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Abstract

Dynamic pricing models typically assume that consumers respond to marginal incentives.
But how attentive are consumers to these incentives? I use a field experiment to assess the
impact of dynamic pricing on residential electricity consumption and find strong evidence of
inattention. I propose a model to interpret the results which suggests that the benefits of
dynamic pricing may be substantively undermined by inattention. I also explore the role of
automation in dynamic pricing, which holds the promise of reducing the cognitive choice frictions
that cause inattention and lowering the effort cost of responding to price changes. I report three
primary findings. First, households—both with and without automation—significantly respond
to a short term price increase by reducing consumption. Second, responses are very insensitive
to the size of the price change. A price increase of 31 percent causes consumption to fall by 11
percent on average, whereas a price increase of 1,875 percent causes an average reduction of 13
percent. Third, automation causes responses that are five times larger than the average effect,
but are still insensitive to the price level. The results suggest that households use simplifying
heuristics when facing dynamic prices and that automation reduces effort costs, but does not
resolve inattention. I apply the model to recover bounds on the price elasticity of demand and
shed light on the potential attention costs of dynamic pricing.
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1 Introduction

An increasing number of consumer decisions feature dynamic pricing—the application of marginal

cost pricing to goods with costs that vary over time. Examples include ride-hailing applications

like Lyft and Uber (Cramer and Krueger, 2016), e-commerce websites such as Amazon (Borenstein

and Saloner, 2001), and end-use electricity tariffs (Joskow and Wolfram, 2012). Neoclassical models

imply that dynamic pricing improves efficiency if demand is elastic and buyers are fully informed,

yielding a real-time efficiency benchmark where prices and consumption instantaneously adjust to

cost fluctuations. However, evidence from a variety of decision settings finds that consumers can be

inattentive to marginal financial incentives such as value-added taxes (Chetty, Looney, and Kroft,

2009) or shipping costs (Hossain and Morgan, 2006).1 Thus, a necessary component to determining

the actual efficiency of dynamic pricing is understanding how attentive consumers are to dynamic

marginal incentives. This paper addresses this question within the context of residential electricity

demand.

One solution to the inherent tension between dynamic pricing and consumer attention costs

is automation. The trend in dynamic pricing follows the wide deployment of internet-connected

“smart” devices (e.g., phones and thermostats). In addition to allowing sellers to update prices and

monitor consumption at lower cost, smart devices can also enable buyers to automate decisions.2

If automation accurately represents preferences, it provides a substitute to a more active (and

cognitively costly) response to frequent price changes. It is standard to assume that enabling

automation has an important role to play when discussing the efficiency potential of dynamic pricing

in electricity (Borenstein and Holland, 2005; Joskow, 2012), but there remains little research testing

its performance in the field.

This paper explores three lines of inquiry to assess the effect of dynamic pricing and automation

on residential electricity consumption. First, how large is the response of demand to dynamic

price changes? Second, do consumer responses depart significantly from the behavior implied by

standard neoclassical models that assume full information? Third, if information frictions generate

substantive differences between observed behavior and neoclassical assumptions, does enabling

1See DellaVigna (2009) for a review and more examples of consumer inattention.
2Examples include technologies that generate automatic price reminders for e-commerce purchases where prices

vary such as airline tickets, hotel rooms, and used automobiles. There are also applications that allow for automatic
bidding into online auctions platforms like eBay.
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automation reduce them in the context of dynamic pricing?

In order to answer these questions, I conducted a field experiment with 5,531 households that

face real economic stakes. The experiment was implemented by a private company that pays its

customers to reduce their electricity usage when demand reductions are particularly valuable.3

During the experiment, households continued to pay a monthly utility bill, but were also exposed

to one-hour events that featured a linear financial incentive to reduce consumption. The incentive

was offered in the form of points that could be redeemed for dollars, but was specifically designed

to replicate changes in the per unit price of electricity.4 Households were given less than one hour

ahead notice each time an event occurred and notified of their performance a few days later. Any

net earnings could then be cashed out via the company’s website.

Each time an event was called during the first 90 days of enrollment, each household was exposed

to a price increase that was randomly varied between $0.05-$3/kWh. These levels represent dra-

matic changes in the marginal price given the non-event average price of electricity was $0.16/kWh.

The experiment also featured a recruit and delay design that randomly assigned a subset of house-

holds to serve as a control group upon signup. Together, these two sources of variation allow me to

identify the impact of marginal financial incentives on consumption over a wide range of prices. To

my knowledge, this is the only dynamic pricing study to use within event random price variation.5

Households were also offered an automation service that would shut off connected devices when

an event was called. Among the enrolled, half of the households were randomly selected to receive

a full-cost rebate for purchasing a smart device and connecting it to the automation service. The

rebate subsidized the purchase of one smart thermostat or two smart plugs with retail values of

$240 and $80, respectively. This caused an 82 percent increase in uptake from 4.9 percentage points

in the unsubsidized group to 8.9 percentage points in the encouraged group. I use this variation

to estimate the local average treatment effect of automation on energy consumption for those who

3Following the taxonomy developed in Harrison and List (2004), this is a natural field experiment because house-
holds did not know they were part of a study and experimental variation occurred within the company’s product.

4Households were paid for reducing consumption relative to an individual forecast and penalized for exceeding that
forecast at the same marginal rate. This is similar in spirit to the critical peak rebates studied in past dynamic pricing
experiments such as Wolak (2006) with the important distinction that there was substantially less asymmetry in the
incentive around the forecast. Households faced a linear incentive except when penalizing the household resulted in
them losing money from the program overall. This edge case is the only departure from the incentive being financially
equivalent to changes in marginal price.

5Ito, Ida, and Tanaka (2017) is the closest existing study within the dynamic electricity pricing literature since
it uses random price variation between events. The within event randomization I use in this paper has a broader
support and identifies the price responsiveness during each event.
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adopted as a result of the rebate.

I present three main empirical findings that address the lines of inquiry stated above. First,

treated households reduced consumption by 12 percent on average during pricing events relative to

control households. The response is precisely estimated and 77 percent of the reduction is explained

by households without automation, meaning that the results reflect active decision-making. Second,

households were extremely insensitive to the size of the price change. I find that the average

reduction during events increased from 11 percentage points to 13 percentage points when the price

change increased from the lowest level $0.05/kWh (a 31 percent price increase) to the highest level

$3/kWh (a 1,875 percent price increase). Third, among households who took up the automation as a

result of the rebate, the automation technology increased average response to any price change by an

additional 56 percentage points during events, but did not alter the insensitivity to marginal price.

Back of the envelope calculations suggest the additional savings from automation are substantial

and the average payback period for purchasing a device at the retail price range from 2 to 10 years,

depending on the technology.

To offer an interpretation of the findings, I propose a model of rational agents with limited

attention and heterogeneous costs of information, drawing from the framework introduced in Chetty

(2012). In the model, agents choose to respond to dynamic prices with a heuristic or exert costly

effort to become fully informed. For example, households could be using the expected price change

each event instead of the actual price change. The model delivers the standard choice primitive

estimated in dynamic pricing experiments, the price elasticity of demand, but relaxes the condition

that all households are perfectly attentive.

I provide empirical evidence in support of the model’s assumptions over competing mechanisms

using a separate set of moral suasion interventions that occurred after the pricing interventions.

During these events, households were randomly assigned to receive moral suasion messages pro-

moting the environmental attributes of reducing electricity usage instead of dynamic price changes.

Reductions from price messages are larger and significantly different from reductions from moral

suasion, which are not significantly different from zero. This suggests that households observe the

message content and that responses are driven by price rather than preferences for the environ-

mental attributes of consumption.

I use my experimental variation to show that price elasticity estimates derived from the lim-
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ited attention model differ substantively from those obtained from the neoclassical assumptions

standard to the dynamic pricing literature. I make several simplifying assumptions to give the

model empirical tractability and estimate bounds on the price elasticity of demand by assuming a

plausible range for the agents’ heuristic response. The bounds are −0.483 and −0.051, generally

covering the range of estimates from past studies with longer term price variation. Importantly,

the range implies the consumer is substantially more elastic than the estimate recovered using the

standard method from the literature, −0.047.

Using my estimates of the price elasticity of demand, I examine an important implication of

inattention: the misoptimization cost a household experiences by being inattentive to the marginal

price. I estimate the average misoptimization cost per one hour event falls in the range of $0.03 to

$0.44, representing 10 to 142 percent of the average savings. In the program studied here, households

experience about 100 events per year, implying the nominal stakes of this dynamic pricing program

are small for the average household and supporting the interpretation that inattention could be

rational with modest information costs. However, small mistakes could quickly add up if applied

to the 130 million customers that make up the $178 billion U.S. residential electricity sector, over

90 percent of whom do not pay time-varying rates (EIA, 2015).

This paper relates to the larger literature on attention and information provision in economic

decision-making. In the energy context this includes investigations into consumer attentiveness to

the non-salient energy attributes of durable goods such as cars (Sallee, 2014), refrigerators (Houde,

2017), and light bulbs (Allcott and Taubinsky, 2015). There is also a connection to the literature

on rational inattention in the presence of costly information acquisition (Sims, 2003; Bartoš, Bauer,

Chytilová, and Matějka, 2016). Within this literature, I make three contributions.

First, the paper provides novel evidence on how information costs manifest in dynamic pricing.

This contributes to the nascent economics literature that seeks to empirically identify how con-

sumers actually perceive non-salient or complex financial incentives. For example, Rees-Jones and

Taubinsky (2016) provide strong evidence that individuals facing nonlinear tax schedules exhibit be-

havior consistent with “ironing” or linearizing the schedule using their own average rate. Ito (2014)

finds similar results in electricity consumption, showing that households respond to lagged average

rates rather than marginal incentives when facing nonlinear tariffs in their monthly bills. Within

the context of this study, households respond to a positive price change, but not to the marginal
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rate. This hierarchical simplification of information is consistent with the heuristic phenomena of

scope neglect shown in contingent valuation studies (Kahneman, 2003).6 These phenomena could

also exist in other dynamic pricing settings such as ride-hailing applications if consumers do not

check the price before making the decision to use the service.

My finding that demand is insensitive to the magnitude of the price change extends and comple-

ments the existing literature on dynamic pricing in electricity. In previous experiments, Jessoe and

Rapson (2014) (henceforth JR) find information provision makes demand more elastic during price

changes and Ito, Ida, and Tanaka (2017) (henceforth IIT) find consumers respond much more to

price than the non-price motivator moral suasion.7 JR study six events with two price increases of

200 and 600 percent and find an average response of 16 percent for informed households. IIT study

31 events with three price increases between 260 and 420 percent and uses random variation in the

price of each event to estimate the casual effect of the price level. IIT finds increasing the price

change from the lowest to the highest level increases reductions from 14 to 17 percent, implying a

price elasticity of −0.14. By using five price increases between 31 and 1,875 percent, I characterize

the response to marginal incentives over a substantially broader support and thus test for consumer

inattention more completely.

Second, the paper is the first to provide conclusive evidence on the price elasticity of residential

electricity demand in the very short-run. Previous studies have focused almost exclusively on “day-

ahead” dynamic pricing where households were given notice on the day prior to a price change.8

The fact that households respond to price changes with less than one hour notice (the average was 5

minutes) has special importance in electricity due to the structure of wholesale electricity markets.

The timing of the events in this study mimics the deployment of “real-time” price interventions

that respond to the spot market for electricity procurement. Previous studies have used theory

and simulations to study the potential for real-time pricing to provide efficiency using elasticity

estimates from longer-term price variation (Borenstein and Holland, 2005). My results provide the

6Findings from psychology and economics show that individuals typically respond to more readily accessible
categorical characteristics of a decision (a price change occurring), but not its extensive characteristics (the magnitude
of the change).

7A number of other studies have used experiments to evaluate consumer responses to dynamic electricity prices
(Wolak, 2006, 2010, 2011; Faruqui and Sergici, 2010; Allcott, 2011a; Fowlie, Wolfram, Spurlock, Todd, Baylis, and
Cappers, 2017). See Harding and Sexton (2017) for a comprehensive review of the literature.

8To the best of my knowledge, JR is the one exception. Three of the six events they study give 30-minute notice.
While their results for these periods are statistically insignificant, their point estimates are similar in magnitude to
what I find.

5



first experimental evidence on the efficiency potential of real-time residential pricing programs that

better reflect marginal costs from the wholesale market.9

Third, the paper provides novel evidence on how automation affects dynamic price responses. To

the best of my knowledge, Bollinger and Hartmann (2017) is the only other study of automated price

responses using a field experiment, but their research design, like others in the literature, evaluate

technology regimes that have been assigned to entire treatment groups. The encouragement design

is advantageous because it allows for the invoking of revealed preference when interpreting adoption

decisions.10 This information is valuable because uptake is generally low and households can

be sensitive to defaults when making decisions about dynamic electricity tariffs (Fowlie et al.,

2017). The results also provide suggestive evidence that automation, while preferred to a manual

response, does not perfectly reflect preferences.11 This derives from the fact that the company’s

service provided a blunt instrument that did not allow household to enter a reservation price for

being automated. While households could override the response, automated households respond

significantly to price and moral suasion, suggesting a potential default effect. This suggests future

dynamic pricing research should address the framing of decisions carefully if automated responses

are to be interpreted as preferences.

The paper proceeds as follows: Section 2 develops the theoretical model, Section 3 reports

the experimental design and describes the data, Section 4 reports the empirical results, Section 5

applies the model to obtain estimates of demand parameters, Section 6 discusses and interprets the

results, and Section 7 concludes.

2 Theoretical Model

In this section, I develop a general model to guide interpretation of the empirical results.12I

draws upon the model from Chetty (2012) which derives bounds for the price elasticity of demand

9Allcott (2011a) studies a program that features hourly price variation, but despite including the term real-time
pricing in its title, the hourly price variation households were exposed to in that study came from the day-ahead
forward market.

10The encouragement rebate also reflects the tools policymakers typically use to deploy new technologies. Examples
in energy include subsidizing home energy retrofits (Fowlie, Greenstone, and Wolfram, 2017), fuel-efficient vehicles
(Sallee, 2011), and rooftop solar panels (Hughes and Podolefsky, 2015).

11Given that automation generally functions as a default, ensuring it accurately captures preferences poses a
difficult task as evidenced by the literature exploring default bias in retirement savings (Carroll, Choi, Laibson,
Madrian, and Metrick, 2009; Bernheim and Rangel, 2009). I do not address this tension in this study and leave the
welfare consequences of automation defaults to future work.

12The model was not pre-specified and was developed after preliminary results were obtained.
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when consumers misperceive prices.13 The main feature is that households have limited attention

when facing an unexpected change in price and must exert costly effort to become completely

informed to its value. The structure delivers two sharp tests of whether there are inattentive

households in a population with smooth preferences. It also recovers the price elasticity of demand.

I demonstrate the model’s application to my setting to recover the price elasticity in Section 5.

2.1 Limited Attention and Dynamic Pricing

Consider a heterogenous population of households with well-defined quasilinear preferences

over a dynamically priced consumption good y (i.e., electricity) and a numeraire good x. To simply

capture the setting, suppose there are two stages to the model during which one price change occurs.

Households have a budget of Z and pay a per unit price p0 for y. In the first stage, households

receive a signal notifying them of the price change and use it to choose an information set that

maximizes expected utility. In the second stage, the household optimizes consumption using the

chosen information set.

Prior to the first stage, the households set a consumption plan that maximizes utility U(x, y)

subject to the budget constraint x+p0y ≤ Z. Let y0 ≡ arg maxy U(Z−p0y, y) denote consumption

when price is p0. In the first stage, the household receives a signal m about a change in y’s price

to pd ∼ Fp, which is distributed according to the bounded distribution Fp. In this study, the

signal is the message notifying households of a pricing event, but could more generally capture the

notification of a price change through a bill or information campaign. This framework is isomorphic

to situations where the price is clearly stated, but households face cognitive costs to map the stated

price to the cost of services rendered by an input such as electricity consumption.14

For expositional simplicity I make several simplifying assumptions. First, assume a household’s

information choice is discrete such that they choose between a complete information set Sc ≡ {pd}

and a “bounded” information set Sb ≡ {pb}. The complete information set is the actual price

change and the bounded is a heuristic (e.g., the expected dynamic price). Second, assume the

relative cost of information is the only form of heterogeneity in the population. Let κ ≥ 0 denote

13Chetty (2012) derives bounds on price elasticity under a more general set of adjustment costs which can manifest
as price misperceptions or information costs. My model elaborates on the interpretation as price misperceptions.

14For example, households may observe the price per unit kWh conveyed in the signal m, but mapping this to the
operating cost of lighting versus cooling versus TV or computer use could require substantial cognitive effort. The
model can be easily modified to include these scenarios by introducing the costly information decision between m
and pd, where m contains the electricity price, but pd is the cost of services.
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the relative cost of Sc versus Sb in utility terms where κ ∼ Fκ is bounded above.15 Third, I assume

household prior beliefs about the signal content, denoted F̂p, are exogenous.16

Households choose an information set by maximizing expected utility according to von Neumann-

Morgenstern preferences. The bounded information is chosen if

V (pb) > E[V (pd)|F̂p]− κ (1)

where I suppress the budget term for notational ease so V (ps) denotes the household’s indirect

utility for perceived price ps with s ∈ {b, d}.17 Define households who use the complete information

“attentive” and those who use the bounded information“inattentive.”

In the second stage, each household uses their information set to solve

max
x,y

U(x, y) = x+ u(y; η)− κs (2)

subject to psy + x ≤ Z (3)

where u(y; η) is the private utility derived from consuming the y for a household with taste parame-

ter η. I assume u(·) satisfies the standard concavity assumptions and is continuously differentiable.18

The household maximizes utility subject to the perceived budget constraint (3) which depends on

their information choice. If they use the complete information set, the cost κ is reflected in their

utility. The first-order condition to solving (2) subject to (3) is u′(y; η) = ps, so a household will

consume until their marginal utility of consumption equals their perceived price ps with s ∈ {b, d}.

Let y∗(p) = (u′)−1(p) denote the demand function implied by the first-order condition.

To map household decisions to aggregate demand for y, let k ≡ E[V (pd)|F̂p] − V (pb) denote

the cost at which households are indifferent between the two information sets. Households with

κ ≤ k are attentive to actual price change and households with κ > k are inattentive in that they

may respond to the price change, but not its actual value. For a unit mass of consumers, observed

15The model can be extended simply to include a richer information structure where information sets with greater
reductions in entropy have marginally higher costs. That is, higher quality information is more costly.

16Households in this study were not informed of the distribution of potential prices before enrolling and there is
little evidence of learning in the empirical results so this does not seem to be an implausible assumption for this
setting. I relax this assumption and explore making beliefs endogenous in the Appendix. Generally, this delivers a
richer set of testable comparative statics, but the study design is not well suited to comment on belief formation.

17This is a slight abuse of notation since indirect utility is defined over the true price and the perceived price may
differ. The same outcome can be achieved by specifying a decision utility function Ṽ for the left hand side of (1)
which shares the same functional form as experienced utility V which is defined over the realized price.

18Specifically, I assume u′′(y; η) < 0 < u′(y; η), ∀y > 0, limy→0 u
′(y; η) =∞ and limy→∞ u

′(y; η) = 0.
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aggregate demand is given by

Y (pd, pb) = σy∗(pd) + (1− σ)y∗(pb) (4)

where σ ≡ Fκ(k) represents the fraction of attentive households. If we interpret (4) as the demand

for a representative agent, σ can easily be recast as the probability of being attentive where κ is

a stochastic information cost. Define the change in demand that results from a price change as

∆Y (pd, pb) = σ∆y∗(pd) + (1 − σ)∆y∗(pb) where ∆y∗(ps) ≡ y∗(ps) − y∗(p0) is the consumption

change for a household of type s ∈ {b, d}.

To gain intuition, assume utility over y follows an isoelastic power form such that u(y; η) ≡

(y1−1/η − 1)/(1 − 1/η). Letting ε ≡ ∂Y
∂pd
· pdY denote the elasticity of consumption with respect to

the dynamic price pd, it follows that ε = −ση. If the entire population is made up of attentive

households, the aggregate demand elasticity identifies the underlying preference parameter since

ε = −η. Figure 1 plots an example demand in the solid black line where all households are attentive.

Attentive households consume y0 ≡ y∗(p0) when the dynamic price is p0 and yp ≡ y∗(p) when the

price is p. However, if any fraction of households are inattentive such that σ < 1, identifying η must

rely on additional model structure to recover the choice primitives. In the extreme, if all households

are inattentive (σ = 0), aggregate demand is perfectly inelastic to the dynamic price level at level

yb ≡ y∗(pb), indicated by the dashed gray line in Figure 1. Note that the model still implies a

change in aggregate consumption as long as the expected price of the bounded information set is

not the original price (pb 6= p0). Figure 1 also plots a hypothetical demand function for a mixture

of households (0 < σ < 1) in the dashed black line. For the mixture, demand slopes down slightly,

but there is a discrete change from y0 for dynamic prices in the neighborhood of p0.

The model provides two sharp tests of whether there are inattentive households in a population

with smooth preferences. First, a discrete shift in demand (∆Y 6= 0) for very small price changes

should indicate households are using a coarse information set instead of the marginal price. Second,

complete inelasticity with respect to the level of the price change would also be consistent with

households being inattentive to the marginal price. The model does not explicitly consider the

effect of automation on the decision setting, but can be extended to incorporate it.19

19We can think of automation as affecting two dimensions of the household’s decision. First, it reduces the physical
adjustment cost of effort for responding to a price change. For example, automating the response of an appliance that
is not readily accessible such as an electric water heater or an entertainment console is likely to make the household
more elastic. Second, the automation provides a substitute for attention, allowing for price conditional responses.
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2.2 Empirical Elasticity Estimates

The model developed above has implications for the standard empirical estimation of the elas-

ticity of demand. To see this, consider the approximation of the elasticity using a single price

change and the aggregate change in consumption defined as:

ε̂ ≡
(

∆Y

pd − p0

)
p0
y0
≈ −η

(
σ + (1− σ)

(
pb − p0
pd − p0

))
(5)

where I use the approximation that ∆ys ≈ −η
(
y0(ps−p0)

p0

)
for s ∈ {b, d}. For σ = 1, we can see

that the empirical elasticity approximately recovers the taste parameter η. For σ < 1, the taste

parameter is scaled by the potentially confounding term in parentheses. If pb 6= pd, we can see that

ε̂ 6= −η. In the simplified model above, pb is the expected price. In this case, the model implies that

the empirical elasticity will be larger (smaller) in magnitude than implied by the taste parameter

if expectations are higher (lower) than the true price.

This highlights an important implication of the model. If there are any inattentive households,

recovering the true preference parameter η is contingent upon knowing or making assumptions about

the household’s information set. While verifying households beliefs is an empirically burdensome

exercise, it is important to note that pd is a random variable in true dynamic pricing and this model.

If pd is a consistent price change with little uncertainty, there would be more support for assuming

beliefs are accurate such that pb = pd. This is the case for many existing dynamic pricing programs,

where price changes are of a consistent magnitude during select hours of the day. However, the

structure of these programs do not reflect the uncertainty of the real-time pricing ideal.

2.3 Misoptimization Costs

I use the model to examine one implication of inattention: the misoptimization costs a household

experiences by using bounded information. These costs represent the utility loss from reducing

consumption for which the household has a high (low) willingness-to-pay (WTP) when the price is

actually low (high), thus consuming more (less) than is optimal given the true price change. The

misoptimization cost for the households can have direct implications for the efficiency of dynamic

pricing when the price change pd is equal to the marginal cost. In such a case, the mismatch of

While the company’s automation is overly simple in this respect, it provides a default response we can interpret as
responding as if an extreme price change occurred. These features can be incorporated explicitly through the utility
function for adjustment costs and the information choice set.
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consumption with marginal WTP also reflects an allocative inefficiency.

Quantifying the misoptimization requires me to make an assumption about the household’s true

preferences. Namely, I assume that households experience utility as though they had no information

costs such that σ = 1. That is, preferences are revealed by their consumption level if they observed

the actual price change. Under this assumption, the average utility misoptimization for given price

change p is

a(p, pb) ≡
∣∣∣∣ ∫ Y (p, pb)

y∗(p)
p(y)− p dy

∣∣∣∣ (6)

where p(y) is the inverse demand curve of y∗(p). Visually, the integral in (6) corresponds to the

area between the true demand curve and the dynamic price within the range of the observed

quantity to the implied fully attentive quantity. Figure 1 shows this area shaded in gray. The order

of integration is arbitrarily defined and I take the absolute value since any deviation from y∗ is

counted as a positive cost. Note that a = 0 for pb = pd or if σ = 1 because either would imply

Y = y∗.

3 Design and Data

This section provides a description of the experimental design and summary statistics.20

3.1 Recruitment

The experiment was implemented through the product of a private company that serves as a

third-party demand response provider (DRP) in the state of California during the 2017 calendar

year. The DRP offers a service where households who enroll are paid for reducing their electricity

consumption during hour-long dynamic pricing events. The company also allows customers to

automate their consumption during events to facilitate responsiveness by connecting their smart

home devices via a web portal. Events and automated response are described in detail below.

Enrolled households continue to receive a bill from their utility for their electricity consumption,

but by enrolling in the program they have the opportunity to earn money from the DRP and

reduce electricity expenditures overall. Households within the service territories of the three major

20The section below describes the complete design. At the time this draft was written, enrollment had been
completed, but interventions had not concluded. I have collected intervention data through September 2017. The
final paper will include data from October 2017- December 2017 and will represent approximately 90 percent of the
final data.
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California investor-owned electric utilities (IOUs) were eligible to enroll in the study.21

Recruitment was conducted by the DRP on an ongoing basis from January 1, 2017 to September

30, 2017. During this period, households were contacted through a variety of outreach channels

and told they could earn up to $300 a year for reducing their electricity consumption.22 Since

households chose to enroll in the program, the study sample will not necessarily be representative

of the population of eligible households. However, programs like these are unlikely to be mandatory

in the near future, suggesting that volunteers are the relevant population. These factors should be

noted when interpreting the external validity of the results.

A total of 13,782 households were recruited for the study. I define recruited households as those

who created an account on the DRP’s website by entering an email address and password. Of these,

6,169 households completed sign-up by providing enough information to connect their utility data

so that the DRP could monitor their consumption and calculate payouts.23 I remove households

with erroneous meter data and those who appear to generate electricity on-site to arrive at the

study sample of 5,531 households.24

3.2 Experimental Platform

A description of the DRP’s product provides context that is useful for interpretation and assess-

ment of construct validity. The DRP markets its product as a game where users can earn points

during pricing events. Points are awarded with a linear incentive mechanism, where households

gain points for using less electricity than the level the DRP forecasts and lose points for exceeding

the forecast.25 The reward (or loss) for an event is calculated as Reward = Incentive∗(Forecast−
21The IOUs are Pacific Gas & Electric, Southern California Edison, and San Diego Gas & Electric.
22Recruitment channels included digital advertising, social media, in person outreach, referral bonuses for existing

customers, and coverage on a national radio program. Households were also offered rewards for signing up that varied
during the recruitment period from $20 to no reward. There were also periods during which the DRP used referral
bonuses to existing customers which may have driven recruitment.

23According to the DRP, the 45 percent follow-through rate is consistent with what they normally see and can be
attributed to the requirements of the enrollment pipeline. In order to enroll, a household is required to sign a series
of forms after entering their email in order to connect their utility information and created an account. These forms
pertain to disenrolling from any other DR programs run by their utility and entering into an exclusive contract with
the DRP. Each IOU runs its own unique DR program and households were required to end participation in all other
DR programs as a condition of enrolling in the study.

24I identify on-site generation as having a negative meter read during any period prior to or during enrollment.
25Forecasts are calculated for each household using the well-established “10 in 10” methodology defined by the

California Independent System Operator as a weighted average of past consumption during similar hours of the day
(CAISO, 2014). I verified the accuracy of the forecast methodology independently on pre-treatment data and the
control group. The forecast produces estimates of consumption which are slightly negatively biased by less than 5
percent of consumption. While the susceptibility of these types of forecasting methodologies to gaming is often noted
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Usage).26 Points earned (lost) during an event are then added (subtracted) to a balance the house-

hold maintains with the DRP.

The reward mechanism functions financially equivalent to an increase in the per unit price

of electricity due to the symmetry of the reward around the forecast except for one exception:

the company does not allow negative point balances. Thus, the incentive to consume may be

asymmetric around the baseline if the household has zero points in their balance. If the household

is at the zero lower bound, the effective price change would be lower than the stated reward level.

About 20 percent of households have zero balances during events, but the results are not driven by

these consumers.27 While the reward mechanism is certainly different from a simple price change, it

provides the closest example of real-time variation in the marginal incentive to consume electricity

of any experiment to-date.

Households were informed of an impending event with an hour or less notice via email and an

SMS text message to their mobile phone. Figure 3 shows messaging for an example hour for both

SMS and email. In both forms of contact households are told the specific period of the event, the

incentive level, and the company’s forecast for their usage. The incentive level was communicated

as saliently as was possible within the constraints of the product infrastructure. 1 to 3 days after

an event occurred, the household’s performance was evaluated and communicated via email and

the DRP’s website. Upon logging in to their account, the resulting number of points gained or lost

for the past four events was displayed and the household could scroll to view the complete history

of event performance.28

Points could be electronically cashed out via a secure online payment system or donated to

cause of their choosing. A household’s point balance was shown on the upper right section of the

home page. One point was equivalent to $0.01 when cashed out and households could only cash

out after they had $10 worth of points in their balance. The mapping between points and dollars is

in the literature, it often pertains to situations where the user has ample time to change usage prior to an event such
as with day-ahead notice. The hour-ahead notice for the events studied in this paper plus their unpredictability make
it less likely gaming is an issue.

26For example, if the incentive level is 50 points per kWh, the household’s forecast is 1.5kWh, and they use 1kWh,
they will earn 25 points for the event. Conversely, if they use 1.7kWh, they will lose 10 points.

27I provide evidence in the Appendix that the main findings are not driven by the zero balance lower bound. The
majority of households start with a positive balance and within a few weeks of enrollment less than 30 percent of
households have a zero balance. The Appendix also provides information on how the point balances evolve over the
course of the program.

28The Appendix shows a screenshot of the home page.
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important since it allows me to interpret responses to variation in price as representative of demand

for electricity. I provide evidence that households understood the value of the points in Section 6.

The automation service the company provides remotely shuts off connected devices during a

pricing event and turns them back on when the event is over. For example, if an appliance is plugged

into a connected smart plug, the company will remotely break the circuit between the plug and

the appliance so no more load can be drawn from the socket. With connected smart thermostats,

the service turns the thermostat off so that the central air-conditioning (AC) or heating does not

cycle. This automates the decision to reduce consumption for connected appliances. Households

can override the automation by turning their thermostat or plug back on manually or remotely if

they have connected their smart device to their mobile phone. The process for connecting a smart

device involves going on the company’s website and entering appliance information. Importantly,

the automation service is not a function of the price level. That is, households cannot set a trigger

price above which they would like to be automated. This has implications for the interpretation of

results I discuss in Section 6.

It is also important to note that enrolled households had the option to opt-out of certain times

of the week they did not want to receive event periods. Specifically, a household could choose

via the web portal which hours of the day they wanted to receive event hours for weekdays and

weekends separately. For example a household could choose to receive events from 5PM-8PM on

weekdays and 12PM-6PM on weekends. Households were defaulted to receive messages between

7AM-10PM for both weekdays and weekends and the majority receive events during all possible

hours for this experiment (11AM-10PM). I address this event-level noncompliance directly in the

empirical analysis presented in Section 4.

3.3 Treatments

Upon recruitment, households were randomized into three treatment groups: Control (C), Stan-

dard (S), and Encouraged (E). Each treatment was exposed to a unique product experience for the

first 90 days of enrollment as follows:

• Control (C): 1,035 households were informed that their enrollment would be delayed for 90
days. These households did not receive any event messages or other contact during this time.

• Standard (S): 2,271 households received price treatments and were allowed to connect their
smart devices to automate their response.
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• Encouraged (E): 2,225 households received the same price treatments as the Standard
group, but also received an automation encouragement in the form of a rebate for the full
cost of purchasing a smart home device connecting it to the automation service.

Households were probabilistically assigned to C/S/E with a ratio of 20/40/40 percent. The assign-

ment ratios were calculated to maximize the statistical power for comparing Standard to Encour-

aged, while ensuring there were enough Control households to have a minimum detectable effect of

1−2 percent between pricing levels. The product experience randomization occurred at the time of

sign-up to ensure each day’s enrollment cohort had comparable households in each treatment arm.

This makes the internal validity of the study robust to changes in the recruitment strategy that

took place during the study.

Control Group – Control households were granted access to the web-portal, but it did not display

any information about their usage and they did not receive any event messaging. Instead, upon

enrollment they received an email with the following language: “Due to overwhelming demand for

our service, there will be a delay before we can send you #OhmHours. We estimate this delay will

last approximately 3 months. In return for your patience, we’ll issue you an extra $10 bonus when

your account delay is over.” The extra bonus was meant to combat sample attrition. There is

evidence of a small amount of attrition in the control group between the point of recruitment when

households enter an email and are assigned and when they connect their utility data. While this

poses a potential threat to identification, I show below that the sample is balanced across treatment

assignment for a large set of observable characteristics.29

Automation Encouragement – In order to measure the causal effect of adopting an automation

technology the Encouraged households were offered a rebate for the full purchase price of a new

smart home device up to $240 in value. Upon creating an account, these households were shown a

pop-up notification on the web-portal in addition to being sent an email notifying them they had

been selected to receive a rebate for purchasing a new smart device. The household was offered a

choice between 3 smart thermostats ranging in retail value from $198 to $240 or one package of

29Random assignment happened prior to households connecting their utility account due to technical constraints
within the DRP’s product infrastructure. The probability of connecting utility data was 41.6 percent for control
households as compared with 45.5 percent in the treatment groups, indicating a small amount of attrition in the
control group. The difference is statistically significant and should be noted when interpreting the results. I report
the regressions estimating attrition at the two stages of data construction in the Appendix. The results show no
difference in attrition between the point of connecting utility data and having appropriate data to be in the study
sample. Further, the sample is balanced in the electricity usage and temperature data used in the empirical analysis.
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two smart plugs which cost $80.30

Price Treatments – In order to measure the effect of the price level households were exposed to

price treatments where the financial incentive to consume was randomly varied. During the first

90 days, events were called 1-3 times per week and households were notified with one hour ahead

notice of an increase in the effective price of electricity consumption via SMS and email. The SMS

message said “Reduce consumption today from 6PM-7PM! We’ll award you 100 points for every

kWh you reduce below your forecast (1.35 kWh), but you’ll lose points if you go over.” The email

contained the same information plus additional general strategies on how to reduce consumption.

For each event, the incentive level was randomly assigned within household to one of five incentive

levels: 5, 25, 50, 100, and 300 points per kWh with equal probability. The only variation between

message content was the event period, the price level, and the forecast.

Moral Suasion Treatments – To further investigate the degree to which message content affected

responses, households were also exposed to moral suasion treatments instead of a financial incentive

during events.31 An additional 90 days after the completion of the price treatments, households in

all both treatment groups were pooled.32 Within each event, households were randomly assigned

to one of four groups with equal probability. Three treatment groups received events with different

messaging and a fourth served as a control. Among the treated, households were assigned to one

of the following messages:

• Moral Suasion Only: Messages reminded households that reducing energy consumption
could improve environmental outcomes instead of offering a financial incentive. An example
SMS message was “Environmental event today from 6PM-7PM! Saving energy now could keep
a dirty power plant turned off!”

• Price + Moral Suasion: Messages had the same financial incentive as price only plus
language from moral suasion only. An example SMS message was “Pricing event today from
6PM-7PM! Get 100 points per kWh saved below your forecast (1.35 kWh). Saving energy now
could keep a dirty power plant turned off!”

• Price Only: Messages used the same language as the price treatments with an incentive
level of 100 points ($1) per kWh.

30The households were told that they would have the purchase price equivalent of points added to their balance
when they connected the device as to ensure rebates encouraged automation.

31Ideally, I could have tested the effect of presenting the same language as the price treatments with a zero price,
but this was deemed to be too confusing by the DRP. The product generally features messaging on the environmental
benefit of reducing, so it is possible that moral suasion is already driving consumption decisions to an extent.

32The 90 days between the completion of the price treatments and the start of the moral suasion treatments featured
a different, cross-randomized experimental intervention. Data from days 91-180 are not included in the study.
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Households assigned to the control group received no message or financial incentive for the hour.

Survey – The study also utilized a voluntary survey to gain further insight into the mechanisms

driving the household decision. Two weeks after the moral suasion treatments, households were

contacted via email with a link to the survey website and offered $10 to provide feedback on the

product.33 As of November 9, 2017, 2,250 households had been contacted with the offer to complete

the survey. 587 households completed the survey—a 26 percent response rate.

3.4 Data and Summary Statistics

Experimental Data – The DRP was the the primary data source for the study. The company

receives Advanced Metering Infrastructure (AMI) data for its customers from their respective utili-

ties that allows me to observe each household’s hourly electricity consumption during the study and

up to a year prior to enrollment.34 The company provided me with household-specific information

on the experimental assignment, the time and content of messages sent to households, the type and

number of devices connected to the automation service, and the financial outcome of each event.

I also observe each household’s 5-digit ZIP code and census block group which I use to merge in

hourly temperature data and demographics on the area where the household is located.

Weather Data – I use outdoor temperature data for the centroid of each ZIP code in my sam-

ple from the Dark Sky API which combines data from multiple government sources and uses a

meteorological model to predict weather for a given geocode.35

Census Data – I observe the Census Block and Block Group for 84 percent of households.36 I use

household which I use to merge in demographics on the location of the household from the 2015

American Community Survey 5-year estimates.

Balance and Summary Statistics – Using the above data sources I construct a panel dataset

where the unit of observation is a household by hour-of-sample. The company scrapes historical

data on usage that allows me to observe household consumption prior to enrollment in the program.

33A complete list of survey questions is provided in the Appendix along with summary statistics comparing the
responders to the full sample for interpretation.

34This data is used to settle the company’s wholesale market activity and capacity contracts so the company and
the external counterparties independently verify the accuracy of the data. As a further precaution, the CEO of the
company has signed a memorandum of understanding that the data has not been tampered with and the design was
executed consistent with the research design described here.

35Information on the sources used in the Dark Sky API model are summarized here
http://darksky.net/dev/docs/sources

36I was unable to obtain the census geographic identifiers for the outstanding 16 percent.
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Not all households have the same amount of data available due to movers and the creation of new

accounts so the panel is unbalanced.

The randomization was performed within the DRP’s product infrastructure and assignment

could not be feasibly stratified. I test for balance in observables characteristics between treatment

groups to provide evidence on the validity of assignment. Table 1 reports summary statistics by

treatment group. Column (1), (2), and (3) report means and standard deviations in parentheses

for the Control, Standard, and Encouraged groups calculated using pre-enrollment data. Columns

(4)-(6) report p-values on the t-test on the difference in means permuted between each of the

treatment groups.37 Rows 1−6 report statistics for the data used in the empirical analysis and row

7 and above for the census variables, where available. Only one comparison is significantly different

at the 10 percent significance level: the maximum consumption between the Encouraged and the

Control group. This provides strong evidence that the assignment was random.

Figure 2 provides further evidence of balance by showing a map of where the households in the

study are located in the state of California. Regions shaded green have both Enrolled (assigned to

Standard or Encouraged group) and Control households. Regions with only Enrolled are shaded

blue and regions with only Control are shaded orange. The map shows that there is considerable

coverage over populous regions of the state and that there does not appear to be any correlation

between region and assignment. The significant geographic area covered by the sample also provides

rich spatial variation not available in previous dynamic pricing studies. However, it should be noted

that the sample is observably different from the eligible population which likely reflects the voluntary

selection into the experiment.38

4 Empirical Strategy and Results

I present the empirical results of the price and moral suasion treatments in this section. Before

proceeding with the statistical analysis, I report summary statistics on the events to assist in

interpretation. There were a total of 94 events called between January 1, 2017 and November 5,

2017. The average number of events called per household during the first 90 days was 27 with a

standard deviation of 4. The minimum number of messages sent was 7 and the maximum was 30.

Table 2 reports summary statistics for the events by hour-of-day. Column (1) reports the number

37Standard errors for the balance tests are assumed to be iid between households.
38I report more complete summary statistics on the sample and the eligible population in the Appendix.
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of household-hour observations. Column (2) shows that the majority of events were called between

1pm and 8pm39 Column (3) shows the proportion of households called during any given event was

0.89. I address this imperfect compliance in my analysis below. Since I did not have explicit control

over price randomization, I verify that the average incentive in each event is consistent with the

expected value of $0.96/kWh.40 Column (6) and (7) show the mean consumption for the control

and treatment groups, respectively. From this we can see the enrolled households consumed less

electricity than the control households using the raw experimental variation.41

4.1 Effect of Pricing Events

Pricing events reduce consumption – As a first exercise, I test whether household consumption

responds to pricing events. I separate the effect of enrollment into event hours and non-event hours

by estimating the following difference-in-differences (DD) regression on the unbalanced panel of

hourly household electricity consumption

Yit = δDit ×Ht + ξDit ×Nt +X ′itβ + εit. (7)

The dependent variable is hourly electricity consumption in log(kWh) for household i in hour-of-

sample t. I report results in log terms to assist in interpretation.42 Dit is an indicator variable

that household i had enrolled in the program during hour t. Ht is an indicator that an event was

called during hour t and Nt is a complementary indicator that an event was not called during hour

t. The DD specification in (7) is not necessary for identification, but I include a vector of controls

Xit to improve the precision of the estimates. These include household by hour-of-day fixed effects

to remove time-invariant household factors for each hour of the day, hour-of-sample fixed effects

to remove factors that effect the entire sample each period, and a flexible function to control for

outdoor temperature at household i’s location in period t.43 εit is the structural error term.

The primary coefficient of interest in (7) is δ and captures the average treatment effect (ATE)

39These are the hours often associated with peak capacity and the ramping challenges of high renewables penetra-
tion.

40The unweighted average is calculated as (0.05 + 0.25 + 0.5 + 1 + 3)/5 = 0.96.
41I provide further information on the raw experimental variation by plotting the empirical CDFs of enrolled and

control households in the Appendix.
42Results in terms of kWh are reported in the Appendix and are qualitatively similar.
43In my preferred specification I parametrically control for linear dependence on cooling-degree hours (CDH) and

heating-degree hours (HDH) separately. CDHs and HDHs are defined as the deviations in outdoor temperature above
and below 20◦C, respectively. Estimating the model with a quadratic control function in outdoor temperature does
not change the results.
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of being enrolled in the program during a pricing event on electricity consumption. Since there are

multiple pricing events called while a household is enrolled, the effect averages variation within and

between households. Another coefficient of interest is ξ, which captures the ATE of being enrolled

on consumption during all non-event hours. I interpret estimates of δ and ξ causally because

they are identified by comparing enrolled households to the pure control households that randomly

experience a delay. Formally, I assume E[εit|Dit] = 0 because enrollment is randomly assigned.

While the price level was randomly assigned among households that received messages, not all

enrolled households were called each time a pricing event occurred. On average, about 11 percent of

households were not called each event. Event noncompliance was driven by a household’s decision to

opt-out of certain times of the week they did not want to receive events. This poses an identification

challenge because I cannot observe who would have opted-out in the control group. Importantly,

households decide to opt-out before they are called with an event so selection is not driven by the

price level.

The event noncompliance means δ in (7) can be thought of as the average intent-to-treat (ITT)

effect where treatment is defined as receiving a pricing event. While the ITT is important for the

overall evaluation of the program, I also estimate the local average treatment effect (LATE) for

households who received messages to characterize the behavioral response to pricing events.44 In

order to estimate the LATE, I modify (7) and estimate the following regression:

Yit = ηCit ×Ht + ξDit ×Nt +X ′itβ + εit (8)

where Cit is an indicator variable that household i was contacted with a change in marginal price

during period t. Estimates of η obtained using OLS cannot be interpreted causally due to the

selection bias potentially introduced by households opting-out of certain event time periods. To

address the identification issue, I estimate (8) using 2SLS and instrument the first term Cit ×Ht

with the randomly assigned enrollment indicator Dit. The resulting estimate of η captures the local

average treatment effect (LATE) of receiving a pricing event on consumption for the households

who do not opt-out. Interpreting the LATE causally relies on the same identifying assumption that

E[εit|Dit] = 0 so that enrollment only affects behavior during events through the calling of pricing

events.45

44Note this is a different LATE than for the automation compliers, which I discuss below.
45Identification also relies on a significant first stage (indicated by the Panel B of Table 3), monotonicity of the
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Table 3 reports estimates of the ITT and LATE of pricing events on log electricity consumption

obtained from estimating (7) and (8), respectively. Each column reports coefficient estimates

from separate regressions which include fixed effects and controls. Standard errors are reported

in parentheses and clustered by household and hour-of-sample to account for arbitrary correlated

errors within household and across sample within each time period.46 For the remainder of Section

4, standard errors and confidence intervals are estimated using this structure unless otherwise noted.

Column (1) reports the estimates of the ITT and columns (2) and (3) report the estimates of the

LATE using OLS and 2SLS, respectively.47

The results in column (1) of Table 3 indicate average consumption falls by 0.111 log points (10.5

percent) during pricing events as a result of enrolling in the program. The estimate for the non-event

periods is reported in the third row and indicates enrollment reduces electricity consumption by

0.004 log points (0.5 percent), but is not significantly different from zero. Column (3) shows calling

households with an event reduced consumption by 0.124 log points (11.7 percent) and column (2)

shows the LATE is not substantively different from the OLS estimation. This is the first main

result of the paper. The LATE is slightly larger than the ITT which follows from the intuition that

the ITT is attenuated by households whose consumption was closer to the controls because they

did not receive an event. Panel B reports the coefficient on the instrument from the first-stage for

the regression in column (6), which confirms the noncompliance rate of 11 percent.

Event responses are precise with no substantial spillovers – I offer graphical evidence of the

consumption behavior around an event by using an event-study specification to characterize changes

in energy consumption in the 8 hours leading up to and following a pricing event. Specifically, I

estimate the following regression:

Yit =
8∑

τ=−8
δτDit × 1(Ht+τ = 1) + ξDit × 1(t /∈ H) +X ′itβ + εit. (9)

instrument, and SUTVA to hold.
46The first dimension of clustering are robust to arbitrary correlated errors within households. This is meant to

account for serially dependent errors hourly electricity consumption. The second dimension of clustering are robust
to arbitrary correlation within an hour-of-sample. This is meant to account for correlated weather shocks in time
across the region due to weather or grid operations. The results are not qualitatively affected by clustering at the
day-of-sample level, which is significantly more conservative.

47In the Appendix I show how adding controls, fixed effects, and pre-enrollment data change the point estimates in
the Appendix. The results are qualitatively similar for all regressions and the DD specification is preferred because
it controls for time-invariant characteristics of households. These may be systematically different between treatment
groups by chance as I was unable to stratify assignment. The DD specification is more robust to these concerns than
the raw experimental variation.
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The coefficients of interest are the δτ ’s that capture the average change in electricity consumption

caused by enrolling in the program in the period τ hours relative to an event. I also include an

indicator for all post-enrollment periods that do not lie within H, the set of the sample periods

within an 8 hour neighborhood of any event.

Figure 4a plots the results from estimating (9) using OLS with log consumption as the dependent

variable. The event period is shaded in dark gray. The plot shows point estimates for δτ using the

period two hours prior to an event (−2) as the reference category. Households are notified of an

event during the hour before an event (period −1) which is shaded light gray. The vertical bars

plot 95 percent confidence intervals.

The results show that being enrolled in the program during pricing event period causes electricity

consumption to decrease by 0.098 log points (9.3 percent) relative to the period two hours before

an event. Further, there are no distinguishable pre-trends in consumption and the reversion to the

pre-event consumption level happens quickly. By the second hour following the event, electricity

consumption is statistically indistinguishable from pre-event levels. This is notable because there

is a symmetric price change in the periods after the event that provide a second test of household’s

responsiveness to price changes. This provides evidence that, on average, the price treatments

caused households to reduce their electricity consumption.

Households reduce with and without automation – Since automation is a feature of the set-

ting, I estimate effect heterogeneity by whether households chose to automate. These estimates

provide non-causal information on the degree to which automated versus manual decisions explain

the results. The comparison is non-causal because households who choose to adopt the automation

technology are likely to be different than those who do not in ways the econometrician cannot

observe. For instance, they may engage in additional conservation behaviors during pricing peri-

ods if they are motivated by environmental concerns or they may have different preferences over

appliance usage.

To investigate heterogeneity, I estimate the same event-study specification as (9) using OLS

except I interact the enrollment indicator an indicator i household was automated in period t,

denoted Ait. The variable is constant post-enrollment and zero in the pre-enrollment period for all

households. Figure 4b plots the results from estimating the effect of enrollment event-study and

decomposing the effect for automated versus non-automated households. I estimate the coefficients
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for both groups jointly and omit the period two hours prior to the event for non-automated house-

holds as the reference category. Point estimates for automated and non-automated households are

plotted with “o” and “x” markers, respectively.

Figure 4b shows automated households reduce consumption significantly more during pricing

periods. The point estimate for automation is 0.267 log points (23.4 percent) lower consumption

relative to the two hours prior for non-automated households and 0.273 log points (23.9 percent)

lower relative to non-automated households during pricing events. The consumption for non-

automated households is 0.085 log points (8.1 percent) lower than pre-event consumption. The

results also indicate that there are no significant pre-event differences in trends between automated

and non-automated households.

Two important results are worth noting. First, consistent with expectations, households who

choose to automate their decisions are significantly more responsive than those who do not. Second,

the non-automated households still respond significantly to pricing events. Only 23 percent of the

of the ITT effect is attributable to automation, suggesting households are making active decisions

to reduce consumption during pricing periods.48 Automation contributes only a small amount to

the effect of enrollment because only 7 percent of all enrolled households adopt the technology.

4.2 Effect of Marginal Price

Responses are very insensitive to the marginal incentive – The estimate of η in (8) pools the

effect of receiving a message with any positive price level. Define ∆MPit as the change in marginal

price household i would receive in period t regardless of whether they were called or not.49 To

recover the effect of the level of the marginal price change on energy consumption, I modify (8) by

interacting Cit with a vector of indicators for each price level and estimate the regression

Yit =
∑
s∈S

ηsCit ×∆MP sit ×Ht + ξDit ×Nt +X ′itβ + εit (10)

48I come to this number by subtracting the non-automated component from the enrollment effect and dividing it
by the total effect: (0.111− 0.085)/0.111 = 0.23.

49There is a subtle technical point here regarding the generation of the ∆MPit variable. Households were not
assigned a price level by the DRP until they were called, so the raw experimental data does not have a price level for
households who were not called. To populate these, I randomly assign a counterfactual marginal price to the opt-out
households consistent with the design. This can be thought of as randomly assigning prices for all future events at the
time of enrollment, but not informing the household. Households decide generally whether to opt out of the program
during certain hours, but since they do not observe the price assignments, the opt-out decision is independent of the
price level of a given event.
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where ∆MP sit ≡ 1(∆MPit = s) and S ≡ {0.05, 0.25, 0.5, 1, 3} is the set of price levels. To deal

with the selection issue, I estimate (10) using 2SLS and instrument each interaction term Cit ×

∆MP sit×Ht with Dit×∆MP sit×Ht, the randomly assigned enrollment indicator interacted with the

randomly assigned price level indicator. Again the key identifying assumption is that the enrollment

only affects behavior through the calling of pricing events during those periods. The coefficients of

interest in (10) are {ηs}s∈S which recover the TOT of receiving a message with marginal price s in

points per kWh on electricity consumption for the called households.

Figure 5a plots estimates of (10) using the 2SLS estimator described in the previous paragraph

and log(kWh) consumed as the dependent variable. The vertical axis represents the change in

consumption relative to the control group in log points and the horizontal axis represents the

price change in $ per kWh equivalent and ranges from $0-$3/kWh. The leftmost point estimate

indicates calling an event with a $0.05/kWh effective price increase caused an average reduction

in consumption of 0.113 log points (10.7 percent). The rightmost point estimate indicates an

event with a $3/kWh effective price increase caused an average reduction of 0.138 log points (12.9

percent). Vertical bars plot 95 percent confidence intervals.

I can confidently reject the null that the effects for the smallest and largest incentives are

equal (η0.05 = η3) because the p-value is less than 0.01. However, the change in effect size is

extremely small given the difference in incentive levels. The results indicate a 60-fold increase in

the price increase yields 2.2 percentage points lower consumption, an increase in the size of the

treatment effect of only 22 percent. This is remarkable since the average utility price for households

is approximately $0.16/kWh during non-event periods. This is the second main result of the paper.

The dashed line in Figure 5a plots the results of a parametric estimation of the price respon-

siveness with an intercept for any event being called and a slope for the incentive level within an

event.50 The slope can be interpreted as indicating a $1/kWh increase in the level of price change

causes an additional 0.008 log points (0.008 percentage points) reduction in electricity consumption.

The estimate is statistically significant from zero with a p-value less than 0.01. The 95 percent

50Specifically I estimate the regression

Yit = ηintCit × 1(∆MPit > 0)×Ht + ηslopeCit ×∆MPit ×Ht + ξDit ×Nt +X ′itβ + εit

with 2SLS and instrument the first two terms with Dit × 1(∆MPit > 0)×Ht and Dit ×∆MPit ×Ht, respectively.

The dashed line in Figure 5a plots Ŷit = η̂int + η̂slope∆MP using the estimated parameters.
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upper confidence interval indicates we can reject slopes more negative than -0.014.

Figure 5b shows the effect of marginal price decomposed by automation status. Automated

and non-automated households are plotted with “o” and “x” markers, respectively. I also plot

the parametric estimation of the price responsiveness within each group. The differences cannot

be interpreted causally, but the figure provides evidence that the price insensitivity is not driven

mechanically by the fact that the automation service does not depend on price. In fact, automated

households appear to be marginally more price responsive than non-automated households, but

this could be driven by selection.

Households respond less to messages without a price change – To investigate the degree

to which the financial incentive in messages drives the results, households were randomly assigned

messages with no price change during the moral suasion treatments. The interventions happened

90 days after households completed the price treatments (180 days after enrollment). Thus, the

sample for these interventions is composed of 1,122 households who signed up early enough in the

program to reach 180 days enrolled. The sample for these interventions may not be representative

of the full sample because recruitment in time was not random, so the moral suasion treatments

included messages identical to the price treatments to benchmark the results. The benchmark

results for messages with price are generally consistent across the two treatments, suggesting the

results are not substantially confounded with selection in time of recruitment.

To recover the effect of the message content on electricity consumption I estimate the model

Yit = δM CMoral
it + δPC

Price
it + δBC

Both
it +X ′itβ + εit (11)

where CMoral
it , CPriceit , and CBothit are indicator variables for whether the household received a

message with moral suasion and no price change, a standard message with the price change, and

a message with both, respectively. I use the same pre-enrollment data as the price treatments,

but limit the post-enrollment data to periods when a moral suasion treatment event occurred.

The coefficient δM captures the ATE of receiving a message with moral suasion and no financial

incentive relative to receiving no message. δP captures the ATE of receiving a message with the

same language as the price treatments and an incentive level of $1/kWh. δB captures the ATE

of receiving a message with moral suasion and an incentive level of $1/kWh. I include the same

controls as the price treatments estimation.
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Table 4 reports the results from estimating (11) with log(kWh) as the dependent variable in

column (1). The first coefficient of the second column indicates that sending a message with

environmental priming language and no price change causes households to reduce consumption

by 0.033 log points (3.2 percent) relative to being enrolled and receiving no event, but the result

is not statistically significant. The second coefficient indicates that sending a message with a

price incentive of $1/kWh causes households reduce consumption by 0.077 log points (7.4 percent).

The third coefficient indicates a message with a price incentive of $1/kWh that also includes

moral suasion causes households to reduce consumption by 0.094 log points (9.0 percent). We can

confidently reject the null that the messages with price are significantly different from zero at the

1 percent level.

Column (2) of Table 4 breaks out the effect by households with and without automation. The

coefficients can be interpreted as the causal effect of sending each message type on consumption

for automated and non-automated, separately. Comparing automated to non-automated responses

cannot be interpreted causally and the encouragement instrument does not have enough statistical

power with the smaller sample. Still the results confirm intuitive patterns. Households that made

decisions manually responded differently to price as compared with moral suasion. Panel B reports

the p-value for the hypothesis test moral suasion and price alone have the same effect is equal

to 0.002 or 0.006 for pooled and non-automated households. Automated households on the other

hand significant effects for all three message types. This provides evidence in favor of that price is

driving the impact on non-automated consumption rather than moral suasion.

4.3 Effect of Automation

Adopting automation causes larger reductions – To estimate the causal effect of adopting

the automation technology on household energy consumption I use a randomized encouragement

design within the subsample of enrolled households. Specifically, I randomly select half of enrolled

households to receive rebate to take-up the automation technology. The encouragement provides

an instrument to identify the causal effect of adopting automation.

Consider a model that only uses enrolled households. Using 2SLS, I estimate the regression

Yit = αHAit ×Ht + αNAit ×Nt +X ′itβ + εit (12)
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instrumenting Ait with Zit, an indicator that household i received the encouragement offer prior

to period t.51 The coefficient of interests is αH , which captures the LATE of automation on

consumption during events for the compliers nudged into adopting by the encouragement. The

coefficient αN captures the LATE of automation on consumption during non-events, which may be

affected by spillovers. Importantly, the effects are additional to the level of being enrolled without

automation, but can be interpreted causally if the instrument is valid.52

Table 5 reports the summary statistics for the number and type of connected automation devices

in the Standard enrolled and Encouraged groups. Panel A reports counts for the number and types

of devices connected in each group. The results show that 90 more households connected at least

one device in the Encouraged group and that they connected 187 more devices. The encouragement

rebate was offered for thermostats and smart plugs, which both increased significantly in number

in the Encouraged group. The Standard group has more electric vehicles and home automation

systems connected, but these technologies were not eligible for the rebate and overall represent a

trivial share of the sample.

Panel B reports the proportion of households who took up at least one device by the treatment

group. Uptake is 8.9 percent in the Encouraged group and 4.9 percent in the Standard group.

The difference is statistically significant with a p-value that is less than 0.0001. This shows the

encouragement caused higher adoption in the automation technology. Panel B also reports uptake

broken out by pre-enrollment consumption quartile to provide information on the type of household

taking up automation. Column (1) shows that households with the lowest consumption are less

likely to connect to the automation service when they are not offered the rebate. Offering the rebate

increases take-up for consumers by 6.3 percentage points for the bottom quartile as compared with

2.8 percentage points in the highest quartile. This is important for interpreting the LATE since it

51Since households receive the encouragement upon enrollment, Zit = Dit if Zit = 1.
52Specifically, the effect can be interpreted causally if four assumptions hold. First, the encouragement must affect

uptake of the automation technology, which I verify below. Second, the encouragement must not affect consumption
in any way except through the automation technology. I cannot formally test this assumption’s validity and if the
offer of a rebate caused households to change their investments in other electricity consuming durables, this may
be a concern. This omitted variation could lead to bias in the estimates of the LATE and should be noted when
interpreting results. The sign of this bias is uncertain. For example, if the rebate offer causes the household to invest
in other smart home appliances, the overall efficiency of the home could increase if new appliances are more energy
efficient than the older ones. Conversely, the new appliances could have more features and consume more energy or
the new appliance could lead to higher utilization rates. Third, the stable treatment unit value assumption (SUTVA)
must hold. This may be violated if social interactions cause spillovers between treatment and control, but seems
unlikely given the low uptake overall. Fourth, the encouragement effect on uptake must be monotonic such that there
are no “defiers” who would adopt automation, but choose not to as a result of the rebate.
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is evidence that the always-takers are observably different from the compliers.

Table 6 reports the results for estimating (12) with log electricity consumption as the depen-

dent variable using only enrolled households. Column (1) reports the OLS estimates of the average

effect of automation on post-enrollment consumption broken out by event and non-event periods.

The results show estimates of the difference between automated and non-automated households

consistent with the difference shown in Figure 4b. Column (2) reports the reduced form specifi-

cation, regressing log consumption on the encouragement instrument directly, interacted with the

even-period indicators. Column (3) reports the IV estimation. The first stage is reported in Panel

B with both regressions collapsed to a single column. I report the coefficients for the first-stage and

instrument corresponding to the endogenous variable by event and non-event period. The other

coefficients are statistically insignificant from zero. Figure 4c plots the point estimates from the

analogous event-study specification, where the period two hours prior to the event is the omitted

category.

The results show that the causal effect of automation on price response is substantial. The

first coefficient in column (3) indicates automation causes 0.829 log points (56.4 percent) lower

consumption during pricing events relative to the non-automated counterfactual for compliers. I

cannot identify the consumption of the compliers in the Standard group with the experimental

design, but if we use the price event ITT as a benchmark, the results imply 5 to 7−fold increase

in responsiveness.53 These results are dramatic, but it is worth noting that the take-up due to

the rebate was disproportionately driven by households with smaller consumption. This is the

third main result of the paper. Further, the fact that the OLS estimate of the difference is smaller

suggests that the compliers reduce more than always-takers. This suggests that within the range

of adoption explored here, 4 to 9 percent, the marginal treatment effect is increasing.

4.4 Persistence

This section reports results showing how the effect of pricing events changes over time. House-

hold’s understanding of the program and the technologies may change as they learn new strategies

to reduce or make adaptive longer-term behaviors. In order to characterize the effect over time, I

examine the price treatments for each 30 day period of their 90 day duration. I use the parametric

53If we use the pooled result across all automated non-automated, the increase is from 12 percentage points and if
we only use non-automated households, the increase is from 8 percentage points.
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specification of the response to marginal price shown in Figure 5 to see if households become more

or less price elastic as they become more familiar with the product.

Figure 6 plots estimates for how the effects change over time during the price treatments. The

estimates are broken out by 30 day periods during the 90 days for which price treatments occurred.

Estimates for days 0-30, 31-60, and 61-90 are represented by triangles, squares, and diamonds,

respectively and circles indicate estimates for the full 90 days for reference. Vertical bars show

95 percent confidence intervals. Figure 6a shows the causal estimates of the event price response

for all enrolled households. Figure 6b plots the non-causal effect heterogeneity for households

with and without automation in blue and black, respectively. Each panel shows estimates from a

single regression. Estimates labeled “Event Intercept” and “Event Slope” represent the parametric

estimation of the price response of consumption for called households.

The left set of estimates Figure 6a shows the intercept decreases slightly from −0.120 log points

to −0.107 log points, but the estimates are not statistically distinguishable at conventional levels.

The right estimates show the slope estimate does not change substantially. Figure 6b shows that

the results from 6a are generally explained by households without automation, suggesting there

does not appear to be significant learning or habituation during the 90 day period.54

5 Model Application

The salient presentation of a random price change provides the rare opportunity to estimate

the elasticity of household electricity demand using experimental price variation. However, the

constant elasticity form commonly used by the literature does not seem wholly appropriate given

the insensitivity to change size shown in the empirical results. As a result, I adapt the theoretical

model developed in Section 2 to the experimental setting to make it empirically tractable and

demonstrate the additional information necessary to recover structural demand parameters. The

model application illustrates how adding attention to the model affects elasticity estimates. It also

allows me to quantify the potential costs of inattention which gives a measure of the degree to

which it impacts household welfare.

54The estimates for the automated households show the price response intercept increases significantly from days
0-30 to days 31-60, but then levels off. This is likely due to the fact that there was a lag between enrollment,
purchase, delivery, and installation of the automation technologies. Further the slope for the automated households
does not follow a clear pattern and while there does appear that spillovers for automated households are gradually
more negative, the effects are statistically insignificant.
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5.1 Empirical Specification

I make several simplifying assumptions in order to make the model developed in Section 2

empirically tractable and relevant to the literature. First, I assume attentive consumers exhibit

preferences for electricity consistent with having a constant price elasticity. Second, I assume a

household in any given event can be characterized by the two types introduced in Section 2: atten-

tive and inattentive.55 Third, I assume the taste parameter η is uncorrelated with the information

costs that determine σ.56 Fourth, I allow for an additive social preferences component to utility to

control for the effect of moral suasion explicitly in the model.57

I model a household i’s consumption in period t as

log(Yit) = η (σ log(MPit) + (1− σ) log(HP )) + γGit + αi + εit (13)

where MPit is the marginal price the household faces in period t, Git is an indicator that the

household factored moral suasion into their decision to consume, and εit is a stochastic taste shock.

I also allow for a household specific taste parameter αi which reflects time-invariant differences in

tastes.

Consumption in (13) is governed by four choice primitives: η, σ, HP , and γ. η captures the

elasticity of demand with respect to a fully attentive household. σ governs the attention of the

household to the marginal price change. Given that I am averaging over households and events, the

model follows the representative agent formulation where σ can be interpreted as the probability

of being attentive during an event or the average fraction of attentive households. HP governs the

heuristic price response of a household with a bounded information set, which is assumed to be

constant for all event periods. γ governs a demand shift due to social preferences.

In order to jointly estimate all model parameters, I pool data from the price treatments, the

moral suasion treatments and pre-enrollment consumption and drop post-enrollment non-event

55Since I average over variation within households, this does not assume household type is time-invariant. Instead,
I assume for any given event, households could be attentive. Given that I have variation in the price level within
and between households, I have explored whether households exhibit time-invariant types. The regression approach
of estimating individual parametric responses yields noisy responses with no clear differentiation, but the analysis
is severely underpowered. Balandat, Gillan, and Zhou (2017) explores the classification of household types in more
detail by characterizing individual responses using machine learning techniques.

56This assumption is perhaps the most unrealistic as we might assume information costs could be lower for house-
holds that are generally more price elastic. However, given that I do not have exogenous shocks to the information
set, I cannot separately identify the two with my current design.

57This is roughly equivalent to assuming utility follows the form U(x, y) = x+u(y)−γy. The fact that I am unable
to reject the null that δM + δP + δB from the moral suasion treatments provides some support for this assumption.
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periods.58 I use the resulting panel to estimate the following DD specification:

log(Yit) = (δMP log(MPit) + δHP log(HP ) + δGGit)× Cit ×Ht +X ′itβ + εit (14)

where Yit is consumption for household i in period t in kWh and MPit is the the marginal price

in dollars per kWh (including an assumed utility price of $0.16/kWh).59 Git indicates the event

message included moral suasion. The value for HP is not identified so I assume it is the expected

value of the marginal price in my base specification and explore the sensitivity to that assumption.

The coefficient δHP technically recovers the intercept of price response scaled by the log of the

heuristic price. I also include the same controls Xit as the preferred reduced form specification.

The parameters in (14) map to the choice primitives specified in (13) as follows

δMP = ησ (15)

δHP = η(1− σ) (16)

δG = γ (17)

We can recover the elasticity primitive by adding the two price coefficients because η = δMP +δHP .

We can determine whether demand is perfectly inelastic (with no shift) by testing the null that

η = 0. If rejected and η 6= 0, we can recover σ = δMP /(δMP + δHP ) which represents the fraction

of the price response attributable to the marginal price change versus the heuristic price change.

The model requires E[εit|HP,MPit] = 0 for the parameters to be identified. The random

assignment of the price level ensures MP is uncorrelated, but if there is unobserved heterogeneity

in HP that is correlated with consumption, the elasticity and attention parameters will be biased.

For example, if households that have engaged in other conservation behaviors that make them

generally more price responsive are also more to use a heuristic price that is above the expected

value of marginal price, then η will overestimate the elasticity of demand. Estimates of the elasticity

should be interpreted with caution if this is a concern.

58I drop the post-enrollment non-event periods due to the fact that control units in the moral suasion treatments
vary by event and thus spillovers are not defined as cleanly as in the price treatments. These periods provide additional
variation for precisely estimating the effect of the control variables, but is not necessary for identification.

59I estimate the model using 2SLS and instrument log(MPit)× Cit ×Ht and log(HP )× Cit ×Ht with Dit ×Hit

interacted with the corresponding price variable.
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5.2 Demand Estimates

Panel A of Table 7 reports estimates of the demand parameters η and σ obtained from estimating

(14) using the same instrumental variables approach as the marginal price exercise.60 The exercise

pools households such that automation is not explicitly modeled. While raising identification

concerns, removing automated households from the sample yields similar parameter estimates. I

discuss incorporating automation into the model below.

The estimates are obtained by taking the sum and ratio of regression coefficients in MP and

HP described in the previous section. Each column reports estimates obtained from separate

regressions with a different assumed value of HP , noted in the column heading. Standard errors

are reported in parentheses.61 For all of the regressions the estimate of γ is 0.012 and is statistically

insignificant with a p-value of 0.57.

Column (1) reports the results assuming HP is equal to the expected value of the marginal

price plus the average price of electricity, $0.96/kWh + $0.16/kWh = $1.12/kWh. The number in

the first row shows that the elasticity of demand implied by the model is −0.075 and is significantly

different from zero. Further, we can see the estimated fraction of attentive households during any

given event is about 10 percent, meaning about 9 out of 10 households are inattentive for any given

price change. The fraction is statistically different from zero which reflects the slight downward

slope of demand recovered from the marginal price exercise. If the model structure is assumed to

be true, households appear to be responding to price, but only a small fraction of the slope explains

the overall shift.

For reference, running the double log specification and omitting the heuristic price variable yields

an elasticity estimate of −0.047, which is 36 percent smaller and statistically significantly different.

To show this more concretely, I estimate the model for the full range of the possible assumptions

about HP over the price changes in the study. Figure 7a plots these results with the horizontal

axis showing the range of possible estimates. The solid white line shows the model estimated

using the standard double log formulation with the gray bars indicating the 95 percent confidence

intervals plotted against the left axis. The solid black line shows the estimates of η according

60Namely, the model is estimated with 2SLS with Cit ×Ht instrumented with the Dit ×Ht.
61Standard errors are estimated in the regression using the same two-way clustering by household and hour-of-

sample as the main results. The standard errors for the parameters recovered from combining regression estimates
using the delta method.
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to the model demand elasticity with dashed lines indicating 95 percent confidence intervals. The

hashed line shows the estimates of the σ plotted against the right vertical axis and is generally less

sensitive to the change in assumption about HP . The elasticity estimates converge for prices above

$2/kWh, but for the majority of the price distribution, the estimates are substantively different.

This suggests the model with inattention recovers meaningfully different estimates and that the

standard approach may mischaracterize underlying preferences.

Columns (2) and (3) of Table 7 report the sensitivity of the results to assumptions about the

value of HP at the extremes. Column (2) shows estimates obtained from a regression that assumes

the heuristic is equal to the minimum of the pricing distribution, $0.21/kWh, and column (3) the

maximum, $3.16/kWh. These map to the extremes for estimates of η and σ under the model

structure. The elasticity results follow general intuition. If the true heuristic is assumed to be at

the low extreme of the distribution, then households preferences are very elastic with an estimate of

about −0.5, significantly larger than the empirical literature that uses billing data. The results also

show only 1 percent of households appear to be attentive since a smaller fraction of the elasticity is

represented in the empirical slope. Alternatively, the high price heuristic shows at most 15 percent

of households are attentive and demand appears slightly less elastic than the results in column (1).

I interpret these results as evidence of a price response that is largely consistent with values of

other electricity demand estimates. However, the low estimate for fraction attentive suggests the

constant elasticity form alone does a poor job explaining the price response.

5.3 Attention and Misoptimization

The structural estimates presented in Panel A of Table 7 suggest inattention is a factor in

decision-making. Panel B of Table 7 reports estimates of E[a(MP,HP )] using the definition from

(6) and the distribution of MP from the price treatments. This recovers the expected attention

cost of a single event. While the price distribution is not reflective of the true cost of electricity

in this setting, it is informative as to the impact of attention on the financial outcomes of the

study. The results in the first column show that the average misoptimization cost is $0.03. The

misoptimization is minimized at the expected value so this provides a lower bound to the attention

cost using this framework.

The nominal value is small, but sensitive to the assumption about the heuristic. Consider
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the extreme values to gain intuition. A household whose heuristic is the low extreme consistently

under-responds. The low heuristic implies true utility is very elastic, so overconsumption has little

value. Thus, large price changes yield large mistakes. The results are significantly less sensitive

for the high heuristic. In this case, households consistently consume too little, but are much less

elastic so the differences between true utility and what is observed are small. Figure 7b plots the

attention cost estimates for the range of HP assumptions showing the costs are much higher for

households whose heuristic is below the expected value.

Table 7 also shows estimates of the financial outcomes of an event to provide context. I report

the average cost of electricity consumed during the event along with average expected reward.

These are calculated individually using the demand estimates, but rounding makes them appear

the same. On average households are paying $0.16/kWh because the level of consumption among

treated households during events is about 1kWh and I calculate the average reward to be $0.15 per

event.62 Column (1) shows the attention costs represent between 10 to 19 percent of the financial

stakes depending on the inclusion of the reward.63 Columns (2) and (3) show the estimate can

represent up to 142 to 275 percent of the financial outcome. Aggregating these mistakes over larger

consumption suggests potentially large attention costs, but ultimately depends on the number of

events called and the distribution of price changes.

5.4 Automation and Attention

This section discusses how to incorporate automation explicitly into the framework developed

above. The fact that automation is not price responsive complicates the welfare interpretation

since it opens the potential for overcorrection. Further, automation could change the relative

cost of information as well as the cost of effort, affecting both the σ and η parameters. For

example, otherwise attentive households could become inattentive and engage in “set it and forget

it” behaviors. Given these complications, future work should seek to understand the degree to which

automation reveals a preference for inattention. This would require a more rigorous evaluation of

WTP or the introduction of automation that actively elicits reservation prices as an input.

62I assume the forecast for an event is given by the control group. This provides a good approximation for illustrative
purposes, but may not perfectly reflect the rewards.

63Including the reward may not be appropriate for all dynamic pricing programs, for example those that use price.
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6 Discussion

This section interprets the results of the empirical analysis and the model application. I provide

justification for the simplifying assumptions of the model, but also comment generally on the

mechanisms implied by the reduced form results. I interpret the response to a price, but not

the price level, as suggesting that households are making decisions using a simplifying heuristic

consistent with a rationally inattentive agent. I show the results are unlikely to be due to moral

suasion, incorrect or incomplete valuation of the reward currency, observation of the price incentive,

and physical discontinuities in the consumption choice. I also interpret the automation effect as

suggesting there are substantial costs to taking action that are unrelated to attention to the price

level which affect the overall elasticity of demand.

6.1 Improbable Mechansisms

Moral suasion – While there is evidence that non-price factors such as social comparison (Allcott,

2011b) and moral suasion (Ito, Ida, and Tanaka, 2017) affect residential electricity consumption

decisions, the finding that households do not respond to the moral suasion alone provides evidence

that the effect is driven by the presence of a financial incentive rather than non-price motivations.

Given that households choose to enroll in the program, the concern that non-price motivations could

be driving the result is reasonable, but evidence from the survey shows 61 percent of respondents

rank “getting financial rewards for saving” as the top reason for joining the program, compared

with 21 percent who chose “environmental or sustainability concerns.”64

Observation of price level – If households are simply reacting to the receipt of a message, there

may be a Hawthorne effect where the shock to salience affects energy consumption regardless of the

message content. Again, the difference in response to moral suasion versus price messaging goes

against this interpretation and suggests households are paying attention to message content.65

64The other choices were “making my home Smarter and more efficient”, “entertainment/gamifying of energy use”,
“grid reliability”, and “donating rewards to a specific cause”. While the survey is a non-random subset of the sample,
it provides suggestive evidence that financial rewards are the primary motivator for participating households.

65The survey also asks two questions designed to test whether households observe message content by asking them
to recall the specifics of their last pricing event. 40 percent of households correctly recall their last incentive level (as
compared with a 17 percent chance of guessing the correct answer randomly). Households are asked to recall their
last incentive level in points per kWh from a set of six numeric choices: 0, 5, 25, 50, 100, and 300 points per kWh.
Since recall is likely to be a perfect approximation of observation, the survey also asks a simpler question of when
their last event period occurred to gauge recall accuracy unrelated to the price level. The question gave six answers to
choose from (today, yesterday, 2, 3, and 4 days ago, and 5 or more days ago). Only 32 percent correctly recalled how
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Misunderstanding of monetary value of points – The fact that households respond signifi-

cantly to pricing events and not to moral suasion again shows that households are making economic

tradeoffs between consumption and points. However, if there is confusion over the dollar value of

points, then large changes in the points per kWh rate may not map completely to the economic

significance when households are making decisions. The monetary value of a point is communicated

consistently throughout the program through the rebate and point balance. The survey also tested

whether households understand the dollar value of points, by asking them the question: “How

much money is 100 points worth?” Given a multiple choice of four numeric answers and a fifth

“I don’t know” option, 70 percent of survey respondents gave correct answers.66 This suggests

misunderstanding about the economic value is not driving my price insensitivity finding.

Electricity consumption is a discrete choice – If electricity consumption depends on a set of

discrete choices, the shift in demand I find may simply be the shape of a step-wise demand curve.

This explanation is unlikely because demand represents a full hour of electricity consumption and

utilization provides a continuous margin to respond. For example, a household that decided to

turn off the lights and take a walk when an event was called might extend the walk for higher

prices. Further, the distribution of consumption within household for pre-enrollment periods does

not appear to be discrete.67

6.2 Scope Neglect and Price Insensitivity

The discussion above makes the case that households are responding to a price change, but

are responding much less to its size. This leads to the question: what information are households

using to make their decisions? I argue households are using simplified decision rules that I will

refer to as heuristics. There is precedent for such behavior in electricity consumption when facing

nonlinear tariffs (Ito, 2014), but my findings suggest that there are also information costs for linear

incentives.

The finding that households respond to price, but not the size can be explained by the phe-

many days had passed since their last event (compared with a random chance of about 17 percent). The question was
incentivized for correctness by offering $0.25 per correct answer. The incentive size was chosen to be small enough
as not to encourage individuals to look up their last event, but large enough for them to put some thought into the
response. This provides further evidence that people are observing the message content, but suggests attention to
the message content is likely to be imperfect.

6620 percent answered “I don’t know” and 10 percent answered incorrectly.
67In the Appendix I show example distributions that show the continuousness of consumption during a single hour

of the day during the pre-enrollment period conditional on temperature.
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nomena of scope neglect (Kahneman, 2003). The concept comes from evidence in psychology that

individuals make decisions based on simple accessible prototype attributes and often neglect the

scope of extensional attributes. 68 In this setting, we can think of the prototype attribute as a

price change occurring since households do not respond to the moral suasion intervention.69 This

categorical information is readily available for a quick decision about whether or not to reduce

consumption. However, contemplating the extensional attribute, the size of the price change, re-

quires additional cognitive effort.70 If the effort cost is sufficiently high, households may be making

decisions based on the prototype attribute of whether a price change occurred.

6.3 Automation Reduces Effort Costs

The significant effect of automation in response to a pricing event provides evidence that the

technology makes it easier for households to respond to price changes by reducing effort costs.

Two empirical findings support this interpretation. First, Figure 4c shows clearly that automation

causes a significant reduction in consumption during pricing events and no evidence of displacement

to other periods. During the event period, the effect is negative and large. During the periods prior

to and following the event, the effect of automation is not consistently positive or negative and

the estimates are statistically insignificant.71 Second, rebate compliers consume less than always-

takers, on average. If some component of effort costs are independent of quantity of electricity

consumed, the benefit of automation would be greater for households who consume more. This

implies lowering the technology’s cost should disproportionately induce smaller consumers to take-

up the automation. Table 5 reports evidence supporting this case since households in the lowest pre-

enrollment consumption quartile take-up the automation significantly more than larger consumers.

This is also suggestive evidence of rationality on the adoption margin.

To provide a ballpark on the costs of effort automation addresses, I calculate a back-of-the

envelope measure of the additional electricity expenditure savings. Households who adopted due

68For example, households have been documented in stated willingness to pay (SWTP) elicitations as revealing
preference to save an endangered species of bird, but having the same SWTP for 2,000 birds as they do for 200,000
(Kahneman, Ritov, and Schkade, 1999).

69I also investigated whether households were more sensitive to several candidate heuristics: the previous price
level, a Bayesian prior over past price levels, and whether the last price was higher or lower. The price insensitivity
persists for all candidates. I report the results of this exercise in the Appendix.

70Again, the effort need not map to observing the price, but rather making the intermediate decisions required to
make a marginal response that includes the extensional information.

71I also fail to reject the null that the sum of changes in all 8 hours following an event, the 8 hours before and 7
hours prior (excluding hour −2), or the sum of all adjacent hours is different from zero.
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to the rebate reduced an additional 0.64 kWh on average during pricing events.72 If the average

reward level is $0.96/kWh, this suggests a additional reward of about $0.61 per event.73 This

suggests additional savings on their electricity bill of about $0.10, leading to a total of $0.71 per

event. Over the course of 3 months, households received about 27 events, implying a total of about

$19 additionally saved.

The study period paid incentives that were not necessarily reflective of the rewards during

typical program operation so these numbers should be interpreted with caution when extending

them to future periods. If we assume real-time wholesale prices reasonably reflect the future reward

rates, a reasonable upper bound would be $0.30/kWh for the year which gives about $0.29 per event

from the program and bill savings. For a program with 100 events per year, the annual savings

are $29, giving two smart plugs a payback period of about 2 to 3 years with a discount rate of 6

percent. The payback period for a smart thermostat is between 9 to 11 years, depending on upfront

cost. Including the additional non-event savings makes these periods even shorter, suggesting the

subsidized price is particularly beneficial to the average household.

While the automation suggests household preferences are more price elastic, the fact that price

responsiveness does not substantively change suggests the automation does not address inattention.

The automation did not differentiate response based on the price change and thus can be interpreted

as default response that households could override via their smart phone. This raises questions over

whether the automated price response can be interpreted as perfectly reflective of preferences, but

the fact that households chose to adopt suggests there is a revealed preference for lower effort costs.

Given that the automation was marketed for this purpose, this seems a reasonable conclusion.

7 Conclusion

This paper documents how households respond to dynamic prices in residential electricity con-

sumption. I show evidence that households reduce consumption when price increases, but are

insensitive to extreme changes in the marginal price in a manner indicative of scope neglect. I

develop a model of limited attention to explain the findings which suggests 9 out of 10 households

are inattentive to the size of the price change during any given event and elasticities recovered from

models that do not account for attention frictions may give substantively different estimates. I find

72This number comes the automation IV with kWh as the dependent variable reported in the Appendix.
73I assume the control group proxies for the forecast in this calculation.
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the misoptimization costs of inattention are nominally small, but represent meaningful fractions of

the financial stakes. Lastly, I report novel evidence that automation can make households generally

more responsive to price changes by addressing substantial costs of effort, but does not necessarily

resolve inattention unless.

Given the increasing amount of consumer dynamic pricing and the developing landscape of

smart devices, this paper highlights several areas for continued research. If attention costs are

prevalent, how can dynamic pricing be designed to minimize misoptimization? If automation

is the primary strategy, how can reservation prices be elicited in a way that is consistent with

preferences? Carefully designed field experiments can contribute to these lines of inquiry and

inform future dynamic pricing strategies that take into account the attention costs consumers face

in their decisions.
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Table 1: Summary Statistics and Balance of Treatment Assignment

Control Treatment Groups p-value on t-test with H0:
Group Standard Encouraged µS = µC µE = µC µE = µS

(1) (2) (3) (4) (5) (6)
Energy & Weather Data

Daily Consumption (kWh) 16.5 16.0 16.0 0.23 0.21 0.94
(11.2) (10.8) (10.7)

Max Consumption (kWh) 5.0 4.9 4.8 0.14 0.09∗ 0.71
(2.7) (2.6) (2.7)

Hourly Outdoor Temp. (◦C) 16.7 16.7 16.6 0.94 0.38 0.23
(2.6) (2.7) (2.8)

Mean Daily CDHs 33.8 34.0 33.4 0.90 0.69 0.51
(30.6) (31.8) (31.7)

Mean Daily HDHs 113.8 113.7 115.5 0.98 0.27 0.15
(41.5) (41.8) (43.2)

Pre-Enrollment Obs. 8755.6 8720.5 8686.5 0.83 0.68 0.79
(4342.7) (4362.4) (4399.8)

Demographic Data

% HH Income < $25K 18.8 19.2 19.4 0.59 0.40 0.69
(14.2) (13.7) (13.8)

% Population Age 21-39 30.1 29.6 29.8 0.36 0.56 0.68
(11.8) (12.1) (12.1)

% Family HHs 66.3 66.1 66.7 0.85 0.66 0.42
(19.1) (19.0) (18.5)

% Population w/ Bachelors 22.8 22.5 21.8 0.68 0.14 0.18
(13.0) (13.0) (12.4)

Median Year Built 1973.5 1973.5 1973.0 0.92 0.54 0.50
(17.2) (16.9) (16.9)

% Renters 48.7 48.3 48.4 0.79 0.81 0.98
(26.7) (26.0) (26.3)

% HHs w/ 3+ bedrooms 53.0 52.4 52.8 0.72 0.88 0.78
(30.3) (29.7) (29.1)

% Detached Units 54.2 54.2 54.4 0.99 0.91 0.89
(33.9) (33.0) (32.2)

% Electric Heating 28.2 27.9 27.2 0.80 0.31 0.34
(17.3) (17.8) (17.0)

Median Monthly Rent ($) 1344.1 1361.8 1344.3 0.54 0.99 0.44
(518.3) (520.7) (519.5)

Households/Observations 1,035 2,271 2,225

Standard deviations in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports summary statistics by treatment assignment using household-level data. The energy, temperature,
and observation counts are calculated by averaging over hourly variation within a household using pre-enrollment
energy and weather data. The demographic statistics are calculated using a subset of the study participants for whom
we have census block group designations. The census variables are constructed from block-group-level data from the
2015 American Community Survey 5-year estimates. Columns (1)-(3) report the means for each treatment group
with standard deviations in parentheses. Columns (4)-(6) report p-values on the hypothesis tests for the difference in
means permuted between each treatment group. µG denote the parameters for treatment group G with C =Control,
S = Standard, and E = Encouraged.
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Table 2: Event Period Summary Statistics

Event Observations Events Proportion Mean Mean Consumption for:
Period Called Called Incentive Temperature Control Treated

($/kWh) (◦C/◦F) (kWh) (kWh)
(1) (2) (3) (4) (5) (6) (7)

11:00-12:00 3,848 2 0.89 0.97 22.2 (71.9) 0.81 0.68

12:00-13:00 8,035 3 0.90 0.94 25.4 (77.7) 0.93 0.76

13:00-14:00 23,905 12 0.90 0.96 27.8 (82.1) 1.07 0.86

14:00-15:00 21,611 12 0.89 0.96 25.7 (78.3) 1.11 0.90

15:00-16:00 12,980 7 0.88 0.97 28.9 (84.0) 1.30 1.03

16:00-17:00 24,626 18 0.89 0.96 25.6 (78.1) 1.06 0.87

17:00-18:00 18,761 11 0.90 0.96 24.5 (76.2) 1.16 0.96

18:00-19:00 11,310 9 0.89 0.96 19.4 (66.8) 0.84 0.75

19:00-20:00 15,399 11 0.89 0.97 21.8 (71.2) 1.26 1.03

20:00-21:00 9,618 8 0.89 0.95 18.7 (65.6) 1.09 1.00

21:00-22:00 1,433 1 0.89 0.94 11.2 (52.2) 0.73 0.70

All Events 151,526 94 0.89 0.96 24.6 (76.3) 1.09 0.90

This table reports summary statistics for the pricing events by hour-of-day called. Column (1) reports the number
household-hour observations, column (2) reports the total number of events called, column (3) reports the proportion
of treated households sent messages, column (4) shows the average $/kWh offered each event, and column (5) shows
the mean temperature. Column (6) and (7) shows the mean consumption in kWh for control and enrolled households,
respectively.
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Table 3: Effect of Pricing Events

OLS OLS IV
(1) (2) (3)

Panel A: Effect Estimates
Enrolled × Event (Dit ×Ht) −0.111∗∗∗

(0.010)

Called × Event (Cit ×Ht) −0.127∗∗∗ −0.124∗∗∗

(0.010) (0.011)

Enrolled × Non-event (Dit ×Nt) −0.004 −0.004 −0.004
(0.006) (0.006) (0.006)

Panel B: 1st Stage Estimates
Enrolled × Event (Dit ×Ht) 0.890∗∗∗

(0.005)

Households 5,531 5,531 5,531
Observations 59,574,289 59,574,289 59,574,289

Standard errors clustered by household and hour-of-sample in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel A reports estimates of the effect of enrollment during pricing event periods and non-event periods on hourly
energy consumption measured in log(kWh). Each column report coefficients estimated from separate regressions
and all include temperature controls, hour-of-sample fixed effects, households by hour-of-day fixed effects, and pre-
enrollment data. Standard errors are reported in parentheses and estimated using a covariance matrix two-way
clustered by household and hour-of-sample. Column (1) reports estimates for the DD specification in (7). Column
(2) reports estimates for the TOT for called households using OLS. Column (3) reports the 2SLS estimates where
called being called is instrumented with enrollment. Panel B reports the first stage coefficient on the instrument.
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Table 4: Effect of Price vs. Moral Suasion (No Price)

OLS OLS
(1) (2)

Panel A: Effect Estimates
Moral Suasion Only (δM ) −0.033∗

(0.018)
× Non-Automated −0.018

(0.18)

× Automated −0.191∗∗∗

(0.068)

Price Only (δP ) −0.077∗∗∗

(0.017)
× Non-Automated −0.060∗∗∗

(0.018)

× Automated −0.238∗∗∗

(0.068)

Moral Suasion + Price (δB) −0.094∗∗∗

(0.021)
× Non-Automated −0.066∗∗∗

(0.022)

× Automated −0.368∗∗∗

(0.064)

Panel B: Coefficient Tests Pooled Non-automated Automated
H0: δM = δP 0.002 0.006 0.362
H0: δM = δB 0.000 0.003 0.001
H0: δP = δB 0.236 0.745 0.005
H0: δM + δP = δB 0.461 0.544 0.471

Households 1,122 1,122
Observations 8,534,776 8,534,776

Standard errors clustered by household and hour-of-sample in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel A reports estimates of the casual effect of message content from the moral suasion treatments on hourly
energy consumption measured in log(kWh). Each column report coefficients estimated from separate regressions
and all include temperature controls, hour-of-sample fixed effects, households by hour-of-day fixed effects, and pre-
enrollment data. Standard errors are reported in parentheses and estimated using a covariance matrix two-way
clustered by household and hour-of-sample. Column (1) reports the model estimated using the DD specification in
(11). Column (2) reports estimates for the same model interacting each message type indicator with automation
status. Estimates comparing within automation type can be interpreted causally. Panel B reports p-values on
tests of whether treatments are equivalent and additive. δM representing the parameter for moral suasion only, δP
representing the parameter for price only, and δB representing the parameter for both interventions together. Column
(1) reports the p-values for the coefficients that pool automated and non-automated. Column (2) breaks out the
p-values by automated and non-automated.
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Table 5: Effect of Encouragement on Automation Take-up

Standard (S) Encouraged (E) Difference (E−S)
(1) (2) (3)

Panel A: Automation Type and Counts

Households 2,271 2,225 -

Households with at least one connected device 114 204 90

Total connected devices 242 429 187

Total connected thermostats (subsidized) 126 193 67

Total connected plugs (subsidized) 108 222 114

Total connected home systems (not subsidized) 0 9 9

Total connected electric vehicles (not subsidized) 8 5 -3

Panel B: Automation Take-up

Households with any automation 0.049 0.089 0.040∗∗∗

(0.008)

Take-up by consumption level:
1st quartile (0-0.34kWh) 0.022 0.084 0.063∗∗∗

(0.013)
2nd quartile (0.34-0.55kWh) 0.057 0.092 0.036∗∗

(0.015)
3rd quartile (0.55-0.85kWh) 0.059 0.094 0.034∗∗

(0.02)
4th quartile (0.85-6kWh) 0.057 0.085 0.028∗

(0.02)

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel A reports counts for the home devices connected to the company’s automation service in the Standard enrolled
and Encouraged groups. Panel B reports the proportion of households who took up automation and the difference
between the two treatment groups. It also reports the proportion take-up by pre-enrollment consumption quartile.
The differences are calculated by regressing an indicator for any automation on the encouragement indicator. Standard
errors are reported in parentheses and observations are assumed to be independent.
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Table 6: Effect of Automation

OLS OLS IV
(1) (2) (3)

Panel A: Effect Estimates
Adopted × Event (Ait ×Ht) −0.213∗∗∗ −0.829∗∗∗

(0.029) (0.167)

Adopted × Non-Event (Ait ×Nt) 0.014 −0.181∗

(0.017) (0.110)

Encouraged × Event (Zit ×Ht) −0.062∗∗∗

(0.011)

Encouraged × Non-Event (Zit ×Nt) −0.013∗

(0.008)

Panel B: Selected First Stage Estimates
Encouraged × Event (Zit ×Ht) 0.075∗∗∗

(0.009)

Encouraged × Non-Event (Zit ×Nt) 0.074∗∗∗

(0.007)

Households 4,496 4,496 4,496
Observations 48,254,453 48,254,453 48,254,453

Standard errors clustered by household and hour-of-sample in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel A reports estimates of the effect of automation on log energy consumption for the subsample of enrolled
households (excluding controls). Each column report coefficients estimated from separate regressions and all include
temperature controls, hour-of-sample fixed effects, households by hour-of-day fixed effects, and pre-enrollment data.
Standard errors are reported in parentheses and estimated using a covariance matrix two-way clustered by household
and hour-of-sample. All regressions include household by hour-of-day and hour-of-sample fixed effects and temper-
ature controls. Column (1) reports the OLS estimate for the effect of automation on consumption. Column (2)
reports the reduced form specification regressing consumption on the encouragement indicator. Columns (3) reports
the 2SLS estimates instrumenting the automation indicator with the encouragement. Panel B reports results of the
first-stage regressions for the coefficient on the instrument corresponding to the endogenous variable.
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Table 7: Elasticity and Attention Estimates

HP = E[MPit] HP = MPlow HP = MPhigh

($1.12/kWh) ($0.21/kWh) ($3.16/kWh)

(1) (2) (3)

Panel A: Demand Parameters

η (elasticity) −0.074∗∗∗ −0.483∗∗∗ −0.051∗∗∗

(0.005) (0.036) (0.004)

σ (fraction attentive) 0.101∗∗∗ 0.015∗∗∗ 0.147∗∗∗

(0.036) (0.006) (0.049)

Panel B: Attention Costs per Event

Average Attention Cost $0.03 $0.44 $0.06

Average Electricity Cost $0.16 $0.16 $0.16

Average Reward $0.15 $0.15 $0.15

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel A estimates of the demand parameters obtained from the coefficients estimated using the model in (13). The
estimate of γ the moral suasion component of utility is the same for all three specifications and equal to 0.006
(0.021). Standard errors are reported in parenthesis and are calculated using a covariance matrix that is clustered
by household and hour-of-sample along with the delta method. Panel B reports estimates on the expected financial
outcomes of a pricing event during the price treatments.
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Figure 1: Model Intuition
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The figure plots the effect of a price change for different fractions of attentive households for the model developed in
Section 2. The vertical axis plots the dynamic price and the horizontal axis aggregate consumption. The two types of
households are indicated by the solid black and dashed gray lines. The solid black line shows demand if all households
were attentive (σ = 1), the gray dashed line shows demand if all households were inattentive (σ = 0), and the black
dashed line shows demand for a hypothetical mixture with σ ∈ (0, 1). Consumption at the non-dynamic price p0 is
denoted y0. A hypothetical price change p is indicated and shows that attentive households consume yp. Inattentive
households consume according to the heuristic price, pb, at yb. For the mixture case, the observed aggregate demand
for a price change p is not labeled, but falls in the range [yp, yb]. In this case, the consumption change from the price
change is shown by the difference ∆Y and the shaded gray area indicates the attention costs of misoptimizing using
the heuristic.
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Figure 2: Enrollment and Assignment by ZIP Code

The map plots the ZIP codes with households participating in the study. Regions are shaded green have both Enrolled
(assigned to Standard or Encouraged group) and Control households. Regions with only Enrolled are shaded blue
and regions with only Control are shaded orange.
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Figure 3: Example of SMS and Email Event Messaging

The figure shows messaging for two example events that occurred during the experiment. Both messages convey the
time of the event, the incentive level, and the company’s forecast. The top pane shows messaging via SMS and the
bottom pane shows messaging via email for a different event. The email contains more information on suggested
strategies for reducing consumption. The yellow boxes cover the company’s proprietary term for events which I have
redacted for the purpose of confidentiality.
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Figure 4: Pricing Hour Event Studies

-.1

-.05

0

.05

Q
ua

nt
ity

 C
ha

ng
e 

in
 lo

g(
kW

h)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Hour Relative to Event

All Enrolled Households

Households contacted 
during hour before event Pricing event period

(a) Enrolled vs. Control Households
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(b) Automated vs. Non-Automated Households
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(c) Additional Effect of Automation for Enrolled Households

Note the vertical axis scale varies between the three figures. Panel (a) plots event-study point estimates of the ITT
effect that compares the consumption of enrolled households to control households in the hours leading up to and
following a pricing event (shaded dark gray). Panel (b) plots the non-causal decomposition of the ITT estimates in
(a) by whether households automated their decisions. Panel (c) plots event study estimates of the LATE of adopting
automation on consumption during pricing periods. Households are contacted during the hour prior to the event
(shaded light gray). I use the period two hours prior as the reference category so the vertical axis is the quantity
change relative to period −2 in log points. For (b) the reference category is period −2 for non-automated households.
Vertical bars indicate 95 percent confidence intervals clustered by household and hour-of-sample.
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Figure 5: Effect of Marginal Price
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(a) Effect of Price Change in log(kWh)
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(b) Automated vs. Non-Automated in log(kWh)

The figure plots the point estimates for the change in the conditional mean of consumption as a result of changes in the
effective price of electricity in dollars per kWh. Note the difference in the scales of the axes between the left and right
panels. The left panel shows the effect with log consumption on the vertical axis and the price change on the horizontal
axis. The right panel shows the treatment effect heterogeneity by households with and without automation. Vertical
bars in both panels show 95 percent confidence intervals estimated using standard errors clustered by household and
by hour-of-sample. The dashed line plots the linear parametric estimation of the response as a function of the price
change. The figure also reports the estimates for the slope and intercept of the parametric estimation with two-way
clustered standard errors in parentheses.
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Figure 6: Persistence of Price Response
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(a) Event Price Response Effect
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(b) Automated vs. Non-automated Households (non-causal)

This figure shows how price treatment effects change as a function of time in the program. The estimates are broken
out by 30 day periods during the 90 days for which price treatments occurred. Triangles represent days 0-30, squares
days 31-60, and diamonds days 61-90. Circles represent the estimate for the full 90 days as reference. Vertical
bars show 95 percent confidence intervals constructed from standard errors two-way clustered by household and
hour-of-sample. Each panel represents estimates from a separate regression. Panel (a) plots causal estimates of the
event price response and non-event enrollment response for all enrolled households regardless of automation choice.
Panel (b) plots the same parameters non-causally decomposed to show differences between non-automated (black)
and automated (blue) households. Estimates labeled “Event Intercept” and “Event Slope” represent the parametric
estimation of the price response of consumption for called households.
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Figure 7: Demand Estimation
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(a) Demand Elasticity and Attention Estimates
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(b) Attention Cost Per Event

This figure shows how the estimates of the elasticity (η) and fraction attentive (σ) vary with assumptions about
the heuristic price plotted in $/kWh on the horizontal axis. The solid black line shows the estimates of the own-
price demand elasticity plotted against the left vertical axis. The dashed black lines show the 95 percent confidence
intervals for the elasticity parameter. The hashed line shows the estimates of the salience parameter which is the
fraction of attentive households against the right vertical axis. The solid white line shows the model estimated using
the standard double log formulation with the gray bars indicating the 95 percent confidence intervals.
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