with standard pricing

to the lower peak capacity needs when peak prices are used.

Equation 3 divides the e↵ects of peak pricing into the benefits (C(Xt)� C( eXt)) and

the costs (N ⇥ CSt). Calculating the benefits using the resource adequacy process is the

main innovation of this model. This approach allows me to estimate the benefits of peak

pricing using the real-world process that determines capacity investment. It is applicable

to most wholesale electricity markets because some form of resource adequacy process is

typically used for capacity planning and single cycle natural gas peaker plants are used to

49I assume the SRMC is flat, meaning all peaker plants have the same e�ciency. It is possible that if
Q0 �Q1 is large enough, less e�cient peakers would be used and the curve could slope upward. This would
likely be a relatively small e↵ect. The flat SRMC means that there are no producer surplus impacts of peak
pricing.

50The price cap and the capacity market also a↵ect the wholesale price, making it lower than the long-run
costs of supplying a kWh of electricity.
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meet peak demand. The approach could also be applied in vertically integrated electricity

service territories where there is no wholesale market price.51

The cost term leans on a stylized formulation of net consumer surplus losses. The

calculation only includes the surplus losses to establishments that occur between 2:00 p.m.

and 6:00 p.m. on event days, when prices increase.52 It is possible that customers are

responding to peak prices in ways that are not reflected in these hours. For example, Section

5.2 shows that peak pricing enrolled establishments reduce their usage before the 2:00 p.m.

to 6:00 p.m. event window starts. The model presented here does not capture the net

consumer surplus losses associated with this change in behavior before the event window or

any other non-event window impacts. Bill protection could also impact the magnitude of the

net consumer surplus losses. If the price signal to establishments is a↵ected by bill protection,

then the response to peak pricing may not reflect the true net consumer surplus impacts.

6.2 Calculating Welfare Impacts of PG&E’s Peak Pricing Pro-

gram

In this section, I calculate the welfare impact of the PG&E peak pricing program for

small C&I establishments using the model from the previous section and my empirical results.

The calculations are summarized in Table 7. Some of the simplified assumptions in the model

are adjusted to better reflect the PG&E service territory. In the model, the utility purchases

capacity yearly at cost C(Xt). In practice, the peaker plants that are used to satisfy peak

demand typically last at least 30 years.

To approximate the cost function, I use the construction cost of a single cycle peaker

plant. The California Energy Commission estimates it costs 1,185,000/MW to build a

natural gas combustion turbine peaker plant (California Energy Commission 2015).53 Using

these plant construction numbers and my empirical estimates, I find that the peak pricing

program would provide a one-time saving of 140 million in construction costs. I assume

this cost savings occurs in year 1 of a 30-year program. To value the total impacts of the

program, I include the discounted stream of annual costs and benefits. Reducing peaker

51The model may be less applicable in markets with significant hydro resources, such as in the Pacific
Northwest. Some modifications to how the resource adequacy process is run in other wholesale electricity
markets may be needed. In vertically integrated markets, the benefits would reflect how the utility makes
capacity investment decisions in conjunction with the regulator.

52The stylized model in the literature uses a similar assumption, but it is not explicitly broken out into its
own term.

53All values used in this paper are in 2016 dollars. Original 2011 values are inflated using the IHS North
American Power Capital Costs Index.
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capacity provides an annual benefit of avoided sta�ng and maintenance costs, which in this

case totals 3.07 million per year.

To make the CS loss calculation, I use a linear demand curve, as discussed in the

previous section. One important di↵erence between the model and PG&E prices is that retail

electricity rates for small C&I customers are set at .25/kWh. Retail prices are higher than

the short-run marginal cost of production because fixed costs are recovered volumetrically in

PG&E. In the previous section, I set retail rates at the short-run marginal cost of production,

which I assume to be .102/kWh for a peaker plant (California Energy Commission 2015).

Establishments were willing to pay the .25/kWh price for their electricity during these

peak periods, meaning economic surplus is lost on event days when prices are increased and

consumption is reduced. Graphically, this impact is represented by a rectangle between the

.25/kWh electricity price and the .102/kWh short-run marginal cost of production. The

total CS loss from peak pricing is this rectangle plus the triangle under the demand curve,

shown in Figure 6.54 Using my empirical estimates, I find that the total net consumer surplus

loss in 2015 equals 3.16 million/year.

The PG&E peak pricing program gives enrolled establishments a .01/kWh discount

on all non-event day electricity consumption. As a result, establishments will consume more

electricity in o↵-peak hours, resulting in increased consumption across almost all summer

hours. Importantly, this price reduction is welfare improving because the retail price of

electricity for small C&I customers exceeds any reasonable social cost. The benefits of the

.01/kWh discount are small but add up across all non-event hours during the summer.

Using my elasticity estimates and linear demand, I calculate these welfare gains to be 0.84

million/year.55 The benefit of this small price decrease in non-event hours are added to the

overall welfare benefits of the policy.

To come up with a total welfare value, I take the construction costs and add on the

discounted stream of costs and benefits detailed above. I also include the benefits of reducing

CO2 emissions calculated in Section 5.6, which total .2 million/year.56 This results in total

welfare benefits of 159 million (2016 dollars) using a 3 percent real discount rate and a

30-year horizon.57 These numbers represent the welfare benefits of running the peak pricing

program every summer for 30 years. Embedded in this back-of-the-envelope calculation is

54Appendix Figure A9 shows the CS loss triangle and rectangle that reflect PG&E prices.
55This is a strong assumption because I am applying my demand curve estimates, derived for the period

between 2:00 pm and 6:00 pm on event days, to all other hours in the summer. Using the empirical analysis on
non-event hours in the summer of 2015, I can reject the level of responsiveness I am using for this calculation.
Ultimately, the response from the o↵-peak CS gains is small and does not significantly impact outcomes.

56The local air pollution benefits are not significant and I do not include them in the calculation.
57The results are not sensitive to discount rate assumptions because most of the benefit is incurred upfront

with the avoidance of capital construction costs. The other annual costs and benefits are roughly o↵setting.
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the assumption that electricity supply and demand will not change in ways that a↵ect the

numbers calculated above. The assumptions needed to estimate the aggregate energy savings

from peak pricing in Section 5.5 also apply. I also assume that the operation and maintenance

costs stay constant over the life of the plant, which likely understates the costs as the plant

ages. Furthermore, establishment demands are likely to become more elastic as they face

peak prices over many summers. Bill protection may also lead to an underestimation of the

welfare benefits if establishments reduced less in their first year, knowing they would not lose

money because of peak pricing.

The above welfare calculations only capture the negative net consumer surplus impacts

from peak pricing that occur between 2:00 p.m. and 6:00 p.m. Establishments may undertake

behaviors that a↵ect consumption outside of the event window, resulting in welfare impacts

that are not captured by this model. These changes in consumption appear to be relatively

limited compared to the reductions during an event. Figure 5 shows small reductions in the

hours leading up to an event, and Table 4 shows small and insignificant at the 5 percent level

reductions in usage on non-event days. For robustness, I consider a scenario where the net

consumer surplus impacts are double what is calculated above. Using this assumption, I find

the total welfare impacts of the program to be 96 million. This shows that, even under a

conservative set of assumptions, the welfare impacts of peak pricing remain positive. The

net consumer surplus losses would need to be 3.4 times larger than what is estimated in the

primary specification for the costs of peak pricing to outweigh the benefits, which is unlikely

considering the limited consumption changes that are observed outside the event window.

6.3 Targeting the Capacity Constraint

The PG&E peak pricing program is designed in a manner similar to other peak pricing

policies around the U.S. The utility has discretion over when to charge higher prices on 9 to

15 event days per summer. In this section, I consider the welfare implications of how event

days are chosen and the price charged during event hours. I do this in the context of the

current peak pricing program, where resource adequacy requirements guarantee that there

will be su�cient capacity available to avoid blackouts.

PG&E calls event days using day-ahead weather forecasts. When the average forecasted

temperature for inland California exceeds a trigger temperature of 96 degrees or 98 degrees,

an event day is called. The trigger temperature is based on how many event days have been

called so far in a given summer and on historical weather trends.58 This approach is e↵ective

58The trigger temperature is adjusted every 15 days throughout the summer to hit the target number of 12
to 15 event days. See Appendix Section A for more details.
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at selecting the top 12 to 15 demand days each summer, but it is not designed to maximize

the net benefits of the peak pricing program.

The typical summer in California has a small number of days with very high demand

that are responsible for peak load. For example, the di↵erence between the demand on the

highest event day and the median event day in 2015 was 1,220 MW, more than 14 percent

of total peak load.59 The few highest demand days each summer drive resource adequacy

requirements and the long-run construction of peaker plants. I define as “super-peak” days

the set of days each summer for which calling an event day reduces the total summer peak

load. The number of super-peak days each summer depends on both the level of reduction

due to peak pricing and the number of high-demand days. Most Northern California summers

have between one and three super-peak demand days based on the estimated reduction due

to the peak pricing program for small C&I customers.60

The role of super-peak days in the 2015 program can be seen in the first two columns of

Table 8. To project the impact that the peak pricing program for small C&I establishments

will have once it is fully rolled out, I use the aggregate 118 MW reduction that projects

outcomes for 2018. This reduction would lower the 2015 summer peak from 19,451 MW to

19,333 MW, which would become the new summer peak eLt. In 2015, no event days other

than the one with the highest demand will a↵ect eLt. For example, reducing the load on

September 9, 2015, from 19,017 MW to 18,899 MW will not a↵ect eLt and will not provide

savings in long-run generation capacity investment.61

Table 8 shows the 2015 event days with the welfare impacts broken out. These values

reflect the welfare impact associated with each event day in 2015, using the ex-post information

about the realized demands. In practice, the peak pricing program is based on day-ahead

forecasts, which introduces significant uncertainty about which event days will provide benefits

when they are called. Column 3 shows the capacity value of reducing peak load. Only the

highest demand event day of the summer provided capacity cost savings because none of the

other event days a↵ect summer peak load. Column 4 shows the net consumer surplus loss

figure of 209,000 per event day, which is reported in the same discounted manner to allow

for easy comparison. Conditional on the super-peak event days being called, the non-super

peak event days reduce the welfare impacts of the program without providing capacity cost

savings.

59The same pattern holds for all years 2010–2015, with the di↵erence between maximum and median peak
load of 1,600 MW.

60Summers with one unusually hot day will usually have just one super-peak day. Summers with a long
heat wave where there are many days close to the peak will have more super-peak days.

61A list of the top 20 demand days in 2015 can be seen in Appendix Table A4.
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The cost of non-super peak event days quickly adds up. Each extra event day that does

not provide capacity cost savings results in a loss of 4.2 million of net consumer surplus

over the life of the program. A refinement to the peak pricing program would call just

the super-peak event days each summer.62 This approach is challenging with event day

programs because it is not possible to forecast ex-ante which summer days will be super-peak

(Borenstein 2012). Despite this limitation, there are a number of improvements that could be

made to the current program using the day-ahead information that is available to PG&E.

One simple change to the peak pricing program is to tighten the criterion used to call an

event day. The second-to-last column of Table 8 shows the day-ahead temperature forecasts

for the inland region of California. An event day is called when this temperature equals or

exceeds the “trigger temperature” set by PG&E, which is shown in the last column.63 The

current set of trigger temperatures typically calls the super-peak demand days each summer,

but also includes a large number of additional days that do not provide capacity cost savings.

A simple adjustment to the peak pricing program would move the trigger temperature to

101 degrees and remove the current 9 days per summer minimum. This approach uses the

same day-ahead temperature forecast that PG&E currently uses to pick event days. It would

result in a program that is better targeted at the super-peak event days, and would result in

fewer low-demand event days each year.

In an electricity market with regulated resource adequacy requirements, the impacts of

missing a super-peak event day are a higher summer peak eLt and the costs of building capacity

in a future period. In most cases, the welfare loss from missing a super-peak event day is

much higher than the benefit of avoiding a non-super peak event day. Any day-ahead program

must take this tradeo↵ into account. The proposed 101 degree trigger temperature accurately

selects the super-peak event days over the last five years using day-ahead temperature forecast

data, but a di↵erent trigger may be preferred in the future. For example, a utility may prefer

a 99 degree trigger if they are worried about the accuracy of their day-ahead temperature

projections. I considered more complicated models using load forecasts for event-day targeting,

but this adds unnecessary complexity without additional insight.

The second dimension of the peak pricing program that could be adjusted is the level of

the event day price. Currently, small C&I establishments pay .85/kWh during event windows,

which is .60 higher than their typical rate. Wholesale prices are routinely above .85/kWh,

and the peak price for large C&I PG&E establishments is set at 1.35/kWh. This level is

designed to reflect the long-run value of capacity (not just the resource cost to run existing

62It may be useful to set a minimum number of event days so that establishments do not forget they are
on the program. I have not found any research that identifies the impact of using too few event days.

63See Appendix Section A for more details on trigger temperatures.
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plants) and is based on the regulator’s avoided cost of capacity (California Public Utilities

Commission 2001).64 There is no reason to charge di↵erent event-day prices to di↵erent

customer classes, because both are subject to the same capacity constraint that drives system

costs. If .85/kWh is below the e�cient wholesale cost of electricity on event days, there are

potential welfare gains from raising the event-day price for small C&I establishments.

I quantify the welfare benefits of changing the number of event days and level of peak

prices in Table 9. Panel A uses a linear demand curve to calculate the demand at higher prices,

and Panel B uses a constant elasticity demand curve. The current peak pricing program has

an event price of .85/kWh on 15 days per year and is shown in the top-left entry of each

panel. Column (2) shows outcomes if the small C&I peak price were raised to 1.35/kWh,

the level paid by large establishments.65 Panel A shows that using the current 15 event days

per summer and increasing the event price from .85/kWh to 1.35/kWh would increase

the welfare benefits from 159 million to 212 million using a linear demand curve. The

third column shows the impacts of a peak price set at 1.85/kWh.66 Moving down the table

decreases the number of event days per summer from 15 to 8 to just the 3 super-peak days.67

The table shows that moving to a 101 degree trigger and using the large C&I peak price of

1.35/kWh—both of which are realistic adjustments—could improve program outcomes by

87 percent.

Panel B of Table 9 reproduces the analysis in Panel A using a constant elasticity demand

curve.68 It shows small di↵erences in the welfare benefits compared to the main results that

are consistent with the properties of a constant elasticity demand curve relative to a linear

demand curve. At the current price of .85/kWh, the concavity of the constant elasticity

demand curve results in lower net consumer surplus losses, leading to higher estimated welfare

benefits. At peak price levels above .85/kWh, the constant elasticity demand curve predicts

lower peak demand reductions than the linear curve, yielding lower welfare benefits. For

64An alternate trigger could use day-ahead market prices to determine when to call event days and set
the price level. In theory, it could improve targeting and outcomes. However, in practice, it is not a good
predictor of peak demand because of the regulatory rules that govern the California electricity market.

65The estimated welfare e↵ects at higher prices are out-of-sample projections, which may not reflect how
establishments would respond. There are no empirical estimates in the literature to inform this estimate. It is
possible that establishments would be more or less elastic at higher price levels, which I cannot predict using
my estimates. The constant elasticity demand curve assumes that same elasticity at all levels of demand,
similar to what is used in Borenstein (2005) and Borenstein and Holland (2005).

66The calculations assume that peak wholesale prices are greater than or equal to the peak price in
each column. If, for example, peak prices only reached 1.50/kWh, then the results in Column (3) would
overestimate the benefits.

67One important caveat of this analysis is that the estimated impacts assume that the super-peak days are
correctly called as event days under all three approaches. A utility that faces a high level of uncertainty in
forecasting super-peak days may choose to use 15 event days per year. This may erode some of the program
benefits but would avoid the large costs of missing a super-peak event day.

68I use the form Q = AP ✏ for this calculation. I anchor the demand curve at the control price of .25/kWh.
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example, the welfare benefits at 1.35/kWh on 8 event days per year is 259 million, which

is 13 percent lower than when a linear demand curve is used. The small di↵erences between

the outcomes with two di↵erent types of demand curves illustrate that the functional form

has a limited impact on the overall welfare results.

6.4 Comparing Peak Pricing to First-Best Policy

To put the second-best peak pricing program in perspective, I compare outcomes to

the first-best alternative. Real-time pricing has been shown by previous research to result in

e�cient long-run outcomes, making it a useful benchmark (Borenstein 2005; Borenstein and

Holland 2005). The comparison between peak and real-time pricing conducted in this section

is parameterized by the empirical estimates from the paper, but the findings are robust to

a range of assumptions. The model highlights that the majority of the welfare benefits of

real-time pricing are due to the reduced need to build expensive and infrequently used peaker

generation. Peak pricing, if e↵ectively designed, can capture a large portion of this value.

To compare peak pricing and real-time pricing, I consider a theoretical energy-only

electricity market where electricity supply and demand are cleared continuously with a uniform

price auction. As discussed in Section 6.1, this stylized model approach has shortcomings when

calculating the welfare benefits of time-varying pricing. However, many of these shortcomings

are minimized when I use a stylized model to compare real-time pricing to peak pricing. The

resource adequacy process would likely have similar e↵ects on peak pricing and real-time

pricing, meaning most of the inaccuracies will cancel out in the comparison.69

Under this stylized real-time price, customers face retail rates that change every five

minutes to reflect the real-time wholesale cost of electricity. I assume customers are fully

informed about the real-time price they are paying and that their usage reflects the five

minute price.70 To allow a simple comparison between peak pricing and a real-time price, I

assume the wholesale price takes on two distinct values. The low price reflects the marginal

cost of generation at high-e�ciency natural gas power plants, which I set at .10/kWh. When

demand exceeds the capacity of the low-cost plants, the price of electricity spikes to the high

level.71 The high price reflects the long-run cost of generation, which includes the costs of

building and running peaker power plants to meet demand. I assume a high real-time price

69Other factors that could a↵ect the net consumer surplus loss calculations, such as bill protection, will
also cancel.

70Real-time pricing programs could have prices vary as frequently as every minute or in larger 15 to 30
minute increments. Joskow and Tirole (2006) suggest that customers may not respond to short-run changes
in electricity price if transaction costs are too high. They suggest that this cost will be reduced through the
use of advanced technologies that can quickly take advantage of price variation.

71This pricing structure reflects a retail electricity model with fixed charges, where the retail rate reflects
the marginal cost of generation. Depending on natural gas prices, the cost at a high-e�ciency natural gas
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of 1.35/kWh, which corresponds to the peak price paid by large commercial and industrial

customers in the existing program. When demand drops to a level where the base load

capacity is su�cient to balance load, the price returns to the low price level.

The simplified version of real-time pricing facilitates a transparent comparison to peak

pricing, but it does not capture all of the potential benefits of real-time pricing. In practice,

real-time prices vary in the short run between the low and peak prices throughout the day

and year, which can result in a more e�cient usage of existing generation capacity. These

benefits, however, are an order of magnitude smaller than the gains from more e�cient

long-run capacity investment. Holland and Mansur (2006) focus on the short-run impacts of

real-time pricing variation and find welfare improvements of only .24 percent. In contrast,

studies that consider long-run capacity investment find that the benefits of real-time pricing

are 5 to 10 percent of wholesale energy costs (Borenstein and Holland 2005). By focusing on

the long-run capacity e↵ects of real-time pricing, the model used in this section is able to

capture the majority of the benefits of the policy using a transparent framework.

I benchmark outcomes under the peak pricing program against the benefits under real-

time pricing. I first consider the existing peak pricing program, where prices are increased

to .85/kWh between 2:00 p.m. and 6:00 p.m. on 15 event days per summer. In non-peak

hours, customers are charged the same .10/kWh under peak pricing and real-time pricing

to simplify the comparison.72 The well-targeted peak pricing program uses the optimal

event-hour price of 1.35/kWh on only 8 event days per year.73 In both scenarios, I assume

there are 3 super-peak event days each summer that provide capacity savings, and that these

will be called as event days under both systems. During the super-peak days, I assume the

price is at the high level for an hour between 2:00 p.m. and 6:00 p.m.

To compare peak pricing to first-best, I use my empirical estimates to calculate the

welfare gains under peak pricing and compare them to the outcomes under real-time pricing.74

For the existing peak pricing program, the di↵erence between first and second-best comes

from two sources. First, by charging an event price below 1.35/kWh, peak pricing will

power plant may be lower than .10/kWh. A full accounting of the assumptions can be found in Appendix
Section E.2.

72I do this so real-time pricing and peak pricing raise similar amounts of revenue and are comparable in
o↵-peak hours. Under both pricing plans, I assume revenue shortfalls are recovered with a monthly fixed
charge.

73It may be ideal to set the peak price slightly below 1.35/kWh due to the net consumer surplus loss
caused by peak pricing. For simplicity, I assume the well-targeted peak price is set at 1.35/kWh. I use the
temperature trigger proposed in Section 6.3 to select eight event days per summer.

74I use the same elasticity for both the peak pricing and real-time price reductions. I assume customer
response to the high price will be the same whether they face the high price for a short time or the full peak
window. Wolak (2011) showed that, for residential customers, the response to peak prices was similar using
both a short and a long event window. Appendix Section F shows that the results are robust to assuming
that the real-time pricing response will be lower than the peak pricing response.
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generate lower capacity construction savings than will real-time pricing. Second, under the

current peak pricing program, the event price will be charged for 60 hours per year compared

to just three hours under the real-time price. I choose a short period of time during which

real-time prices are at the high level in order to remain conservative in reporting the benefits

of peak pricing compared to real-time pricing. The longer the high event price is charged

while real-time prices are low, the lower the relative benefits that peak pricing provides. The

well-targeted peak pricing program, by setting peak prices at 1.35/kWH, provides the same

capacity construction savings as the real-time price. The lower number of event hours each

year (32) also reduces the extra net consumer surplus loss that comes from non-super peak

event days.75

Using this approach, I find that the current peak pricing program provides 44 percent

of the welfare benefits of the first-best approach. The result illustrates that the current

program is providing some value, but performs poorly compared to the first-best policy.

The well-targeted peak pricing program is able to make significant welfare improvements,

delivering 83 percent of the first-best outcome. This result underscores the value of targeting.

In markets with a binding capacity constraint, directly targeting the distortion caused by the

constraint is an e↵ective tool to improve welfare.

The benchmarking model is useful in understanding the impacts of poorly targeting

the peak pricing program. Table 11 shows a number of alternate scenarios that consider how

an incorrectly targeted peak pricing program might perform. As before, I assume the high

real-time price is 1.35/kWh. Column (1) mirrors the current program, where peak prices

are set at .85/kWh; Column (2) shows the results for the correctly chosen peak price; and

Column (3) shows the impacts if peak prices were set too high, at 1.85/kWh. The first row

shows the outcome when eight event days are chosen per year using the 101 degree trigger of

the well-targeted program. The second row shows the outcomes with 15 event days. The

bold entries correspond to the current and well-targeted peak pricing programs discussed

previously. The other entries show the consequences of poorly targeting the peak pricing

program.76 The benchmarking model shows that, while the returns to targeting can be large,

the downsides to incorrectly targeting are also significant. Setting the wrong price or calling

too many days reduces program e↵ectiveness. For example, calling 15 event days per year at

a price of 1.85/kWh would capture only 25 percent of the first-best outcome.

75I include the small CO2 benefits in each scenario that come from peak pricing providing more overall
kWh reductions each summer than real-time pricing. The benefits are not large enough to o↵set the cost of
the peak pricing program being in e↵ect for more hours each summer.

76See Appendix Table A13 for a robustness check where prices hit the peak for the full four-hour period
between 2:00 p.m. and 6:00 p.m.
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The model outlined for this calculation is stylized in nature and makes a number of

simplifying assumptions that could impact outcomes. A linear demand curve is used to both

estimate the net consumer surplus loss and demand reductions at prices above the observed

.85/kWh peak pricing level. To better understand the role of this assumption, I use a

constant elasticity demand curve to make the same calculations, finding that the current

and well-targeted peak pricing programs provide 63 percent and 87 percent of the first-best

benefits, respectively.77 The constant elasticity demand curve yields better relative outcomes

for peak pricing because the curvature of the demand curve results in a smaller net consumer

surplus loss than under a linear demand curve. Despite the change in functional form, the

results using a constant elasticity demand curve show the same qualitative results that the

current program can be greatly improved using the proposed changes.

A number of additional robustness checks are conducted in Appendix Section F. I

consider what happens if establishments are more responsive to peak pricing than real-time

pricing because they have day-ahead notice. I also examine how the results are impacted

if establishments have larger net consumer surplus losses from peak pricing than real-time

pricing. Changing these assumptions has small impacts on the relative benefits of the two

pricing programs, but it does not change the overall finding that well-designed peak pricing

program can achieve a large portion of the first-best benefits.

The ability to design a well-targeted program depends on the aggregate peak pricing

reductions combined with knowledge of institutional details to value the costs and benefits of

the program. Using these insights helps inform the best way to target the costly capacity

constraints by observing the underlying structure of peak event days on the PG&E grid. The

estimation of the short-run electricity demand curve allows me to parameterize and balance

the net consumer surplus losses under peak pricing against the capacity cost savings from

higher prices. The empirical results also make the findings directly applicable to the current

policy landscape because they show how small C&I establishments respond to peak pricing.

The empirical analysis also provides a realistic starting point for the welfare comparisons

based on the current program. Taken together, these results suggest that it is possible to

achieve over four-fifths of the first-best outcome using a well-targeted, second-best policy.

7 Conclusion

Retail electricity customers in the U.S. are typically charged a flat price per kWh

consumed. This time-invariant price does not reflect the cost of capacity at peak demand

77See Appendix Table A14 for all of the scenarios shown in Table 11 recalculated using a constant elasticity
demand curve.

33



hours. This paper studies a policy, peak pricing, that charges higher prices to retail customers

on high-demand days when it is more costly to supply marginal units of electricity. Using

quasi-random variation in program implementation and two di↵erent identification strategies,

I find that establishments reduce their usage between 2:00 p.m. and 6:00 p.m. by 13.5 percent.

In the aggregate, the peak pricing program will provide 118 MW of peak demand reductions

in the PG&E service territory when fully implemented. The peak savings reduce the amount

of generation capacity required at peak, yielding 159 million of welfare benefits. I compare

outcomes to a theoretical first-best, real-time pricing policy, finding that the current program

captures 44 percent of the benefits. I show that a well-targeted peak pricing program could

provide greatly improved outcomes, equaling 83 percent of the first-best outcome.

This paper fills an important gap in the literature by providing evidence of how

commercial and industrial customers respond to peak pricing. This research is particularly

important as the popularity of peak pricing programs continues to grow, fueled by the

installation of low-cost, advanced metering technology. Programs like peak pricing also have

the potential to facilitate the low-cost integration of intermittent renewable resources such as

solar and wind. Furthermore, targeted peak pricing programs could be used in emergency

situations when natural disasters interfere with transmission or generation infrastructure.

More work is necessary to learn how peak pricing can be used to improve electricity grid

e�ciency as the grid changes and adapts to future challenges and demands.
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Figures

Figure 1: Average Consumption Profile of Small Commercial and Industrial Establishments
in Sample
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Note. — This figure shows the average consumption profile of the establishments in my analysis for all
weekdays during the summer of 2014. The vertical lines signify the beginning (2:00 p.m.) and end (6:00 p.m.)
of the peak event window. The system peak demand for the PG&E grid typically is between 4:00 p.m. and
6:00 p.m.

Figure 2: Timeline of Peak Pricing Rollout
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Note. — This figure shows the timeline of peak pricing implementation. I classify establishments as eligible
for peak pricing in 2015 if their high-frequency metering data began before September 1, 2011 (eligibility
cuto↵). PG&E began placing some establishments on peak pricing in November 2014 (enrollment starts)
based on eligibility and technical requirements, which are described in Section 4.1. Establishments may opt
out of peak pricing at any time.
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Figure 3: The E↵ect of Eligibility on Peak Pricing Treatment Status
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Note. — This figure shows the impact of peak pricing eligibility on PG&E moving an establishment to peak
pricing. Establishments are binned by the week their high-frequency data began. Establishments to the left
of the September 1, 2011 threshold are eligible to be moved onto peak pricing by PG&E. Establishments to
the right of the threshold are the control group. There are around 500 establishments per bin. The figure
shows 27 weeks in each direction from the threshold to show the larger default patterns. The vertical dashed
lines represent the 8-week bandwidth used in the main specification.
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Figure 4: Pre-Period Electricity Consumption on Event Days by Eligibility Group
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Note. — This figure shows the summer 2014 pre-period average hourly consumption for peak pricing eligible
and ineligible establishments. Electricity usage is on event days called in 2014 by PG&E the year before these
establishments were enrolled in the program. Consumption is shown conditional on establishment fixed e↵ects.
I cannot statistically reject that the pre-period consumption is the same for both groups using hour-by-hour
t-tests. The vertical lines signify the beginning (2:00 p.m.) and end (6:00 p.m.) of the peak event window.

Figure 5: E↵ect of Peak Pricing on Inland Establishment Electricity Consumption
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Note. — This figure shows the results of a regression estimating the hourly impacts of peak pricing for
inland establishments on event days. Each dot corresponds to an hourly treatment e↵ect comparing treated
establishments with the control group. The dotted lines signify the 95 percent confidence interval. The
vertical lines signify the beginning (2:00 p.m.) and end (6:00 p.m.) of the peak event window. The average
impact between 2:00 p.m. and 6:00 p.m. reflects the coe�cient in Column (5) of Table 3. The results show
that establishments begin reducing their electricity usage in the hours before the event window starts.
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Figure 6: Benefits and Costs of Peak Pricing
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Note. — This figure graphically shows the benefits and costs of peak pricing. Panel A shows the capacity
supply curve for fossil generation. Reducing peak demand lowers the need for peaker power plants. I assume
a constant cost of 1.2 million/MW to build a peaker plant, using California Energy Commission estimates
to value the benefits. Using the demand reductions estimate for inland establishments, I find an aggregate
reduction of 118 MW, which translates into a reduction of 140 million in capacity costs. Panel B shows the
hourly net consumer surplus (CS) loss from calling an event day. The horizontal axis is in kWh per hour
(kWh/h), which is equivalent to kW. Short-run marginal production costs (SRMC) are .102/kWh and reflect
the fuel cost at marginal power plants during peak hours. Q0 is the quantity of electricity consumed during
an event hour without peak prices, and Q1 is the quantity consumed during an event hour with peak prices.
I assume a linear demand curve and find that each event day reduces welfare by 209,000. See Section 6.2 for
a full discussion of the welfare impacts of peak pricing.
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Tables

Table 1: Characteristics of Establishments by Peak Pricing Eligibility Status

Variable Ineligible Eligible
P value of
di↵erence

Summer 2014 avg peak hourly consumption (kWh) 5.17 5.19 .87
(3.79) (3.8)

Summer 2014 max peak hourly consumption (kWh) 9.92 10.00 .61
(6.82) (6.86)

Summer 2014 total event hours consumption (kWh) 219 219 .93
(167) (167)

Summer 2014 total non-event hours consumption (kWh) 12,437 12,267 .40
(8991) (8612)

Summer 2014 electricity expenditure 562 556 .52
(396) (385)

Percent of establishments customer facing .44 .43 .72
(.5) (.5)

Money saved if program run on 2014 usage - 10 - 12 .17
(59) (58)

Average peak hour temperature (F) 73.24 73.38 .41
(7.55) (6.96)

Establishment count 3,220 4,215

Note. — This table shows the mean and standard deviation of the observable characteristics by peak pricing
eligibility status for establishments within eight weeks of the September 1, 2011 threshold. Standard deviations
are shown in parentheses. Customer-facing establishments are defined based on North American Industry
Classification System codes, as discussed in Section 5.4.

Table 2: The E↵ect of Peak Pricing Eligibility on Enrollment (First Stage)

(1) (2) (3)

All PG&E Coastal Inland

Eligible ⇥ Post 0.2230*** 0.1547*** 0.3654***
(0.0064) (0.0068) (0.0129)

Establishments 7, 435 5, 096 2, 339
F statistic 406 174 268

Note. — This table reports regression coe�cients from three separate first-stage regressions estimated using
Equation (2). The dependent variable in all regressions is a binary indicator if an establishment is enrolled
in the peak pricing program. Eligible ⇥ Post is an interaction of an establishment’s eligibility for peak
pricing and 2015. The coe�cients show the impact of peak pricing eligibility on program enrollment. All
regressions control for temperature and include hour-of-sample fixed e↵ects and establishment fixed e↵ects.
Standard errors are in parentheses and are two-way clustered at the establishment and hour-of-sample levels.
***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.

41



Table 3: The E↵ect of Peak Pricing on Peak Electricity Consumption (2SLS results)

(1) (2) (3)

All PG&E Coastal Inland

Peak pricing �0.06974* 0.00842 �0.14514***
(0.04139) (0.07095) (0.04575)

Temperature �0.00499** �0.01768*** 0.02517***
(0.00236) (0.00347) (0.00674)

Temperature squared 0.00008*** 0.00015*** �0.00008**
(0.00001) (0.00002) (0.00004)

Observations 742, 939 509, 245 233, 694
Establishments 7, 435 5, 096 2, 339
Event day kWh usage 5.55 5.03 6.70
Average temperature 78 71 92

Note. — This table reports regression coe�cients from three separate 2SLS regressions estimated using
Equation (1). The dependent variable in all regressions is the log of establishment hourly kWh consumption.
Peak pricing is an indicator for enrollment in peak pricing, for which I instrument with eligibility status. The
coe�cients show the impact of peak pricing on peak consumption between 2:00 p.m. and 6:00 p.m. For
inland establishments, the coe�cient corresponds to a 13.5 percent reduction in usage. See Table A10 for the
non-instrumented OLS regression. All regressions control for temperature and include hour-of-sample fixed
e↵ects and establishment fixed e↵ects. Standard errors are in parentheses and are two-way clustered at the
establishment and hour-of-sample levels. ***Significant at the 1 percent level. **Significant at the 5 percent
level. *Significant at the 10 percent level.

Table 4: The E↵ect of Peak Pricing on Non-Event Day Peak Electricity Consumption

(1) (2) (3)

All PG&E Coastal Inland

Peak pricing �0.0231 0.0264 �0.0718**
(0.0340) (0.0593) (0.0364)

Observations 5, 736, 644 3, 930, 559 1, 806, 085
Establishments 7, 435 5, 096 2, 339
Event day kWh usage 5.13 4.88 5.70
Average temperature 73 69 81

Note. — This table reports regression coe�cients from three separate 2SLS regressions estimated using
Equation (1) run with 2:00 p.m.–6:00 p.m. usage on non-event weekdays between June 1 and October 31,
2015. This approach is to test for spillovers to non-event days, as establishments do not face high peak prices
during these hours. The results show no significant impacts at the 5 percent level on non-event days. The
dependent variable in all regressions is the log of establishment hourly kWh consumption. Peak pricing is an
indicator of enrollment in peak pricing, for which I instrument with eligibility status. All regressions control
for temperature and include hour-of-sample fixed e↵ects and establishment fixed e↵ects. Standard errors are
in parentheses and are two-way clustered at the establishment and hour-of-sample levels. ***Significant at
the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Table 5: The E↵ect of Peak Pricing on Peak Electricity Consumption for Inland Establish-
ments: Temperature Interaction

(1) (2) (3)

All PG&E Coastal Inland

Peak pricing ⇥ Temperature (F) �0.00496* 0.00729 �0.01128**
(0.00284) (0.00736) (0.00535)

Peak pricing �0.03885 0.00616 0.03957
(0.05568) (0.08190) (0.08833)

Temperature 0.00558*** 0.00397*** 0.01211***
(0.00060) (0.00094) (0.00159)

Temperature squared 0.00006*** 0.00008* �0.00013***
(0.00002) (0.00005) (0.00004)

Observations 475, 316 325, 825 149, 491
Establishments 7, 435 5, 096 2, 339
Event day kWh usage 5.59 5.06 6.73
Average temperature 78 71 92

Note. — This table reports the regression coe�cients from three separate 2SLS regressions where treatment
is interacted with temperature. The dependent variable is the log of establishment hourly kWh consumption.
Peak pricing ⇥ Temperature (F) is the interaction between the treatment variable and hourly establishment
temperature. Temperature has been re-centered at 75 degrees for scaling purposes. The coe�cients show
that peak pricing impacts are larger on hotter inland event days. The peak pricing impacts for inland
establishments become positive around 79 degrees, which is lower than the temperature for all inland event
days. The regression includes hour-of-sample fixed e↵ects and establishment fixed e↵ects. Standard errors
are in parentheses and are two-way clustered at the establishment and hour-of-sample levels. ***Significant
at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Table 6: The E↵ect of Peak Pricing on Peak Electricity Consumption for Inland Establish-
ments: Industry Classification

All PG&E Coastal Inland

(1) (2) (3) (4) (5) (6)

Customer
facing

Non-cust
facing

Customer
facing

Non-cust
facing

Customer
facing

Non-cust
facing

Peak pricing 0.0352 �0.1266** 0.0849 �0.0477 �0.0161 �0.1984***
(0.0557) (0.0588) (0.0982) (0.1021) (0.0520) (0.0664)

Observations 288, 797 374, 130 213, 208 246, 580 75, 589 127, 550
Establishments 2, 889 3, 745 2, 133 2, 468 756 1, 277
Event day kWh usage 6.34 5.15 5.66 4.61 8.25 6.19
Average temperature 76 78 71 72 92 92

Note. — This table reports regression coe�cients from six separate 2SLS regressions estimated using Equation
(1) broken down by industry type. The dependent variable in all regressions is the log of establishment hourly
kWh consumption. Peak pricing is an indicator of enrollment in peak pricing, for which I instrument with
eligibility status. The coe�cients show the impact of peak pricing on peak consumption between 2:00 pm
and 6:00 pm. Establishments are classified as customer- facing or non-customer-facing by their industry
classification code, as described in Section 5.4. The regression is run on the subset of establishments for which
I have an industry classification code. The estimates in Columns (1) and (2) are di↵erent with a p-value of
.028 and the estimates in Columns (5) and (6) are di↵erent with a p-value of .052. For inland establishments,
the non-customer-facing coe�cient corresponds to a 18.0 percent reduction in usage. All regressions control
for temperature and include hour-of-sample fixed e↵ects and establishment fixed e↵ects. Standard errors are
in parentheses and are two-way clustered at the establishment and hour-of-sample levels. ***Significant at
the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Table 7: Welfare Impacts of PG&E’s Peak Pricing Program Components

Category
Net benefits of peak

pricing (millions 2016 )

Peak capacity construction costs (one time) 140 million
Avoided sta�ng and maintenance costs 3.07/year
Net consumer surplus losses - 3.16/year
O↵ peak .01/kWh discount 0.84/year
Environmental benefits 0.2/year

Total benefits 159 million

Note. — This table summarizes the welfare impacts of PG&E’s peak pricing program calculated in Section
6.2. All values are in millions of 2016 dollars. The total benefit of peak pricing is calculated using a 3 percent
real discount rate and a 30-year horizon. The results are not sensitive to the discount rate because the yearly
benefits and costs mostly o↵set each other.

Table 8: Welfare Impacts for 2015 Event Days

Event day
PG&E

max load

Annual capacity
cost savings
(discounted)

Annual net consumer
surplus loss
(discounted)

NWS day ahead
max temperature

forecast

Trigger
temperature

8/17/2015 19,451 10,000,000 - 209,000 101 96

6/30/2015 19,320 0 - 209,000 101 96

7/29/2015 19,248 0 - 209,000 104 98

8/28/2015 19,233 0 - 209,000 96 96

9/10/2015 19,230 0 - 209,000 104 98

9/9/2015 19,017 0 - 209,000 102 98

7/28/2015 18,403 0 - 209,000 101 98

8/27/2015 18,328 0 - 209,000 97 96

6/25/2015 18,114 0 - 209,000 103 96

9/11/2015 18,019 0 - 209,000 101 98

6/26/2015 17,950 0 - 209,000 100 96

7/30/2015 17,750 0 - 209,000 100 98

7/1/2015 17,734 0 - 209,000 100 98

8/18/2015 17,372 0 - 209,000 96 96

6/12/2015 17,275 0 - 209,000 99 96

Note. — This table shows the two main welfare impacts of the 2015 event days. The annual capacity cost
savings shows the benefits of reducing peak load. Annual capacity cost savings includes both the plant
construction and operating costs, amortized over the assumed 30-year power plant life. There are non-zero
savings numbers only for the super-peak event days of each summer. In 2015, only the highest load day was
super-peak. The annual net consumer surplus loss shows the negative welfare consequences of charging higher
prices during event hours and is displayed in the same units as capacity cost savings. The values are the
same for all event days because the estimate is based on the average impact of peak pricing. NWS day-ahead
maximum temperature forecast is the day-ahead temperature used by PG&E to call event days. It is based
on the average of five National Weather Service weather stations. When the day-ahead maximum forecast
equals or exceeds the trigger temperature, an event day is called.
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Table 9: Welfare Impacts of Peak Pricing Under Alternate Scenarios

(1) (2) (3)

Scenario
$.85/kWh peak
(current price)

$1.35/kWh peak
(large C&I peak price)

$1.85/kWh peak
(high price)

Panel A: Linear demand

15 days/summer 159 212 212

101 degree trigger (8 days) 189 298 361

Super-peak days (3 days) 210 358 468

Panel B: Constant elasticity demand

15 days/summer 189 211 212

101 degree trigger (8 days) 214 259 277

Super-peak days (3 days) 232 293 323

Note. — This table shows the welfare benefits (in millions of 2016 dollars) of the peak pricing program under
di↵erent program design scenarios. Panel A shows the welfare calculations using a linear demand curve and
Panel B does the same using a constant elasticity demand curve. Column (1) shows outcomes under the
current .85/kWh peak price. Column (2) shows the estimated outcomes if the peak price were set at 1.35,
which is the level of large commercial and industrial customers and is based on a PG&E valuation of capacity
at peak. Column (3) shows the impacts if the price was set at 1.85/kWh. The first row of each panel reflects
the current 15 event days per summer and the entry in the top left shows the welfare impacts estimated for
the current program. The middle row of each panel reflects the proposed alternate 101 degree trigger for
event days, and the bottom row of each panel shows the hypothetical scenario when only the three super-peak
event days each year could be called. The welfare calculations assume that peak wholesale prices are greater
than or equal to the peak price in each column.

Table 10: Welfare Impacts of Peak Pricing Compared to First-Best, Real-Time Price

(1) (2) (3)

Event days called per summer
$.85/kWh peak price
(peak price < RTP)

$1.35/kWh peak price
(peak price = RTP)

$1.85/kWh peak price
(peak price > RTP)

8 event days (well targeted) 50% 83% 64%

15 event days (current) 44% 65% 25%

Note. — This table compares the peak pricing program to the first-best, real-time price across a number of
scenarios. The percent values reflect the percent of the welfare benefits the peak pricing scenario can achieve
compared to the first-best alternative. RTP is real-time price. For this table, the optimal peak price is set
at 1.35/kWh for an hour on three super-peak days per summer. Column (1) reflects the current program,
where peak prices are set at .85/kWh, which is below the optimal level. Column (3) shows the impacts when
prices are set above this level. The top row reflects the outcomes when eight event days are called per year.
The bottom row shows the results for the current program, in which I assume 15 event days are used each
summer. The current program achieves 44 percent of the first-best policy, while the well-targeted program
could achieve 83 percent of the benefits.
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Table 11: Welfare Impacts of Peak Pricing Compared to First-Best, Real-Time Price

Category
Net benefits of peak

pricing (millions 2016 )

Peak capacity construction costs (one time) 140 million
Avoided sta�ng and maintenance costs 3.07/year
Net consumer surplus losses - 3.16/year
O↵ peak .01/kWh discount 0.84/year
Environmental benefits 0.2/year

Total benefits 159 million

Note. — This table compares the peak pricing program to the first-best, real-time price across a number of
scenarios. The percent values reflect the percent of the welfare benefits the peak pricing scenario can achieve
compared to the first-best alternative. RTP is real-time price. For this table, the optimal peak price is set
at 1.35/kWh for an hour on three super-peak days per summer. Column (1) reflects the current program,
where peak prices are set at .85/kWh, which is below the optimal level. Column (3) shows the impacts when
prices are set above this level. The top row reflects the outcomes when eight event days are called per year.
The bottom row shows the results for the current program, in which I assume 15 event days are used each
summer. The current program achieves 44 percent of the first-best policy, while the well-targeted program
could achieve 83 percent of the benefits.
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