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Abstract

Despite widespread agreement that a carbon tax would be more efficient, many coun-
tries use fuel economy standards to reduce transportation-related carbon dioxide emis-
sions. We pair a simple model of the automakers’ profit maximization problem with
unusually-rich nationally representative data on vehicle registrations to estimate the
distributional impact of U.S. fuel economy standards. The key insight from the model
is that fuel economy standards impose a constraint on automakers which creates an
implicit subsidy for fuel-efficient vehicles and an implicit tax for fuel-inefficient vehi-
cles. Moreover, when these obligations are tradable, permit prices make it possible to
quantify the exact magnitude of these implicit subsidies and taxes. We use the model
to determine which U.S. vehicles are most subsidized and taxed, and we compare the
pattern of ownership of these vehicles between high- and low-income census tracts. Fi-
nally, we compare these distributional impacts with existing estimates in the literature
on the distributional impact of a carbon tax.
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1 Introduction

Global oil consumption now exceeds 90 million barrels per day (EIA, 2016) fueling the more

than 1.2 billion vehicles in use worldwide (BP, 2015). Total carbon dioxide emissions from

road transportation exceed five gigatons annually (IPCC, 2015), approximately one-sixth of

all anthropogenic emissions. Policymakers are increasingly turning their attention to this

important sector, evaluating alternative approaches for reducing carbon dioxide emissions.

Economists agree that the most cost-effective approach would be a carbon tax, or equiv-

alently, taxes on gasoline and diesel. Carbon dioxide emissions are proportional to fuels

consumption, so either approach would be first-best for reducing carbon dioxide emissions

from driving.

Despite widespread agreement that a carbon tax would be more efficient, many countries

use fuel economy standards to reduce transportation-related carbon dioxide emissions. The

United States and Japan have long histories with fuel economy standards, and similar policies

have also been recently implemented by the European Union, China, India, and elsewhere

(Anderson and Sallee, 2016). The exact format differs between countries, but many programs

follow the U.S. Corporate Average Fuel Economy (CAFE) standards in requiring automakers

to meet a minimum sales-weighted average for their vehicle fleets.

It can be easier politically to introduce fuel economy standards than taxes, but the two are

not equivalent. Probably the single biggest limitation of fuel economy standards is that they

don’t achieve the efficient level of vehicle usage; to efficiently reduce gasoline consumption

you need people to buy more fuel-efficient cars and to drive them less. But economists have

pointed out other disadvantages as well. For example, Jacobsen and van Benthem (2015)

show that fuel economy standards reduce the incentive for drivers to retire old vehicles,

leading fuel-inefficient vehicles to stay on the road longer. Overall, studies have found that

fuel economy standards are three to six times more costly than a carbon tax (Austin and

Dinan, 2005; Jacobsen, 2013).

In this paper we ask a different but related question. Are fuel economy standards regressive?

How the burden of standards is borne between high- and low- income households is one

of the factors that must be considered when comparing standards to alternative policies

for reducing carbon dioxide emissions. To answer this question, we pair a simple model of

the automakers’ profit maximization problem with unusually-rich nationally representative

data on vehicle registrations. The key insight from the model is that fuel economy standards

impose a constraint on automakers which creates an implicit subsidy for fuel-efficient vehicles

and an implicit tax for fuel-inefficient vehicles. Moreover, when these obligations are tradable
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as they are under U.S. CAFE standards, the permit prices make it possible to quantify the

exact magnitude of these implicit subsidies and taxes.

When we consider new vehicles only, we find that U.S. fuel economy standards are mildly

progressive. High-income households bear more of the cost as a fraction of income than low-

income households. However, this largely reflects that high-income households buy more new

vehicles. When we expand the analysis to include used vehicles, standards become mildly

regressive.

We then compare these distributional impacts with existing estimates in the literature on

the distributional impact of a carbon tax. In general, this literature has found that the

regressivity or progressivity of a carbon tax strongly depends on what is done with the

collected revenue. Comparing our estimates with the previous literature, we conclude that

CAFE standards are more progressive than a carbon tax that does not recycle the revenue,

but more regressive than a carbon tax that recycles the revenue through uniform transfers.

Put simply, it is easy to design a carbon tax that is more progressive than fuel economy

standards. Thus, we conclude that it is difficult to argue for fuel economy standards on

distributional grounds.

This paper fills an important gap in the literature. Previous studies of fuel economy standards

have focused almost exclusively on efficiency and overall cost-effectiveness, but the distri-

butional impacts of fuel economy standards have received little attention. An important

exception is Jacobsen (2013) which studies the distributional impacts of CAFE using micro-

data from the 2001 National Household Travel Survey. The paper finds a similar pattern,

with the estimated distributional impact flipping from progressive to regressive once used

vehicles are incorporated. In the full analysis, Jacobsen (2013) finds that low-income house-

holds suffer proportional welfare losses three times as large as high-income households.

Before proceeding we want to be clear about several important limitations of our analysis.

First, our maintained assumption throughout is that these impacts are borne entirely by

vehicle buyers rather than automakers or retailers. This is a reasonable assumption in

market segments that are highly competitive and consistent with at least one study of subsidy

incidence in the U.S. automobile sector (Sallee, 2011), but it is a strong assumption that we

are not able to verify empirically.

Second, our calculations implicitly assume that these taxes and subsidies do not change

buyers’ vehicle decisions. This is, of course, incorrect. Part of the purpose of fuel economy

standards is to move buyers toward more fuel-efficient vehicles. We might see, for example,

someone who owns a vehicle that is subsidized under CAFE and conclude they are a “winner”
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when in fact, without CAFE they would have purchased a different vehicle that because of

CAFE is taxed. This buyer is not a winner at all and despite buying a subsidized vehicle

might have suffered a significant welfare loss. We do not estimate a demand model so

our analysis is silent on this substitution behavior and on the broader welfare impacts of

CAFE.

Third, our approach for modeling the impact of CAFE on used vehicles is ad hoc and

only a rough approximation. Fuel economy standards apply only to new vehicles but have

significant indirect impacts on used vehicle prices. We model this using a strong simplifying

assumption that we argue describes the general pattern of impacts but cannot capture all of

the complicated cross-price effects.

Fourth, our analysis is short-run in that we do not model the impact of fuel economy stan-

dards on innovation. Over a longer time horizon fuel economy standards can lead to the

development of entirely new vehicle models that might have disproportionate impacts across

income groups. There has been some recent work on fuel economy standards and innovation

(Klier and Linn, 2016), but we are not aware of any work examining the potential long-run

distributional impacts.

2 Background

The Corporate Average Fuel Economy (CAFE) program was introduced in the United States

in 1975 with the objective of reducing gasoline consumption. Under CAFE, automakers are

required to meet a minimum sales-weighted average fuel economy for their vehicle fleets.

These requirements have been tightened several times, most recently with a significant revi-

sion to the program resulting in new program rules which took effect starting in 2012. For

a complete regulatory history, see Anderson et al. (2011), Knittel (2012), and Leard and

McConnell (2015).

2.1 Footprint-Based Standards

As has always been the case with CAFE standards, automakers are required to meet a

minimum sales-weighted average fuel economy for their vehicle fleet. Since 2012, however,

this target now depends on the footprint of vehicles in the fleet. Calculated as the product

of a vehicle’s wheelbase (i.e. length) and track width (i.e. width), the footprint is a simple

measure of the overall size of the vehicle.
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Figure 1: Emissions Targets, 2012 to 2016

2012

2016+

1
7

5
2

0
0

2
2

5
2

5
0

2
7

5
3

0
0

3
2

5
3

5
0

3
7

5
4

0
0

C
O

2
�g

ra
m

s�
p

e
r�

m
il

e

35 40 45 50 55 60 65 70 75

Footprint�(square�feet)

Cars

2012

2016+

1
7

5
2

0
0

2
2

5
2

5
0

2
7

5
3

0
0

3
2

5
3

5
0

3
7

5
4

0
0

C
O

2
�g

ra
m

s�
p

e
r�

m
il

e

35 40 45 50 55 60 65 70 75

Footprint�(square�feet)

Trucks

Each vehicle has a different emissions target based on its footprint and on whether it is a

car or truck. Figure 1 shows the emissions targets (in grams of carbon dioxide per mile)

for cars and trucks produced between 2012 and 2016. The rules establish increasingly strict

requirements on fuel economy for each vehicle model year. Larger vehicles receive larger

emissions targets and trucks receive preferential treatment in the form of higher emissions

targets for any given footprint and model year.

Just because a vehicle is small does not ensure that it meets the emissions target. For

example, the Mini Cooper with a footprint of 39 square feet in 2012 received an emissions

target of 244 grams of carbon dioxide per mile. Actual emissions are 296 grams per mile,

significantly above the emissions target. Thus, even though this car is one of the smallest on

the road weighing only 2,500 pounds and with 115 horsepower, it is less fuel-efficient than

its footprint-based target. Thus if BMW wants to sell more Mini Coopers, it also needs to

sell more of some other vehicle that is below its target and/or BMW needs to buy permits

from some other automaker.

Herein lies the central problem with footprint-based targets. For a given vehicle footprint,

the standards encourage automakers to make their vehicles as fuel-efficient as possible. How-

ever, the footprint-based standards create no incentive for buyers to choose smaller vehicles.

This may make sense from a political perspective in the United States because domestic

automakers produce large numbers of SUVs, crossovers, and pickups, but it is an expensive,

inefficient approach for reducing greenhouse gas emissions.1

Another significant distortion with the standards is the preferential treatment for trucks.

For a given footprint, trucks have a less stringent carbon emissions standard than cars, so

1See Ito and Sallee (2014) for a broader discussion of the economic costs of attribute-based regulation.
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the standards encourage automakers to sell more trucks and fewer cars. The preferential

treatment for trucks also encourages automakers to classify as many vehicles as possible

as “trucks”.2 Under current rules “trucks” include not only pickup trucks but also SUVs,

crossovers, and minivans. These are some of the largest and fastest growing segments in the

U.S. automobile market.3

2.2 Permit Trading Rules

Under CAFE, each vehicle sale generates a small surplus or deficit for the automaker depend-

ing on whether the vehicle is below or above its target emissions value. The total balance

is then evaluated separately for each model year and each automaker. If an automaker is

below the total emissions target for all vehicles sold, then it has a surplus for the year and

receives permits. If instead an automaker is above the total emissions target, then it has a

deficit and must buy permits.

Permits are denoted in tons of carbon dioxide. Emissions rates are converted into emissions

levels using an assumption about how many miles each vehicle will be used during its lifetime,

with trucks assumed to be driven more total miles over their lifetime. There are 8.887

kilograms of carbon dioxide per gallon of gasoline and 10.180 kilograms of carbon dioxide

per gallon of diesel, so given this assumption about total miles driven, there is a simple

mapping between vehicle fuel economy and total carbon dioxide emissions in tons.

Automakers can bank permits for up to five years, and borrow permits for up to three

years. This flexibility is intended to help automakers smooth over year-to-year fluctuations

in demand driven by macroeconomic shocks, changes in gasoline prices, and other factors.

The banking and borrowing also provides stability for the permit market, helping to avoid

permit price spikes and crashes, and mitigating concerns about market power in permit

markets.4

Permits may also be traded between automakers. Permit trading increases the efficiency of

2The classic example is a vehicle Chrysler manufactured called the PT Cruiser. In the early 2000s,
Chrysler was making large profits on its Dodge Ram pickups, and wanted to sell more but was running up
against the CAFE constraint. Ingeniously, Chrysler responded by introducing the PT Cruiser which looked
like a car but was built on a truck platform, thus raising Chryslers average fuel economy for trucks and
allowing Chrysler to sell more fuel-inefficient pickups.

3The biggest year ever for the U.S. auto industry was 2015 with 17.5 million total vehicle sales nationwide
including large year-on-year increases for trucks, SUVs, and crossovers. See Automotive News, “U.S. Auto
Sales Break Record in 2015,” January 5, 2016.

4See Borenstein et al. (2016) for a discussion of similar issues in cap-and-trade programs for carbon
dioxide.
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fuel economy standards. Just as with any cap-and-trade policy, trading equalizes marginal

cost across agents, achieving the targeted aggregate level of emissions reductions at lowest to-

tal cost. These efficiencies are substantial with fuel economy standards because opportunities

for improvements in fuel economy vary widely across automakers. For some automakers there

is low-hanging fruit, for example, because they already have relative expertise in producing

and marketing fuel-efficient vehicles whereas for other automakers it is much harder.

All automakers have an incentive to improve fuel economy, including those who are well above

the fuel economy standard. This was not the case under the old CAFE rules that did not

allow trading. For example, Toyota and Honda tend to sell relatively fuel-efficient vehicles,

so are perennially well above the minimum fuel economy standard. For automakers in this

position under the old CAFE rules, it was as if the standard did not exist. There was no

penalty, but also no incentive to make further improvements in fuel economy. In fact, these

automakers had an incentive to make larger vehicles to pull market share away from other

automakers who were constrained by CAFE. Now with permit trading any improvement in

fuel economy generates CAFE credits, and thus profit.

Automakers trade permits through bilateral trades. There is no central clearing house for

permit trading, nor is there any system in place for making permit prices publicly available.

Leard and McConnell (2015) nonetheless manage to infer permit prices based on information

from two different sources: (i) a Department of Justice settlement with Hyundai and Kia

resolving overstated fuel economy labels and (ii) Tesla Motors’ SEC Filing Form 10-K from

2013 and 2014 reporting earnings from permit sales. These sources yield a permit price of

between $35 and $40 per ton. We adopt these permit price values in the empirical results

that follow but it would be straightforward to incorporate updated permit prices as newer

information becomes available. We note that because each vehicle faces the same shadow

value changes to the shadow value will simply scale up and down the incidence at both the

vehicle and consumer-group (e.g., consumers of particular incomes) levels.

Interestingly, these inferred permit prices are close to recent median estimates of the social

cost of carbon (see, e.g. Interagency Working Group on Social Cost of Carbon, 2013). Thus,

on the margin, automakers would appear to be facing an incentive similar to an, e.g., $40

per ton tax on carbon dioxide. (Future carbon dioxide emissions are not discounted under

CAFE, so it would actually be equivalent to a somewhat higher tax per ton.) This permit

price creates a very different incentive than an equivalent carbon tax, however. Unlike

a carbon tax, fuel economy standards do not encourage drivers to use their vehicles less

intensively. A carbon tax more efficiently reduces gasoline consumption by encouraging

drivers to buy more fuel-efficient cars and to drive less. Fuel economy standards can never
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address this second margin, nor can they, with footprint-based targets, encourage drivers to

buy smaller vehicles.

2.3 Alternative Fuel Vehicles

This section reviews three features of CAFE which provide preferential treatment for alternative-

fuel vehicles. First, electric vehicles (EVs), for compliance purposes, are assumed to emit no

carbon dioxide. Recent empirical evidence shows that the actual carbon impact from EVs

is quite varied depending on where and when the vehicle is charged, but that in many cases

the carbon impact of EVs may actually exceed the carbon emissions from gasoline-powered

vehicles (see, e.g. Holland et al., 2016). This treatment of EVs was meant as an explicit

subsidy and not as an accurate description of the current carbon emissions from EVs.

Second, plug-in hybrids like the Chevrolet Volt and Toyota Prius plug-in also receive pref-

erential treatment. These vehicles have both an electric drive train and internal combustion

engine and thus can be operated using either electricity or gasoline. For CAFE compliance

purposes, the gasoline component is treated normally but the electric component is assumed

to be zero carbon. This is again not an accurate description of current emissions resulting

from these vehicles. Even in parts of the country where electricity generation tends to be

relatively low-carbon, the marginal source of electricity generation is virtually always some

form of fossil fuel generation.

Third, the feature which ends up being most important quantitatively during our sample

period is the treatment of flexible-fuel (or “flex-fuel”) vehicles which can run either on E85

(a blend of 85% ethanol and 15% gasoline) or on regular gasoline. Between 2012 and 2015

when calculating CAFE compliance, flex-fuel vehicles were assumed to be operated 50%

using E85 and 50% with gasoline. Moreover, each gallon of E85 was assumed to have the

carbon content of only 0.15 gallons of gasoline. That is, the ethanol component of E85 is

assumed to be zero carbon.

These assumptions are probably not an accurate description of the carbon dioxide emissions

from flex-fuel vehicles. Empirical evidence is not available on the fraction of flex-fuel vehicles

that operate using E85, but the 50/50 assumption is an optimistic assumption given that

many sales of flex-fuel vehicles occur in parts of the country where there is limited E85 avail-

ability (Anderson and Sallee, 2011). The assumption about carbon content is also optimistic,

and hard to reconcile with a substantial scientific literature on the carbon emissions from

ethanol. Quantifying the lifetime carbon impacts of ethanol is challenging because of land
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use effects and other factors, but most studies find that, at best, ethanol is only marginally

less carbon-intensive than gasoline (Knittel, 2012).

As we show later in the paper, these generous assumptions lead flex-fuel vehicles to be

treated by CAFE as if they were extremely fuel-efficient. Not surprisingly, automakers have

responded by building large numbers of flex-fuel vehicles. For the 2014 model year, for

example, there are more than 100 different models of flex-fuel vehicles for sale in the United

States. Moreover, even though the preferential treatment for flex-fuel vehicles ended with

model year 2015, this feature of CAFE was so lucrative that many automakers were able to

generate large stores of surplus credits (EPA, 2016). Under CAFE rules these credits can

be banked until 2021, so these banked credits will allow automakers to produce lower-MPG

vehicles for years to come.

3 Conceptual Framework

In this section we write down the automakers’ profit-maximization problem subject to the

CAFE constraint. From this problem we derive a first order condition that quantifies the

implicit subsidy and tax for each vehicle which we can then take to the empirical analysis.

We first consider the case of perfect competition. The degree to which perfect competition is

a reasonable assumption varies across vehicle segments from highly-competitive segments like

compact sedans and mid-size SUVs, to less-competitive segments like luxury vehicles where

some automakers can influence price considerably. We then relax the perfect competition

assumption in the following subsection and show that the first order condition is similar in

both cases.

3.1 Perfect Competition

The automaker chooses quantities to maximize profits,

max
q1,q2..,qJ

J∑
j=1

[qjpj − cj(qj)] . (1)

Here qj is total sales of vehicle model j. Revenues are the product of sales (qj) and prices

(pj), summed over all vehicle models. Profits are total revenues minus total costs, where the

cost of producing qj units of vehicle model j is denoted cj(qj). Here we allow production

costs to vary between vehicle models but rule out complementarities between models.
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The fuel economy standard can be expressed as follows,

J∑
j=1

[(emissionsj − targetj) ∗ VMTj ∗ qj] ≤ 0. (2)

In this equation emissionsj is carbon dioxide emissions in grams per mile for vehicle model

j. Depending on its footprint, each vehicle model is assigned a target emissions level, targetj,

also measured in grams per mile. Thus the first part of equation (2) in parenthesis reflects

whether each vehicle model is above or below its target. These deviations are then weighted

based on assumed lifetime miles traveled (VMTj) and vehicle sales (qj).

The automaker maximizes profits subject to the CAFE constraint. The Lagrangian can be

written as follows,

L =
J∑

j=1

[qjpj − cj(qj)]− λ
J∑

j=1

[(emissionsj − targetj) ∗ VMTj ∗ qj] (3)

where λ is the Lagrangian multiplier on the CAFE constraint. Differentiating with respect

to qj yields the following first order condition,

pj = c′j(qj) + λ [(emissionsj − targetj) ∗ VMTj] . (4)

In the first order condition λ is the shadow value of the CAFE constraint. With permit

trading this shadow value equals the permit price. The permit price is the relevant opportu-

nity cost for all automakers, regardless of whether they have a surplus or a deficit. The first

order condition is unchanged by banking or borrowing of permits. For example, we could

have included banked permits from previous years in the CAFE constraint but this is not a

function of qj, and thus would not have entered the first order condition.

The first order condition has an intuitive interpretation. Consider first the case in which

the permit price equals zero. In this case the shadow value λ is zero, and the automaker

maximizes profit by increasing the quantity sold of each vehicle up until price equals marginal

cost. This is the standard first order condition for perfect competition. For non-zero permit

prices, the automaker maximizes profit by adjusting quantities to reflect both marginal cost

and the additional cost (or benefit) which accrues because of the standard. For vehicle

models that emit more than their target emissions level there is an additional cost for each

unit sold, so the optimal quantity is lower. For vehicle models that emit less than their

target emissions level there is an additional benefit for each unit sold so the optimal quantity

is higher.
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In short, the fuel economy standard creates a tax for fuel-inefficient vehicles and a subsidy for

fuel-efficient vehicles.5 In the empirical analyses that follow we use this insight to calculate

the taxes and subsidies associated with all vehicle models sold in the United States. We

focus on the period since 2012 which allows us to use permit prices to measure the shadow

value of the constraint. In principle, however, it would be relatively straightforward to take

parameter estimates from studies like Anderson and Sallee (2011) and Jacobsen (2013) to

infer the shadow value of λ and use this general approach to perform analogous calculations

for the pre-2012 period.

3.2 Imperfect Competition

The problem for an oligopolist automaker is similar except they face a downward sloping

demand curve and in the first order condition price is replaced with marginal revenue,

pj +
I∑

i=1

[
qi
∂pi
∂qj

]
= c′j(qj) + λ [(emissionsj − targetj) ∗ VMTj] . (5)

Here we have allowed cross elasticities to be non-zero so changing the quantity sold of vehicle

model j can effect sales not only of vehicle model j but also of all other vehicle models in

the automaker’s fleet. If we assume these cross elasticities are zero, the first order condition

simplifies further,

pj + qj
∂pj
∂qj

= c′j(qj) + λ [(emissionsj − targetj) ∗ VMTj] . (6)

In either case, the first order condition takes on this same basic form with marginal revenue

equal to marginal cost. Just as with the first order condition with perfect competition, the

CAFE constraint enters the first order condition additively as an additional cost (or benefit)

of selling one more unit of model j. Here we have assumed that automakers are choosing

quantities; if we instead use Bertrand-Nash the first order condition is somewhat different

but the CAFE constraint enters similarly (Jacobsen, 2013; Gillingham, 2013).

Thus, overall, pricing behavior with imperfect competition is similar but not identical to

pricing under perfect competition. Regardless of market structure, fuel economy standards

lead automakers to price fuel-efficient vehicles lower than they would have been otherwise,

and to price fuel-inefficient vehicles higher than would have been otherwise. In the sections

which follow, we use this insight together with permit prices to quantify these implicit

5See Kwoka (1983); Helfand (1991); Holland et al. (2009) for related discussions.
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subsidies and taxes.

4 Empirical Analysis

The key insight from the previous section is that fuel economy standards create an implicit

subsidy for fuel-efficient vehicles and an implicit tax for fuel-inefficient vehicles. In this

section we pair this insight with rich microdata from the U.S. automobile market to estimate

the distributional impact of fuel economy standards. We proceed in several steps. First, we

show how each vehicle model compares to its target emissions level. Second, we use the

automakers’ first order condition to quantify the implicit tax (or subsidy) for each vehicle

model. Third, we use national data on vehicle registrations by census tract to see how the

average impact of CAFE standards varies between high- and low-income tracts.

4.1 Data

We use data from DataOne Software which describe all cars and trucks that were available

for sale in the United States during the period 1979-2012. For each vehicle, we know the

manufacturer, model, model year, body style, engine type, fuel tank size and driveline. We

also know the wheelbase, front track and rear track measurements used to calculate each

vehicle’s footprint, as well as fuel type and vehicle category. We divide fuel types into

four categories—gasoline, electric, electric hybrids and flex-fuel—where gasoline includes

vehicles fueled by gasoline, ethanol, natural gas or diesel. We divide vehicle categories

into “trucks” and “cars” following EPA guidelines which treat sports-utility vehicles, pickup

trucks, minivans and vans as trucks and compact, large, midsize, minicompact, subcompact

cars, two seaters and station wagons as cars. For each vehicle we also know the truncated

vehicle identification number (VIN), which allows us to merge this information with fuel

economy and emissions data from the EPA. For CAFE compliance purposes, the relevant

vehicle fuel economy comes from the EPA’s City and Highway test procedures (referred to

as the ‘two-cycle” tests), not the measures used for vehicle labels.

We combine this information with data from Polk Automotive on all registered vehicles in

the United States. These data are for the calendar year 2012 and provide census-tract level

counts by vehicle type, including not only new cars but also the entire stock of older vehicles.

Counts distinguish vehicles by manufacturer, model, model year, engine size, cylinders, and

fuel type. That is, for each census tract its not just that we know how many 2012 Toyota
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Table 1: Summary Statistics

Mean St. Dev. Min Max

Panel A: All Vehicle Characteristics

Footprint (square feet) 49.3 8.2 26 111.5
Vehicle Classified as “Truck” 0.49 0.50 0 1
Emissions Target (CO2 grams per mile) 331.2 50.6 244 395
CAFE Emissions (CO2 grams per mile) 323.8 79.0 0 743.5
Fuel Economy (miles per gallon) 29.2 7.8 12.0 74.3
Implied Tax or Subsidy ($) 227.0 515.5 -3270.3 3178.1

Panel B: New Vehicle Characteristics

Footprint (square feet) 48.0 6.1 26.8 77.6
Vehicle Classified as “Truck” 0.44 0.50 0 1
Emissions Target (CO2 grams per mile) 297 39 244 395
CAFE Emissions (CO2 grams per mile) 272 71 0 628
Fuel Economy (miles per gallon) 34.8 8.9 14.2 70.8
Implied Tax or Subsidy ($) 53.2 491.3 -2237.4 2556.4

Panel C: Census Tract Characteristics

Population 4,627 2,814 0 55,283
Median Household Income ($000) 55.3 27.0 2.5 250
Mean Household Income ($000) 69.2 35.5 5.01 582.3

Note: This table describes vehicle characteristics and demographic characteristics for the United States in
2012. Panel A reports unweighted means across all vehicle models available for sale in the United States
in 2012, and Panel B only reports unweighted means for vehicles manufactured in 2012. Fuel economy is
the unadjusted “combined” miles per gallon from the EPA/DOT label, which is calculated by EPA/DOT as
a 55%/45% weighted average of city and highway miles per gallon. Vehicle classified as a “truck” is an
indicator variable equal to one for vehicles which classify as a light truck under CAFE. For census tract
characteristics we report unweighted means for 2012 across all U.S. census tracts.

trucks. We know, for example, how many flexible-fuel 2012 Toyota Tundra trucks with a 5.7L

V8 engine. A limited number of vehicles are further differentiated by various trim levels, such

as the Mercedes-Benz C1550 which is manufactured in both standard and “4Matic” models.

However these data do not distinguish between all the available model options which can

be installed, such as leather upholstery. We merge this tract-level vehicle registration data

from Polk with the vehicle specifications from DataOne using each vehicle type’s truncated

VIN. Finally, we use tract-level measures of mean and median household income from the

American Community Survey (ACS).
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4.2 Comparing Actual Emissions to Targets

We first calculate how actual emissions for each vehicle model compares to its footprint-based

target. For this exercise we focus on all vehicle models from the 2012 model year. Using

each vehicle’s footprint as well as whether it is a truck or a car, we calculate its emissions

target using the official formula from NHTSA, 2010, Table III.B.2.

Figure 2 shows how each car from vehicle model year 2012 compares to its emissions target.

Observations are scaled by each vehicle model’s total sales in 2012. The x-axis is each

vehicle’s footprint, measured in square feet. The green solid line indicates the emissions

target in grams of carbon dioxide per mile. Most cars are within the upward sloping part

of the emissions target function though there are a sizable number of cars below 41 square

feet in the flat portion of the function. Actual emissions vary significantly from the targets.

This is particularly true above the line with a non-negligible fraction of vehicles which emit

more than twice as much carbon dioxide per mile as is targeted.

Figure 2: Each Vehicle Model Relative to Target, Cars
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NHTSA standards. Following EPA guidelines, fuel economy for plug-in hybrids assumes a 50-50 gasoline
and electricity split and fuel economy for flex-fuels assumes a 50-50 gasoline and E85 split. Circle sizes
correspond to national sales for each vehicle model.
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Figure 3: Each Vehicle Model Relative to Target, Trucks

0
20

0
40

0
60

0
Em

iss
io

ns
 (g

ra
m

s 
pe

r m
ile

)

30 40 50 60 70 80
Footprint (square feet)

Flex-Fuel Vehicles All Other Vehicles

Note: This figure plots each vehicle’s carbon dioxide emissions (in grams per mile) against its footprint (in
square feet). The horizontal upward-sloping line indicates the target emissions for each vehicle based on its
footprint. Emissions are based on fuel economy from the EPA’s City and Highway test for the 2012 model
year and NHTSA standards. Following EPA guidelines, fuel economy for plug-in hybrids assumes a 50-50
gasoline and electricity split and fuel economy for flex-fuels assumes a 50-50 gasoline and E85 split. Circle
sizes correspond to national sales for each vehicle model.

As indicated in the figure, there are several electric vehicles as well as a large number of

flex-fuel vehicles. This includes several high selling vehicle models including the Ford Focus

FFV, Chrysler 300 FFV, and Dodge Charger FFV. We calculated emissions for these vehicles

using the standard CAFE assumptions for flex-fuel so these vehicles show up as having low

carbon dioxide emissions.

Figure 3 is the analogous figure for trucks for model year 2012. Most vehicles are within

the upward-sloping part of the emissions target function, and again, there is a great deal

of variation in emissions for any given footprint. There were no mass-marketed electric or

plug-in hybrid trucks but, again, there are a large number of flex-fuel vehicles. Flex-fuel

vehicles are particularly common among trucks with very large footprints and many of these

flex-fuel trucks sell in high volumes. The three best selling flex-fuel trucks in 2012 were the

Ford F150, Chevy Silverado, and Mercury Mariner.
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In the following section, we take this information to calculate the implicit tax (or subsidy)

for each vehicle model. In making these calculations we treat flex-fuel vehicles as regular

vehicles. That is, we ignore the preferential treatment of flex-fuel vehicles. We do this

because under CAFE there is a maximum limit on how much each manufacturer can use the

flex-fuel feature and most automakers operate close to this cap.6 Once at the cap, there is

no benefit from selling an additional flex-fuel vehicle so the automaker will not take this into

account when pricing vehicles. Moreover, Anderson and Sallee (2011) show that, in practice,

flex-fuel vehicles tend to sell for exactly the same price as equivalent regular vehicles.

4.3 Implicit Taxes and Subsidies

CAFE obligations are tradable under the new rules, so the permit prices make it possible

to quantify the exact magnitude of these implicit subsidies and taxes. Using the first order

condition in Equation (4), we calculate the implicit tax or subsidy imposed by the CAFE

constraint as

tj = λ [(emissionsj − targetj) ∗ VMTj] (7)

where tj is the tax or subsidy borne by vehicle j. We use the observed permit price for λ

and the EPA’s standard assumption for the expected lifetime mileage, VMTj.

Figure 4 shows the dollar amount of implied tax (subsidy) per car. The x-axis is each

vehicle’s footprint, measured in square feet. The red line is a non-parametric estimation of

the relationship between a vehicle’s footprint and its implied tax using a local polynomial

kernel-weighted regression. In general, cars with small footprints are more likely to be

subsidized, while those with large footprints are more likely to be taxed. For cars with

footprints between 40 and 60, the polynomial line is near flat around zero with a slight

upward trend for cars, although the majority of cars lie under the polynomial line and are

subsidized for having emissions below their target.

Many of the most popular vehicle models are subsidized. Circle sizes in the figure are

proportional to national sales and many of the most popular vehicles are subsdized. The top

three selling cars all have relatively high rates of subsidy; the Toyota Camry 2.5 liter version

is subsidized at $260, Honda Civic 1.8 liter is subsidized at $395 and the Nissan Altima

6In the 2014 model year, for example, the flex-fuel limit in the CAFE program was 1.2 miles-per-gallon.
See EPA (2015), p.22. Thus, flex-fuel vehicles for that model year cannot increase a manufacturer’s average
fuel economy by more than 1.2 miles-per-gallon. EPA ensures that no manufacturer exceeds the maximum
allowable value of the incentive by calculating fleet average fuel economy both with and without the incentive.
Fiat Chrysler, Ford, GM, Jaguar Land Rover, Mercedes, and Volkswagen all maximized the usage of the
flex-fuel incentive for model year 2014.
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Figure 4: Implicit Taxes and Subsidies, Cars
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Note: Implicit tax and subsidy calculations are based on fuel economy data from the EPA’s City and Highway
test for the 2012 model year, 2012 trading permit price and vehicle expected lifetime mileage. Implicit taxes
and subsidies are measured in 2012 dollars. Circle sizes are proportional to national sales.

2.5 liter is subsidized at $161. Many of the cars with implicit taxes greater than $1000 are

expensive sports cars and sales for these vehicles tend to be relatively low as indicated by

the small circle sizes.

Figure 5 is the corresponding plot for trucks. Overall the polynomial is much flatter for

trucks. Trucks with small footprints are not more likely to be subsidized, and trucks with

large footprints are only slightly more likely to be taxed. Circle size is again proportional

to national sales. The top three most popular trucks are all subsidized. The Honda CR-V

AWD is subsidized at $380, Chevy Silverado is subsidized at $1312, and the Dodge Grand

Caravan is subsidized at $1314.

4.4 Distributional Impacts

In this section we incorporate the vehicle registration data to describe distributional impacts.

From the analysis in the previous section, we know the implied tax (or subsidy) for all new

vehicles. In addition, fuel economy standards impact used vehicle prices, and we use an ad
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Figure 5: Implicit Taxes and Subsidies, Trucks
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Note: Implicit tax and subsidy calculations are based on fuel economy data from the EPA’s City and Highway
test for the 2012 model year, 2012 trading permit price and vehicle expected lifetime mileage. Implicit taxes
and subsidies are measured in 2012 dollars. Circle sizes are proportional to national sales.

hoc approach for modeling the impact on used vehicles. We then use the vehicle registration

data, and implied tax (or subsidy) for all vehicles, to calculate the average impact of fuel

economy standards by census tract. Finally, we divide tracts by income decile to show how

impacts differ across high- and low-income households.

Buyers substitute between new and used vehicles. Thus, when the price increases for a new

vehicle, this pushes equilibrium prices upward for similar used vehicles. This same price

increase for a new vehicle also means that there will be fewer of that type of vehicle in

circulation, so these vehicles will continue to sell at a premium as they enter the used vehicle

market. Eventually, however, vehicle scrappage decisions mitigate these impacts, as higher-

priced vehicles are scrapped at systematically lower rates than lower-priced vehicles. For

this reason and because they are poor substitutes for new vehicles, we wouldn’t expect fuel

economy standards to have more than a negligible impact on very old vehicles.

Our approach for modeling the impact on used vehicles follows this economic intuition. In

particular, we assume that the impact of fuel economy standards attenuates throughout a
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vehicle’s lifetime according to the empirical average scrap rate in Jacobsen and van Benthem

(2015). This approach assigns the 100% impact to vehicles that are less than one year old and

a 0% impact for vehicles that are eighteen years old. Take, for instance, the Toyota Camry

which has been sold continuously throughout our sample period and with approximately

the same vehicle footprint. The 2007 model year Toyota Camry (3.5 liter) has an implied

subsidy of $117 when new. According to Jacobsen and van Benthem (2015), approximately

7% of cars will be scraped after 5 years. In order to find the implied subsidy for the 2007

Camry in 2012, the last year of our sample period, we scale the $117 value by 7%, yielding

a subsidy of $109. We use separate scrap rates for cars and trucks, and scrap rates vary

from year to year; as an example, Jacobsen and van Benthem (2015) estimates that 7%,

22% and 51% of cars and 8%, 22% and 46% of trucks will be scraped after 5, 10 and 15

years, respectively. However, we do not distinguish between vehicle manufacturer or other

vehicle characteristics. This attenuation formula is, admittedly, a strong assumption that

ignores potentially important differences across vehicle classes, cross-price elasticities, and

other factors. We argue that this nonetheless captures the general pattern of price impacts

predicted by economic theory.7

From our vehicle registration data we have tract-level information on the number of vehicles

by model and vintage. We use the implied tax (or subsidy) for each vehicle type, both new

and used, to calculate the average tax (or subsidy) per vehicle in each tract. We report

this and several related statistics in a series of results below. In all cases, we show results

separately for new vehicles only and for new and used vehicles. Moreover, because our

objective is to examine the distributional patterns, we divide tracts into deciles using mean

household income.

4.4.1 Average Tax Per Vehicle

Figure 6 shows boxplots of the average tax per vehicle by income decile. As usual with

boxplots, the middle line indicates the median, shaded box indicates the inner-quartile range

(IQR), and “whiskers” indicate 1.5 times the IQR. Whether we examine new vehicles only

or both new and used vehicles, the median is fairly similar across deciles. Between high- and

low- income tracts, the median tax per vehicle varies by only about $100.

Although the median is quite similar across deciles, there is a modest increase in the average

tax per vehicle in the eighth, ninth, and, particularly, in the tenth decile. This reflects higher-

7Jacobsen and van Benthem (2015) report depreciation rates for vehicles overtime. If we instead use
these functions to adjust the CAFE taxes, the results below with respect to the regressivity of CAFE are
exacerbated.
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Figure 6: Average Tax Per Vehicle, By Income Deciles

income households buying vehicles that, relative to their footprint, are less fuel-efficient on

average. High performance luxury vehicles, for example, are in this category. The differences

across decile are relatively small, however, relative to the range of implicit taxes across

individual vehicle models in the previous analysis, reflecting a relatively weak correlation

between income and the implicit taxes from CAFE.

The figure also shows that there is a large amount of variation within decile. The “whiskers”

for all ten deciles include both positive values (taxes) and negative values (subsidies), so there

is a wide range of experiences across tracts in any given decile. This wide variation points

to fuel economy standards being an imprecise instrument for redistribution. Lower-income

households buy a range of different types of vehicles, including very fuel-inefficient vehicles,

so CAFE increases costs for these households, even while decreasing costs for others.

It is worth emphasizing again that these calculations assume that the taxes and subsidies

imposed by CAFE are borne entirely by vehicle buyers rather than automakers or retailers.

This assumption is most reasonable in segments of the vehicle market for which supply

is highly elastic or for which demand is highly inelastic. Incomplete pass through of the

taxes and subsidies imposed by CAFE standards would reduce the overall magnitude of our

estimated impacts as well as, potentially, by changing the relative burdens borne by different

income groups. If lower-income buyers are more price elastic (West, 2004), then they would

tend to bear a smaller fraction of both the taxes and subsidies from CAFE, thereby making

CAFE more progressive.
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4.4.2 Average Tax as a Share of Income

Figure 7 plots the the average tax per vehicle as a share of median income. For each tract we

know the average tax (or subsidy) per vehicle, and for this figure we divide this by the median

income in the tract. We report shares as a percentage, so 1 is 1% of income. As before, we

then divide census tracts into income deciles. Effectively, we are calculating the average tax

as a share of median income for each of the deciles.8 Income levels vary widely across the

deciles, so these scaled results look considerably different from the previous figure.9

-1
.5

-1
-.5

0
.5

1
Av

g 
Ta

x/
Su

bs
id

y 
as

 S
ha

re
 o

f M
ed

 In
co

m
e,

 2
01

2

1 2 3 4 5 6 7 8 9 10
excludes outside values

(a) New Vehicles Only

0
.5

1
1.

5
Av

g 
Ta

x/
Su

bs
id

y 
as

 S
ha

re
 o

f M
ed

ia
n 

In
co

m
e

1 2 3 4 5 6 7 8 9 10
excludes outside values

(b) New and Used Vehicles

Figure 7: Average Tax Per Vehicle as a Share of Median Income, By Income Decile

When we consider new vehicles only, CAFE is slightly progressive. That is, high-income

households bear a bit more tax per vehicle as a share of income. However, this pattern

reverses sharply once we include used vehicles. The second panel of Figure 7 shows that the

median household in the bottom decile bears a tax that is about 0.6% of household annual

income. This is more than twice the burden experienced by the median household in the

top decile. Even though the average tax per vehicle tends to be higher in the top income

deciles, it is being divided by a much higher level of income, yielding a regressive pattern

overall.

Overall, the median impacts are small when viewed as a fraction of annual income. Even

for the bottom decile, the average tax per vehicle is well below 1% of annual income. Keep

8This calculation masks within tract variation in vehicles and incomes. Because the main focus on the
paper is how the incidence changes across income deciles, our implicit assumption is that the same slope of
incidence to income is present both across and within deciles.

9The reader will note the larger amount of variation in this measure for lower income deciles, while the
distributions were similar across deciles for the average tax in Figure 6. The standard deviation of median
incomes across tracts within decile divided by the median income is largest for decile 1 driving this large
variation for the lower deciles.
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in mind, moreover, that households buy a vehicle only once every couple of years so the

annualized cost of CAFE is considerably smaller. That said, the boxplots also show that

there is a wide range of experiences across tracts, with some tracts experiencing impacts that

are twice as large as the median. There is also a wide range of experiences across households

within tracks. While the average tax per vehicle is a relatively small as a share of annual

income, there are individual households who bear much larger costs.

4.5 Comparison to Other Studies of CAFE

There have been very few previous attempts to measure the distributional effects of fuel

economy standards. An important exception is Jacobsen (2013) which studies the distribu-

tional impacts of CAFE using data from the 2001 National Household Travel Survey. The

estimates from Jacobsen (2013) are not directly comparable as they are based on older data,

and for the older version of CAFE without footprint-based targets. The paper is nonetheless

an important point of comparison as it is one of the very few studies to look at distributional

impacts, and because the study is unusually well-done, with an innovative dynamic model

that in many ways goes far beyond the scope of our study.

In Jacobsen (2013) the estimates of distributional impacts come out of a rich equilibrium

model in which customers choose vehicles to maximize utility and firms price vehicles to

maximize profits. Moreover, used cars are incorporated explicitly into the model, with con-

sumers choosing between new and used vehicles, and with older vehicles being scrapped over

time endogenously. While not capturing the full long-run impacts of CAFE (e.g. endogenous

characteristics or innovation), the model does capture how fuel economy standards lead cus-

tomers to substitute to more fuel-efficient vehicles; behavior that is central to understanding

the full welfare impact of CAFE.

Jacobsen (2013) finds that the distributional effects of fuel economy standards depend crit-

ically on incorporating used cars. When only the impact on new vehicles is considered,

CAFE has approximately the same welfare impact on high- and low-income households as

a fraction of income. Higher-income households are more likely to own new cars, but also

have much higher incomes. However, once used vehicles are incorporated CAFE becomes

sharply regressive, with low-income households experiencing welfare losses that are three

times as large as a percent of income as those experienced by high-income households. It

makes sense that fuel economy standards would increase the price and alter the composition

of used vehicles, but Jacobsen (2013) was one of the first studies to capture these dynamics,

and the first to show the implications for distributional impacts.
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The one other paper that estimates the distributional impact of fuel economy standards

is Levinson (2016). Using data from the 2009 National Household Travel Survey, Levinson

(2016) shows that high-income households spend on average five times more on gasoline than

low-income households, while having three times as many vehicles of approximately the same

average fuel economy. Consequently, fuel economy standards, which are essentially a tax per

vehicle, are more regressive than a gasoline tax. Moreover, Levinson (2016) finds that high-

income households tend to buy higher footprint vehicles, so they do relatively better under

footprint-based standards, and thus footprint-based standards are even more regressive than

regular standards.

4.6 Comparison to Gasoline Tax

We can now compare the distributional impacts of CAFE with previous estimates in the

literature on the distributional impacts of a gasoline or carbon tax. Previous studies have

examined the distributional effects of both gasoline taxes (Poterba, 1989, 1991; West, 2004;

Bento et al., 2009) and carbon taxes (e.g. Hassett et al., 2009; Burtraw et al., 2009; Williams

et al., 2015).

A common theme in the existing literature is that the distributional effects of gasoline and

carbon taxes largely depend on how additional revenue from the tax is recycled. For example,

gasoline taxes are significantly less regressive when revenues are used to cut labor tax rates

than when revenue is discarded (West and Williams, 2004; Williams et al., 2015). Bento et

al. (2009) show that if returned lump sum on a per-capita basis, a gasoline tax could make

the bottom four income deciles better off on average, even without incorporating external

benefits. Burtraw et al. (2009) analyze five different uses for revenues raised from cap and

trade auction, including lowering income and payroll taxes, and finds significant differences

in progressivity. Similarly, Rausch et al. (2010) simulate the distributional effects of carbon

taxes under two redistribution bundles with varying amounts of revenue set aside for deficit

reductions or cuts for other taxes. They find all scenarios to be progressive in lower income

deciles and proportional in upper deciles, however the degrees of incidence exhibit significant

differences over time. Meanwhile, Metcalf (2009) proposes a distributional-neutral carbon

tax by offsetting price increase with capped income tax credit.

Several studies have shown that the regressive implications of carbon taxes can be overstated

by overlooking index government transfer programs (Fullerton et al., 2012; Rausch et al.,

2010; Dinan, 2012). Several government transfer programs, including Supplemental Security

Income, are indexed to consumer price measures and thus increase alongside the price of
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carbon. For example, accounting for transfer program indexing, Rausch et al. (2010) use

a computable general equilibrium model of the U.S. to show carbon taxes are moderately

progressive, even ignoring distribution of after-tax revenue. They find that the lowest two

income quintiles are made better off under a carbon tax. In part, the results in Rausch et

al. (2010) reflect that a portion of the carbon price is shifted back to the owners of natural

resources and capital, which lessens the regressivity of a carbon tax policy. Finally, Fullerton

et al. (2012) show that under partial indexing of transfer funds, a carbon tax is progressive

for households in the bottom half of the expenditure distribution.

A thorough review of each of these studies focusing on the methods and underlying assump-

tions is beyond the scope of this paper. However, we attempt to summarize the literature by

regressing each paper’s incidence measure on the income decile number, where 1 is the lowest

decile and 10 is the highest. That is, for each of the papers, we regress the incidence as a

share of income on the decile number. For example, our analysis implies that the incidence

as a share of median income for deciles one through ten, respectively, is: 0.111, 0.167, 0.121,

0.133, 0.121, 0.0926, 0.116, 0.139, 0.107, and 0.108. Regressing these on the decile yields an

average slop of -.003; this is slightly regressive. A progressive policy would imply a positive

slope. The coefficient provides a rough idea of the average change in incidence when moving

one decile. Given the summary nature of the analysis, we omit standard errors from the

table.

Table 2 summarizes this exercise. Our results are listed in the first row. Each study is listed

in the first column and studies are separated into three panels based on the type of recycling:

no recycling, lump-sum transfers and tax cuts. Further information on the recycling treat-

ment is listed in the Notes column. For example, under the lump-sum transfers panel, the

notes indicate whether lump-sum transfer was uniform or proportional to household income.

Similarly, within the tax cuts panel, the notes list whether income, labor or payroll taxes

were lowered using tax revenue. We also track which studies use transfer indexing. The

fourth and final column codes each carbon tax treatment as regressive (R), progressive (P),

or a combination of the two if the direction of incidence switches. In the case of the latter,

the parentheses by each letter contain which income groups are progressive and which are

regressive.

We measure the relative progressivity or regressivity of the tax by the slope of the mean wel-

fare impacts across household income group. We report slopes for welfare impacts measured

as a per-capita share of income, as well as the level of incidence when available. The slope

captures the direction of the incidence —negative slopes correspond to regressive taxes and

positive slopes to progressive taxes —as well as the magnitude. We calculate the slope by
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running a linear regression of the welfare measure on decile as described above, except Bento

et al. (2009) which is measured in quartiles and West and Williams (2004) and Williams et

al. (2015) which are measured in quintiles. We adjust the slopes for these two studies by

multiplying the slope from the regression by the number of income categories divided by 10.

This makes the slopes we report in the table comparable to a per-decile change.

Table 2 shows that CAFE is more regressive than a carbon tax with lump-sum transfers.

The exact magnitude of the difference depends on which study is used for comparison, but

in most cases CAFE is considerably more regressive. Moreover, CAFE is significantly more

regressive than a carbon tax used to finance an expansion of the earned income tax credit

(EITC), or presumably, other tax credits aimed at lower-income households. In contrast,

CAFE is more progressive than carbon taxes used to reduce progressive taxes, such as labor

and payroll taxes. Again, the exact magnitude differs across studies, but in all cases CAFE

is considerably more progressive. Labor and payroll taxes are distortionary, so there are

efficiency gains from using carbon tax revenue in this way, but these efficiency gains must

be balanced against a pronounced negative impact on equity.
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Table 2: Comparing the Distributional Impact of CAFE to a Carbon Tax

Paper Notes Slope, Share Slope, Level R/P

Davis and Knittel (2016) −0.003 6.481

Recycling method: No recycling

Burtraw et al (2009) None −0.299 R
Fullerton et al (2011) Partial transfer indexing −0.217 R

Full transfer indexing −0.214 R
Hassett et al (2009) None −0.296 R
West (2004) None −0.022 P(1:6), R(6:10)
West and Williams (2004) None −0.144 P(1:2), R(2:5)

Recycling method: Lump-sum transfers

Bento et al (2009) Uniform 0.083 38.773 P
Proportional to income −0.017 −6.454 P(1:8), R(8:10)
Proportional to VMT 0.007 9.033 P

Burtraw et al (2009) Uniform 0.164 P
Uniform, taxed 0.360 P

West and Williams (2004) Uniform 0.331 P
Williams et al (2015) Uniform, full transfer indexing 0.617 P

Recycling method: Tax cuts

Burtraw et al (2009) Labor tax −0.444 R
Payroll tax −0.379 R
Expanded EITC 0.474 P

West and Williams (2004) Labor tax −0.083 R
Williams et al (2015) Labor tax, full transfer indexing 0.020 R(1:2), P(2:5)

Capital tax, full transfer indexing −0.116 R

Note: Slope, Share is the slope of mean EV as a share of income across decile and Slope, Level is the slope of mean tax amount
across decile. R/P codes if the tax is regressive (R), progressive (P), or a combination of the two. The range is listed in parentheses
if the slope is a combination. All slopes calculated using linear regression of welfare measure on income group. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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5 Conclusion

Economists have long complained that fuel economy standards are an inefficient way to

reduce gasoline consumption. In a survey of top economists, 90% answered that they would

prefer a gasoline tax over fuel economy standards (IGM, 2016).10 Fuel economy standards

don’t achieve the efficient level of vehicle usage, nor do they create efficient incentives for

owners to scrap older fuel-inefficient cars, nor do they efficiently distinguish between vehicle

models with different average longevities (Jacobsen et al., 2016).

Yet policymakers repeatedly turn to fuel economy standards. In part, this preference reflects

a view that gasoline taxes are regressive. A growing literature in economics shows, however,

that the regressivity of a gasoline tax depends critically on what is done with the revenues

that are generated. If revenues are returned to households progressively, or even through

lump sum transfers, then a gasoline tax can be made to be strongly progressive, with for

example the bottom four income deciles being made better off on average (see, e.g. Bento et

al., 2009).

Thinking about whether fuel economy standards are regressive or progressive is less intuitive

because the costs are less salient. Fuel economy standards do impose costs, however. We

show that standards impose a constraint in the automakers’ profit maximization problem

that imposes an implicit tax (or subsidy) on each vehicle type. These implicit prices can

be exactly calculated in our context because under U.S. rules automakers can trade obliga-

tions, so permit prices provide a direct measure of the shadow value of the constraint. We

then combine this information with rich microdata on vehicle registrations to estimate the

distributional impacts.

When we consider new vehicles only, we find that CAFE is mildly progressive. But, of course,

fuel economy standards impact not only new vehicles, but used vehicles as well. When we

include used vehicles, the pattern reverses and we find that CAFE is mildly regressive. High-

income households bear less cost as a fraction of income than low-income households. Thus

fuel economy standards are more regressive than a gasoline tax with revenues returned lump

sum. We conclude, therefore, that it is difficult to argue for fuel economy standards on the

basis of distributional concerns.

10There is a strikingly high degree of agreement among economists on this question. In this survey 51%
and 39% of economists answered that they “strongly agreed” and “agreed”, respectively, that a carbon tax
would be a less expensive way to reduce carbon-dioxide emissions than fuel economy standards. This is a
high level of agreement compared to other questions in the same survey (Sapienza and Zingales, 2013).
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