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an impossibility condition showing when Pareto improvements are not possible. The
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ciency gains to the degree of predictability between initial burdens and variables used
to condition transfers. The main empirical application is to a gasoline tax to correct
carbon emissions, but I present related results for other sin taxes. Results indicate that
it is infeasible to create a Pareto improvement from the taxation of these goods, and
moreover that plausible policies are likely to leave a large fraction of households as net
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1 Introduction

Why do efficient policies so often fail to gain political traction? Many policies are widely
viewed as desirable by economists but unpopular with the public and unsuccessful in the
policy process. Examples range from the pricing of pollution to repeal of the mortgage
interest tax deduction to free trade.

Several factors may lead to unpopularity of such policies, one of which regards the dis-
tribution of burdens they induce. Distributional concerns come in two varieties. In one, a
policy is disliked because it is regressive and disproportionately affects low-income house-
holds. In the other, a policy imposes a substantial burden on a particular set of stakeholders
who mobilize to block the policy.

In either case, economic theory provides a potential reply, which is that any such losers
can be compensated. Any efficiency-enhancing policy, by definition, creates enough new
surplus to compensate all losers. That is, any Kaldor-Hicks efficiency gain can be made into
a Pareto improvement, if the right transfers are made in the background. A regressive tax
could be combined with tax reform so as to preserve the desired income distribution, or any
firms facing lost profits can be made whole.

Economists are well aware that, in practice, these transfers are often not made for various
reasons. The point of this paper is to make clear that it is often not even possible to design
transfers that achieve a Pareto improvement, even if the political will and administrative
capacity exists. The reason is that transfer schemes are inherently constrained. They must
be based on a set of observable characteristics, which will only be imperfectly correlated with
burdens. One reason for this is asymmetric information, but constraints may also arise from
demands for parsimony, administrative feasibility, or other factors.

In this paper, I develop a method for determining whether Pareto improvements are
impossible that can be applied to a range of contexts. I derive a theoretical model that
yields an impossibility result that indicates conditions under which a Pareto improvement
is not possible because of imperfections in the targeting of transfers. This condition can
be taken directly to data. Empirically, I consider the case of externality-correcting taxes in
the US, with a focus on motor fuels, when transfers are based on household demographics,
income and geography. I find that a Pareto improvement is impossible, and that a substantial
fraction of households will inevitably be net losers from any externality-correcting policies,
even accounting for revenue recycling. In brief, Pigouvian taxes create losers.

The basic idea is best illustrated via example. Consider a tax that increases efficiency
by correcting an unpriced externality in the tradition of Pigou (1932). This policy creates a

heterogeneous initial distribution of burdens across individuals depending on their taste for



the taxed good. The planner has enough revenue collected from the tax in order to compen-
sate everyone for their loss through lump-sum transfers.! But, compensating everyone will
require giving back the transfers in a targeted way. Targeting directly on consumption of
the good itself will undo the desired corrective incentives, so the transfer must be based on
factors like demographics, geography or income. If the transfer function is not rich enough
to precisely target transfers, then the planner will run out of available funds before fully
compensating everyone. In this sense, the failure to create a Pareto improvement is due to
a prediction problem; lump-sum transfers can only undo the distribution of burdens if they
can be targeted precisely.

Summary of the paper: The paper first describes a theoretical framework for analyzing
efficiency-enhancing policy changes and then derives an impossibility condition. I show that
a Pareto improvement is impossible unless the variables (which I call covariates) that are used
to determine the transfer scheme can predict initial policy burdens with sufficient precision.
The degree of precision required is a simple function of the size of the average surplus gain
created from the efficiency-enhancing action. I first derive an impossibility condition when
the covariates are assumed to be exogenous. I then show that the condition holds with only
a slight modification when the covariates are endogenous so that the transfer scheme can
create distortions.

The impossibility condition can be directly tested with data, with the exact data re-
quirements dependent on the policy in question. For a marginal increase in an externality-
correcting tax, the initial burdens are measured directly by baseline consumption of the
good, and the average welfare gain depends on an estimate of marginal external damages
and a demand derivative. Thus, to check the condition for an externality-correcting tax, one
needs (1) an estimate of the distribution of baseline consumption of the good, (2) knowledge
of the correlation between baseline consumption and covariates that can be used in a transfer
scheme, (3) an estimate of the own-price derivative, and (4) an estimate of the size of the
externality:.

To take the theory to data, I use the Consumer Expenditure Survey (CEX) to estimate
the distribution of consumption of externality-creating goods and the correlation between
consumption and covariates that could be used in transfer schemes. I combine this with
estimates from the literature of the size of externalities and price derivatives. 1 initially
focus on a gasoline tax used to correct carbon-related externalities. There is wide dispersion

in consumption of gasoline across households, and only a modest fraction of this variation

!To be precise, compensation may require taxing those who gained from the externality reduction, not
just recycling of the revenue. For illustration in this example, I assume the case where revenue is sufficient
to cover the losses, but the actual model is more general.



is correlated with variables that are likely to influence a transfer scheme, namely household
structure, geographic location and income. Only about one-third of intrahousehold variation
in annual gasoline expenditures is predictable by those variables, based on OLS and lasso
models. Using conventional estimates of the externality gain achieved by a carbon tax, I
conclude that the transfer scheme is nowhere close to precise enough to create a Pareto
improvement.

I then show that the degree of predictability is no better for other externality-causing
goods measured in the CEX, namely natural gas, electricity, alcohol and tobacco. I address
measurement, error concerns with the use of two auxiliary data sets. 1 interpret this as
evidence that it will be infeasible to create a Pareto improvement from corrective taxes on
these goods, even when a planner uses an implausible amount of information to create an
unrealistically flexible lump-sum transfer scheme. One potential exception to this conclusion
is if past consumption can be used as a predictor of future consumption. I explore this
possibility with additional panel data on electricity consumption in California.

Contributions and relationship to the literature: A tradition in economics going
back at least to Musgrave (1959) suggests that efficiency and equity concerns can often be
conceptually divided. Given tools that can tilt the balance between rich and poor, like a
progressive income tax, a policymaker should ensure market efficiency, and then simply dial
up (or down) the levers that determine the income distribution to achieve the desired resource
allocation in society. This is an extremely useful modeling device, and it is favored by many
who study second-best tax design (e.g., Kaplow 2004). A literature in public finance explores
the separability of efficiency-enhancing policies, including Pigouvian taxes, in second-best
constrained environments (e.g., Gauthier and Laroque 2009; Kaplow 2012). This theoretical
literature has noted that preference homogeneity is a critical assumption in their models, but
little empirical work follows up by asking how these ideas can be implemented when there
is some heterogeneity. Closely related is a seminal result of optimal tax theory that the
distributional implications of a commodity tax are irrelevant in the presence of a nonlinear
income tax (Atkinson and Stiglitz 1976). This likewise requires preference homogeneity
(Saez 2002). This paper comments on these theoretical traditions by (1) deriving theoretical
conditions that demonstrate when Pareto improvements are impossible in the presence of
some preference heterogeneity, (2) empirically testing the degree to which transfers can be
adequately targeted so as to undo the initial distributional burdens of a class of policies,
and (3) demonstrating the relationship between heterogeneity and empirical prediction in
achieving separation.

This paper bears an apparent relationship to several strains of literature in the theory of

taxation, but it ultimately deals with different concerns. First, in being concerned with the



correlation of tax burdens with covariates, the paper is related to the literature on tagging
and targeting that follows Akerlof (1978), which considers how observable characteristics can
be used to reduce distortionary tax incentives. Second, in being driven by a root information
problem, this paper bears some relation to the literature begun by Mirrlees (1971), in which,
if the planner could directly observe everyone’s ability level, the optimal tax system would be
nondistortionary. In my setting, if the planner could directly observe preference heterogene-
ity (and all other primitives that determine consumption of the externality-causing good),
then Pareto improvements will be straightforward. Third, in considering optimal tax and
transfer schemes to correct externalities, this paper is related to a literature—starting with
the seminal work of Sandmo (1975) and with key contributions including Bovenberg and van
der Ploeg (1994); Cremer, Gahvari, and Ladoux (1998, 2003); Jacobs and de Mooij (2015)—
that derives second-best taxes on externality-creating commodities in order to maximize
social welfare.

All three of these literatures are focused on how to derive second-best policies that min-
imize distortions caused by tax and transfer systems. My objective is different, at least
proximately. My goal is to characterize the ways that imperfect information, which results
in imperfect targeting/tagging, limits the planner’s control over the final distribution of out-
comes induced by an efficiency-enhancing reform. My empirical exercise is closer to the
literature on targeting on observables prominent in the development literature, where the
goal is to use readily measured proxies for wealth to target social programs. (See Coady,
Grosh, and Hoddinott (2004) for a review.) The question at hand in designing the lump-sum
transfer schemes is not maximization of social welfare (though that is the deeper reason why
efficiency-enhancing policies are undertaken to begin with), but rather how to compensate
the losers from the efficient scheme, with an eye on political economy, as explained next.

Should we be concerned about creating a Pareto improvement, or is it a red herring?
Pareto efficiency vis-a-vis the status quo is quite distinct from social welfare maximization.
If one begins with the objective of maximizing social welfare, there is no reason to prioritize
the status quo resource allocation in society, so fussing over Pareto improvements is largely
a distraction. The motivation for seeking Pareto improvements in this paper is instead a
practical one. The political process tends to favor the status quo over changes, and as such,
effecting change requires satisfying a great many people. That is, a utilitarian planner would
gladly accept a policy that benefits most people, but causes modest harm to the remainder.
But, in practical terms, even small numbers of losers can create substantial political obstacles,
consistent with the logic of collective action (Olson 1965, 1982). Empirically, this paper
suggests that even implausibly well-designed schemes will leave large fractions of households

as net losers. Economists should not assume that it is straightforward to compensate all



losers from a reform, even where political will and administrative capacity exists. They
should instead view net losers as an inevitable by-product of efficiency-enhancing reform
that require consideration in the policy-making process.

In terms of the empirical application, this paper contributes to an existing literature on
the distributional impacts of gasoline taxes (e.g., Poterba 1991; West 2004) and carbon taxes
(e.g., Hassett, Mathur, and Metcalf 2009; Grainger and Kolstad 2010; Dinan 2012; Mathur
and Morris 2014; Metcalf 2009; Burtraw, Sweeney, and Walls 2008; Williams, Gordon, Bur-
traw, Carbone, and Morgenstern 2015). That work has been overwhelmingly focused on
measuring average regressivity (or progressivity) of taxes, whereas this paper is sharply fo-
cused on heterogeneity in policy burdens conditional on income and the degree to which that
heterogeneity can be controlled via a transfer scheme.

A smaller recent literature does quantify heterogeneity in policy burdens conditional on
income. Rausch, Metcalf, and Reilly (2011) use the Consumer Expenditure Survey (CEX)
to characterize the overall progressivity of carbon pricing, accounting for both consumption
and income channels. Pizer and Sexton (2019) analyze the CEX and similar data from the
United Kingdom and Mexico to show box plots that depict the range of energy consump-
tion within income deciles. Fischer and Pizer (2019) explore how attention to horizontal
equity influences a comparison between energy-pricing schemes and a performance standard.
Cronin, Fullerton, and Sexton (2019) link the CEX to income tax data to explore a variety
of revenue recycling mechanisms and quantify the variation in burdens that remains, taking
into account fine-grained differences in income sources. Davis and Knittel (2019) show the
heterogeneity in policy impacts of fuel-economy standards across different households in the
same income decile in what is otherwise a study of average progressivity.>

These papers provide several initial results that are important for the development of a
full analysis of heterogeneity in the incidence of energy policies. All demonstrate that there is
significant heterogeneity in baseline energy consumption within households that have similar
income, which are consistent with the descriptive facts I document here. Only Cronin,
Fullerton, and Sexton (2019) link their study of heterogeneity to revenue redistribution
schemes. They model several realistic schemes for revenue redistribution using detailed
administrative tax records to show how the distribution of burdens depends on the use of
revenue. | complement their approach first by modeling alternative transfer schemes that are
explicitly designed to reduce heterogeneity in burdens, and second by providing a theoretical

framework that demonstrates under what conditions revenue redistribution cannot support

2Some of this literature invokes the concept of horizontal equity. This concept has come under criticism
as a normative criterion (Kaplow 1989). Here, I am concerned with horizontal equity, but not for normative
reasons. This paper’s argument is that horizontal equity matters for preventing the creation of losers and
thereby improving political acceptability.



a Pareto improvement.

Many prior studies have discussed compensation schemes from externality-correcting
taxes, and careful writers do sometimes note that schemes that achieve average redistribu-
tional goals will nevertheless create some losers (e.g., Metcalf 2018, p.98). Cronin, Fullerton,
and Sexton (2019) and Fischer and Pizer (2019) both conjecture that, when there is a great
deal of heterogeneity in baseline energy usage, it will be impossible to design transfer schemes
to make everyone better off. My model offers a way to confirm those conjectures, and to
show how much heterogeneity is requied to rule out true Pareto transfers.® I turn now to a

description of that model.

2 Theory: A model of Pareto transfers

Costs, benefits and revenue: Consider some policy action that will create heterogeneous
costs, produce efficiency gains, and raise some revenue that will be redistributed back to
agents. Heterogeneous agents are indexed 1 =1, ..., V.

Initial costs for each agent are denoted ¢; measured in dollars (not utils), with > . ¢& =
C > 0 being the aggregate initial cost of the policy. Initial costs ¢; can be positive, negative
or zero for an individual, but aggregate cost is assumed to be positive. These costs are initial
in the sense of being considered before transfers are allocated, but they take into account
behavioral responses the agent takes in response to policy. Denote the cost of the policy
before behavioral responses as ¢;, and define the net welfare gain from behavioral response
as b; = ¢; — &. The average of b; is denoted b = (>, bi)/N.

For example, if the policy action were a pollution tax, ¢; is the increase in expenditure
on the good given the original level of consumption, and ¢; is the compensating variation for
agent ¢ associated with the price change resulting from the tax after taking their consumption
response into account. By the envelope condition, these would be approximately equal
(b; = 0) for a small tax.

The policy action yields efficiency gains g;, with ). ¢; = G > 0, measured in dollars. For
the example of a pollution tax, g; are the direct health or other welfare benefits of pollution
reduction. Gains are assumed to be weakly positive (¢g; > 0 Vi). This assumption is not

intended to be economically substantive, but it is used in the algebraic proofs below and

3 Another related strand of literature focuses on compensating producers who are harmed by environmental
regulation (Bovenberg and Goulder 2001; Bovenberg, Goulder, and Gurney 2005; Goulder, Hafstead, and
Dworsky 2010). Most of that literature focuses on average impacts by sector or consumer group and does
not delve into the heterogeneity that is the core of this study, though Burtraw and Palmer (2008) do consider
individual power plants in an examination of the impacts on the electricity sector.



thus is an important restriction. Denote the average efficiency gain as g = G/N.*

The policy raises some revenue, denoted R > 0. Revenue can be redistributed through a
transfer scheme based on a vector of covariates, X;. The transfer scheme is denoted T'(X;).
The budget constraint requires that total transfers given out to agents is no greater than
revenue » . T'(X;) < R. Note that T(X;) can take on negative values—that is, the transfer
can be a tax for some individuals. The average funding gap is the per person difference
between revenue raised and cost, denoted A = (C' — R)/N. This gap can be positive,
negative or zero. A positive gap implies that the policy imposes costs that exceed revenue,
as would be the case for a pollution tax.

Here, I assume that X, are exogenous characteristics, so the transfer function does not
determine X;. I call this case the “prediction interpretation.” I relax this assumption in
section 2.2, which I refer to as the “mechanism design interpretation.”

There are two different interpretations about how the transfer function determines be-
havior that are both consistent with the algebra of the proof. One interpretation is that the
policy and transfer function 7'(-) are implemented together and we can interpret G and ¢; as
being the end result of behaviors resulting from the transfer. For a pollution tax, this means
that G' and ¢; take into account income effects of redistributing revenue.

Alternatively, one might assume that the transfer received by ¢ does not determine G or
¢;, and think of the effects of policy as being separable from the design of the transfer. This
is more limiting, but may be more intuitive. For example, in the case of a pollution tax,
this is equivalent to assuming first that income effects on pollution generation are uniform
across agents, so that how the revenue is redistributed does not change the level of pollution,
and second that the compensating variation associated with a price change does not depend
locally on income within the range of variation created by the transfer.

A Pareto tmprovement: An efficiency-enhancing policy is defined as one in which
total benefits plus revenue exceed total costs: R+ G > (. This accords with the standard
Kaldor-Hicks definition. A Pareto improvement occurs when the analogous condition holds
at the individual level for each individual, not just on average. Thus, including the budget

constraint, a Pareto improvement occurs when:

&G-T(X;)<g: Vi and Y T(X;) <R

4Some benefits of a policy may go to agents that are outside the jurisdiction of the policymaker (e.g.,
future generations). Let nG = G represent the full benefit, where 7 is the fraction of all benefits that accrue
to agents ¢ = 1,..., N. The model implicitly assumes that all relevant agents that bear initial costs are
included in the set 1,..., N, but that some benefits may accrue to others. This can be relaxed by assuming
7 =1 and all those who benefit are included in the set ¢ = 1, ..., N, allowing some of them to have ¢; = 0.



To achieve a Pareto improvement, one must design a transfer scheme that delivers bigger
transfers to those with bigger initial burdens. Intuitively, this requires transfers be targeted

to offset burdens. Accordingly, I refer to ¢; — T'(X;) as the targeting error.

2.1 Impossibility condition (prediction interpretation)

The main result of the paper is a condition establishing when a Pareto improvement from
an efficiency-enhancing policy action is impossible. Roughly, the condition states that, if
targeting errors are large relative to efficiency gains, then it will be impossible to achieve a

Pareto improvement.

Condition 1. Let ¢; be the initial costs from a policy, N be the number of agents, X; be a
vector of exogenous covariates observed by the planner, T(X;) be a transfer scheme, A the
average funding gap, and g be the average efficiency gain. If the average absolute targeting

error exceeds twice the average efficiency gain minus the average funding gap; i.e.,
1 N 3 _
NZ & = T(Xq)| > 29 — A,

then there is no distribution of g with g; > 0 Vi for which the policy and transfers create a

Pareto tmprovement.

Condition 1 illustrates the relationship between the size of efficiency gains from the policy
action and the ability of a policy to precisely target transfers based on initial costs. The
left-hand size of the inequality is the average size of targeting errors. If these are “too large,”
a Pareto improvement will be impossible. How large is “too large” depends on the size of the
efficiency gains, g, as well as the size of the budget relative to the total amount of burdens
created, which is summarized in A. As efficiency gains minus the budget gap grow smaller,
the “margin of error” for targeting errors shrinks. If this margin of error gets too small, a
Pareto improvement will be impossible. The proof of condition 1 is in the appendix.

Put another way, an efficiency-enhancing policy, by definition, creates some surplus. If
transfers could be targeted perfectly, then a Pareto improvement would always be possi-
ble. With imperfect targeting, some agents will be overcompensated and others will be
undercompensated. The condition determines how much misallocation can be tolerated and
still have a possibility of creating a Pareto improvement. The setup is fully agnostic about
the distribution of g. The derivation asks when there is enough surplus to compensate all
losers, if by happy coincidence gains are distributed perfectly so as to offset losses net of the

transfers. The impossibility condition shows when there is no distribution of the gains that



could generate a Pareto improvement. The derivation with remains agnostic about the dis-
tribution of gains but assumes an ability to measure private costs is motivated by empirical
application, as I explain below.

Condition 1 starts with data on individual costs net of behavioral responses, ¢;. Data
may be more readily available on ¢;, the costs before behavioral responses are taken into
account. Condition 2 restates the same condition but using ¢; by introducing one additional

term, b, to the right-hand side of the inequality.

Condition 2. Let ¢; be the initial costs from a policy assuming no behavioral responses, N be
the number of agents, X; be a vector of exogenous covariates observed by the planner, T(X;)
be a transfer scheme, A the average funding gap, G be the average efficiency gain, and b be
the average private welfare gain from behavioral responses. If the average absolute targeting
error exceeds twice the sum of the average efficiency gain and behavioral adjustment gain

minus the average funding gap; i.e.,
1 - _
N Z |ci = T(X5)] > 2(g +b) — A,

then there is no distribution of g with g; > 0 Vi for which the policy and transfers create a

Pareto improvement.

Taking the condition to data: This condition was constructed with the aim of facili-
tating empirical application. To see how to apply the condition to data, consider the case of
a gasoline tax targeting greenhouse gas emissions, which I develop further below. For a small
change in the gas tax, the initial costs ¢; for agents are well approximated by the quantity
of gasoline consumed (via Roy’s identity), which is readily measured in survey data. The
same survey data contains covariates, like income, that might be used to design transfers,
so the data can be used to estimate targeting errors. The impossibility condition is written
for a generic transfer function T'(-). To take this to data, we simply search for a transfer
function that minimizes the average absolute targeting error, understanding that this is the
best case scenario. Thus, estimating the minimum size of the left-hand side of the inequality
in condition 1 comes from predicting ¢; with X;.

Given an elasticity of demand for gasoline and an estimate of the marginal externality, the
average welfare gains and revenue gap can be estimated. Information about the distribution
of efficiency gains (who exactly benefits from reduced emissions) is much harder to measure,
but the condition is constructed so that this is not necessary. The condition shows when a
Pareto improvement is impossible, regardless of how the efficiency gains are spread across

agents.
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Information about many other efficiency enhancing policy actions are likely to have the
same feature, where some information about the joint distribution of burdens and covariates
is available, along with a credible way of calculating the average efficiency gains, but not
necessarily information about the joint distribution of those efficiency gains and initial costs.

Given a different set of information, alternative conditions could be constructed.

2.2 Impossibility condition (mechanism design interpretation)

A key assumption of the model above is that the covariates in X are assumed to be exogenous.
I call this the “prediction interpretation” because, as a result of that assumption, the main
concern in the empirical application turns out to be straightforward prediction.

An alternative is to model the covariates X as endogenous. Then, the choice of the
transfer function 7'(-) will create distortions as agents alter their choices of X in order to
optimize the transfer they receive. I call this the “mechanism design interpretation” because
the agent is assumed to have information about ¢; that is hidden to the planner, who sees
only the covariates, which the agent can manipulate.

Specifically, define X; as the initial vector of covariates of an agent that would result after
the policy action was implemented, assuming an equal lump-sum transfer to all agents. Thus,
X; are the covariates (e.g., income) that the agent privately prefers if there is no incentive
associated with a transfer function. The agent can, however, deviate to some other vector
of covariates X/ at a cost, where the cost is assumed to be rising in the difference between
X; and X!. Specifically, I assume that there is some cost function (in dollars) measured by
(X} — Xi), with 7(0) = 0, 7} > 0,7; > 0 and 7, Vj # k where j and k index the variables
in the vector. This is a convenient set of assumptions that says the cost of changing each
covariate is symmetric, increasing and convex, and that changing one characteristic has no
impact on the cost of changing others.

Then, for any given transfer function 7(+), agent ¢ will maximize welfare W;:

II;%XVVZ' =—¢+g+T(X}) — 7(|X; — X;)). (1)
Denote the vector of covariates that solves this problem for agent 7 as Xi. Note that Xi will
depend on the particular transfer function 7. As in the “prediction interpretation” case, I
maintain the assumption that G and ¢; are independent of how revenue is recycled (or inter-
pret G and ¢; as resulting from a given 7'(+)), but here add the same simplifying assumption
that those variables are also independent of X (or they are interpreted as resulting from a

given T'(+)). For the case of a pollution tax, this is equivalent to saying that distortions to
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income, for example, that result from the incentives created by the transfer function do not
change the overall level of pollution or the compensating variation associated with the tax.

Denote the welfare cost 7 that results for agent i from transfer scheme T'(-) as 77, and
let the mean of this be 77 = > 7/ /N.

Condition 3. Let ¢; be the initial costs from a policy, N be the number of agents, X; be a
vector of endogenous covariates observed by the planner consistent with a transfer scheme
T(f(i), T(f{l) be a transfer scheme, A\ the average funding gap, 7° be the average distortion
from responses to the transfer function, and g be the average efficiency gain. If the average
absolute targeting error exceeds twice the average efficiency gain minus the average funding
gap; i.e.,

%Z@—T(Xi” >2g—A -7,

then there is no distribution of g with g; > 0 Vi for which the policy and transfers create a

Pareto improvement.

The bottom line of this mechanism design interpretation is that the impossibility condi-
tion is the same, but, all else equal, the challenge of creating a Pareto improvement is harder
because the transfer scheme will create some distortion. This distortion can be incorporated
into the impossibility condition by simply subtracting off the average distortion from the
surplus.

Taking the condition to data: The mechanism design interpretation may pose an
additional challenges in taking the condition to data. In some cases, a researcher may observe
X;, rather than X, (e.g., one sees covariates before a pollution tax and transfer system is
implemented). In that case, it will not be possible to calculate the average absolute error.
If, however, we believe (are willing to assume) that the observable covariates are no worse
at predicting initial burdens than the adjusted covariates, then we can still proceed with the
same empirical tests of the impossibility condition with data. This is idea is formalized in

assumption 1:

Assumption 1. A prediction of & on X; does not have a lower absolute average error than

a prediction of ¢; on X,.

The possibility of endogenous covariates also elevates the potential importance of inter-
preting the relationship between the transfer function 7'(-) and the welfare gains induced by
the policy. One may wish to contemplate the use of covariates that are better predictors
of initial burdens but are directly related to the externality (efficiency gain). For example,

one might wonder about conditioning transfers for a gas tax based on vehicle ownership, or

12



even mileage or fuel economy. Including these variables in the vector X would be expected
to improve prediction, but they erode the incentives created by a pollution tax by effectively
negating the incentives to reduce emissions via mechanisms that are compensated in the
transfer function.

Conceptually, this is accounted for in the model already if we interpret G as being the
efficiency gain that results from a combination of a policy and a particular transfer scheme.
Intuitively, including these kinds of covariates would shrink prediction errors but it would
also reduce the size of the welfare gains. Thus, the challenge for using the impossibility
condition when such variables are included is not in the derivation of the condition, but in
the calculation of the G that would be consistent with a given T'(-). For the case of the
gasoline tax, I show that the impossibility condition holds even after including a set of such

regressors without assuming any reduction in G.

3 Consumption data on externality-generating goods

This paper uses data from the interview portion of the Consumer Expenditure Survey (CEX),
which is a nationally representative sample of U.S. households, from 1996 to 2016. The
CEX defines a unit of observation as a consumer unit, which is a set of individuals who
reside together and are either related by blood or marriage, or who make financial decisions
together.

Interviews consist of retrospective questions that ask about the consumer unit’s total
expenditures on various items over the prior three months. Units are interviewed four times,
once each quarter, but not all units complete all four rounds of interviews. For the analysis
below, expenditure categories are averaged over however many interviews are completed by
a consumer unit, and then scaled to represent annual consumption amounts.

Table 1 shows summary statistics on expenditures. Key for this paper is that there is
wide variability in the consumption of all variables. For example, average consumer unit
expenditures on motor fuels is $1,820, but the standard deviation is nearly as large as the
mean, at $1,716.

I have two chief concerns with using the CEX for this study. First, the analysis is
concerned with variance and predictability of consumption levels across households. The
survey response may mismeasure true consumption either because of sampling variability
or because of inaccuracies in self-reported responses.” To address this concern, in appendix

B, I show that key results are robust to the use of two other data sets that have better

°For a discussion of CEX data quality, see Meyer, Mok, and Sullivan (2015).
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Table 1: Household Expenditure Statistics by Category

Mean Median St. Dev CV Pct 0
Motor fuels $1,820 $1,398 $1,716 09 9%
Electricity $1,143  $984 $913 0.8 9%
Natural gas $413 $162 $611 1.5  42%
Alcohol $230 $14 $485 2.1  48%
Tobacco $318 $0 $788 25 71%
All energy $3,377  $2,933  $2423 0.7 3%
All sin goods  $3,925  $3,411  $2,757 0.7 2%

Table shows annualized expenditures by category for all households
in sample (N=197,668). Dollar amounts are in $2015. Statistics are

weighted by survey sample weights. All energy sums motor fuels, elec-

tricity and natural gas. All sin goods includes all five individual cat-

egories summed. CV is the coeflicient of variation. Pct 0 is the per-

centage of consumer units reporting zero expenditures in the category.

Table 2: Summary Statistics of Demographic Variables

Mean St. Dev. Min Max
Before-tax income ($2015) 59,224 61,678 -419,200 971,100
Consumer unit (CU) size 2.4 1.5 1 29
Persons < 18 in CU 0.62 1.1 0 14
Persons >64 in CU 0.28 0.6 0 8
Urban indicator 0.91 0.29 0 1
Reference person married 0.50 0.50 0 1
Year 2006 6.1 1996 2016
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measures of gasoline consumption (the National Household Travel Survey) and home energy
(the Residential Energy Consumption Survey), but are available for only one recent year.

Second, the CEX reports expenditures, not quantities. To model an ad valorem tax on
a product, only the total expenditure is required. Corrective taxes, however, will often take
the form of a specific (per unit) tax. For example, a carbon tax will raise the price of gasoline
by a constant amount per gallon. Thus, to model the impact of a carbon tax on gasoline
consumption, we need to estimate the gallons of gasoline consumed by a household, based
on their reported expenditure and prices.

For gasoline and diesel fuels, I use data from the Energy Information Administration
(EIA) on the sales-weighted, tax-inclusive, retail price of all grades of each fuel type at the
closest available geographic match to the consumer unit. That is, where the CEX identifies
a consumer unit’s metropolitan statistical area and the EIA has city-specific prices, the
consumer unit is assigned prices in the past quarter that are the average EIA price for that
city. In other cases, matches must be made at the state or PADD level.

For other goods, determining the price paid by consumers is more challenging. Consider
alcohol. Prices will vary widely if a consumer unit is purchasing low cost beer or high-end
Scotch. As a result, for goods other than motor fuels, I focus on predicting expenditures
directly (rather than predicted tax burdens), which translates directly to taxes under an ad
valorem tax, recognizing that this is not how a true Pigouvian tax would be designed.

The core empirical task in the paper is to determine the degree to which demographic
variables that might plausibly be used in a transfer function are able to predict variation
in expenditures across consumer units. Table 2 summarizes the key variables used for this

purposes, which are measures of income, household size and location.

4 Empirical tests of the impossibility condition

4.1 A gasoline tax creates losers

The primary empirical application of this paper is a gasoline tax. The conceptual goal of this
analysis is to analyze an optimally designed Pigouvian tax. I thus focus on the gasoline tax
as a well-targeted policy for correcting carbon externalities, but I discuss the implications of
other driving-related externalities in the robustness section below.

In this section, I calculate the relative magnitude of welfare gains as compared to rev-
enue raised from a motor fuel tax, and then demonstrate the degree to which demographic
variables can predict motor fuel consumption. Specifically, I model a small tax increase of

10 cents on motor fuels (both gasoline and diesel) under the assumption that the carbon
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externality from motor fuel consumption is not corrected at all prior to the tax. That is,
[ am interpreting existing gasoline and diesel taxes as having been motivated by consider-
ations about the optimal way to raise revenue, irrespective of a carbon externality. These
assumptions are designed to be conservative against my findings, as they will maximize the

implied welfare gains from carbon taxation.

4.1.1 What are the carbon externality gains from motor fuel taxation?

As described in the model, the welfare gain from a small tax on gasoline will be equal to
the change in gasoline consumption induced by the tax times the externality per gallon. I
assume that in the long run a gasoline tax will be borne completely by consumers so that
prices will rise by 10 cents per gallon.®

The gasoline demand literature typically estimates elasticities, so I translate the 10 cent
gasoline hike into a percentage price change using the average retail gasoline price facing the
consumer unit at the time of the survey in its geographic location. I then use a gasoline
price elasticity of -0.4, which is interpreted as a long-run price elasticity, to translate this
price change into a change in gallons of fuel consumed.” By its very nature, it is challenging
to estimate the long-run price elasticity of gasoline. I experiment with alternative values
below.®

I use the EPA’s conversion factor to determine the tons of carbon emitted per gallon of
gasoline consumed (17.6 pounds per gallon / 2205 pounds per metric ton for E10, or 22.5
pounds per gallon / 2205 pounds per metric ton for diesel) and then multiply by $40 for
the social cost of carbon, which is consistent with official government values in the last year
of the sample data. This translates to an externality of $0.31 per gallon. Note that using

this value to calculate the efficiency gains to current drivers assumes that all benefits from

6Existing studies find evidence of high pass through rates for state gasoline taxes, with many studies
consistent with full pass through Chouinard and Perloff (2004, 2007); Doyle and Samphantharak (2008);
Marion and Muehlegger (2011). Fewer studies consider the federal gas tax, perhaps because it has changed
much less often, which impedes econometric investigation. Chouinard and Perloff (2004) conclude that only
half of a federal tax increase is borne by consumers. If true, it would be important to consider the incidence
on U.S. households through the producer side in interpreting the estimates.

"Small and Van Dender (2007) estimate long-run elasticities closer to half this magnitude. Hughes,
Knittel, and Sperling (2008) conclude that the elasticity has been declining over time, finding preferred
estimates well below -0.4. Espey (1998) finds a range of estimates that extend well beyond -0.4 in magnitude,
but this is based on a variety of studies with varying credibility of empirical strategy. There is some suggestion
that demand might respond more to gasoline taxes than price variation (Davis and Kilian 2011; Li, Linn,
and Muehlegger 2014), though these estimates, taken from monthly changes in consumption, may be due
inflated estimates due to consumers pre-buying in anticipation of price changes (Coglianese, Davis, Kilian,
and Stock 2017). This difference seems unlikely to persist in the long run.

8] assume a homogeneous elasticity. Simple back of the envelope calculations make clear that allowing
for heterogeneity will have unimportant impacts on the qualitative results because the tax is small.
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Table 3: Summary of the Impact of a 10-cent Gasoline Tax

Mean Standard deviation

Annual gallons consumed 926 75
Price change 6% 4%
Change in gallons -26 32
Initial burden (c) $91 $75
Net revenue () $90 $74
Externality gain (g) $8.3 $10

Table summarizes the impact on private welfare, the externality and

revenue of a 10 cent gasoline tax, assuming an elasticity of -0.4.

climate mitigation accrue to current drivers, which is an extreme interpretation designed to

make a Pareto improvement more feasible. I discuss alternative values in section 4.1.5.

4.1.2 Externality gains are much smaller than the initial burden and revenue

raised

Because I am modeling a small gasoline tax, the initial burden (loss of consumer surplus
from the higher price) will be approximately equal to the revenue, both of which are sim-
ply the price increase times the number of gallons of gasoline consumed by the consumer
unit. But, to be more precise, I use the elasticity estimate to calculate the final quantity
consumed, and use that to calculate revenue. The welfare loss is calculated using a linear
approximation. Specifically, revenue raised from each household is equal to 10 cents times
the new consumption level, which is equal to the current observed level of consumption (from
data) minus the elasticity (-0.4) times the implied change in price (current price plus 10 cents
divided by the current price, all minus 1). The initial private welfare loss is calculated as
the new consumption level (as described above), plus the triangle, which is the change in
consumption (as described above) times 1/2 times the tax (10 cents).

Table 3 shows these calculations for the estimation sample. The externality gains are
$8.3 per consumer unit per year on average, while the revenue raised is $90 per consumer
unit per year. Average costs imposed on consumers is slightly higher, at $91. The revenue
raised is an order of magnitude larger than the externality gain. This has an important
implication for the ability of the planner to create a Pareto improvement because, as shown
by the theory, the externality gains represent the “error budget” available. A large amount of
revenue needs to be reallocated via a transfer function, and the error budget is small relative

to the revenue raised.
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4.1.3 Most variation in burdens is not predictable

The key suggestion of the theoretical model is that the degree to which the initial (pre-
transfer) burden of the corrective tax can be predicted by variables that are used in the
transfer function will determine whether a Pareto improvement is technologically feasible.
Simple regression of the household level burden on variables that constitute the transfer
function thus provides the required estimates. Below, I present results where the left-hand
side variable is the estimated household level initial burden of a 10 cent gas tax.” All values
are inflation adjusted to 2015.

The theory involves non-squared errors, so I present least absolute deviation (LAD)
regressions that will minimize non-squared errors. But, I also present parallel specifications
from OLS because the properties of OLS and the R? goodness of fit statistic is most familiar.
Note that LAD will, by definition, yield lower absolute errors, but OLS, by definition, will
maximize the R2.

Table 4 presents the primary estimates from this exercise, with the top panel reporting
OLS results. All regressions include year of sample fixed effects, which account for any
time trends, though it turns out that excluding them has almost no impact on the results.
Designing a transfer scheme that depends on any variables that are not strictly exogenous will
create distortionary incentives. As a result, I focus attention first on the “most exogenous”
variables that are likely components of a tax scheme, which are demographic indicators for
household structure and geographic indicators for state and urban versus rural. Specifically,
regressions include state dummies, an urban indicator, and dummy variables for the number
of people in the household, as well as the number of minors, and the number over age 60.
These variables predict just under 30% of the variation in gasoline tax burdens.

Column B adds a linear income control, followed by a non-parametric function of income
(dummies in five-year bins) in column C. These provide a modest boost in the explanatory
power, with the R? bumping up to .331 and .356, respectively. For reference, income by
itself, without any demographic or geographic variables, explains only about 15% of variation
(results not shown). Column C is my preferred specification. It is based on characteristics
that are already part of the tax system, and could plausibly be used to design a tax reform
or transfer scheme that accompanies an externality-correcting tax.

The unexplained variation in this specification is far too large to achieve a Pareto im-
provement. The average absolute error allows for direct comparison with the welfare gains
from the externality. The residuals are around $45 per household. This compares to the

$8.25 welfare gain. This is directly related to Condition 1: as long as the absolute average

9Because I am assuming a homogenous elasticity across households, this is equivalent to using initial
baseline consumption (in gallons) as the left-hand side variable.
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Table 4: Predictability of Burden of a 10-cent Gasoline Tax

OLS A B C D
Avg. Abs. Error $46.6 $45.0 $44.2 $39.9
R? .292 331 .356 .456
LAD E F G H
Avg. Abs. Error $45.7 $44.1 $43.2 $38.8
Pseudo-R? 181 210 226 .306
N 197,668 197,668 197,668 197,668
Year FE Y Y Y Y
Demo & geo controls Y Y Y Y
Linear income Y Y Y
Binned income Y Y
Vehicles & energy Y

Each letter represents a unique regression predicting the initial burden from
a 10 cent gasoline tax. A and E include year fixed effects and dummy vari-
ables for number of household members, reference person married, number
in household over 64, number under 18. B and F add a linear control for
before tax household income. C and G add dummies for every $5,000 of
income. D and H add dummies for the number of vehicles owned or leased
and level variables of expenditures on natural gas, electricity and heating

oil.

error exceeds twice the welfare gain, a Pareto improvement is not possible. Moreover, it is
not just a matter of a few people being left as net losers. The best fitted scheme leaves more
than one-third of households as net losers, even with the generous assumptions employed
throughout.

Column D adds some clearly endogenous variables that would create significant distor-
tions and are thus likely problematic variables for inclusion in a transfer scheme, including
home energy consumption and dummies for the number of vehicles owned by the household,
and dummies for the number leased. These variables do provide an additional boost to ex-
planatory power, but even with vehicle ownership variables included, the variables explain
less than half of the variation.

The bottom panel of table 4 shows LAD specifications. As expected, these lower the
absolute error for identical specifications, but only by a very small amount.

Figure 1 shows the distribution of net losses, accounting for both the externality gain

and the targeted transfers, based on column C in Table 4. A full 37% of households remain
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Figure 1: Net Loss from 10-cent Gasoline Tax with Targeted Transfer
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Figure shows the distribution of net impacts of a 10-cent gasoline tax, in dollars per year. A positive value
implies a welfare loss. Results for equal per household transfer in transparent. Solid green indicates results
for transfer scheme based on specification C in Table 4. The net impact is the private welfare loss, net of

the targeted transfer scheme, net of the externality gain, which is assumed to be equal to each household.

as net losers under this scheme.

For comparison, the figure also shows the distribution of net losses under a scheme where
all households are rebated an equal share of the revenue. A similar fraction of households are
net losers under both of these scenarios, but targeting radically reshapes the distribution.

The variables chosen here are the ones that are most likely to be used for a transfer
scheme that operates through the tax code. The tax code is essentially a function of income
and demographic structure of the household. As such, I interpret the results of Table 4 as
demonstrating that gasoline expenditures are not predicted well enough to come remotely
close to enabling a Pareto improvement. A Pareto improvement is not feasible.

It is worth restating the nature of the prediction dilemma at this point. The challenge here
is not that the CEX is a sample needed to predict out of sample consumption. The problem
pointed out here is not solved by having a census of burdens for all households. Given that
census, the planner could simply rebate every household exactly the burden imposed on it.
But, if households understand this, then it completely (or at least significantly) undoes the

price incentive—gasoline is not more expensive because the tax increase is rebated back, so
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Table 5: Lasso Regressions on Burden of 10-cent Gasoline Tax

OLS (C) Lasso  Lasso

Avg. Abs. Error $44.16  $44.23  $43.16
R? .356 .353 379
Vars. Supplied 166 3,352
Vars. Selected 135 1,855
N 197,668 197,668 197,668
Year FE Y Y Y
Demog. & geog. controls Y Y Y
Linear income Y Y Y
Binned income Y Y Y
Additional interactions Y

The first column repeats the OLS regression from Column C of Table 4. The
second column runs a lasso regression on the same right hand side variable
to perform a check for overfitting. The third column runs lasso with a large

set of additional interactions. See text for details.

there will be no externality gain. In terms of the model, this is the case of the endogenous
X vector, where the transfer T'(-) would shrink efficiency gains g; down to zero.

The impossibility conditions in the theory section are derived for a generic transfer func-
tion. The regressions here are designed to find a transfer function that minimizes the average
absolute error. The regressions show the smallest attainable average absolute error, given
the allowed vector of covariates. If these errors are still so large as to make the impossi-
bility condition hold, then we conclude that all feasible transfer functions would trigger the

impossibility condition.

4.1.4 Machine learning marginally improves prediction

The problem posited here is fundamentally a prediction problem. It is thus a natural ap-
plication for machine learning. A simple version is pursued here to see if initial steps can
dramatically improve prediction.

Table 5 reports results of lasso regressions that predict the variation in tax burdens. The
first column repeats column C from Table 4 for reference. The second column reports results
from a lasso regression on the same variables to check for overfitting in the main specification.
The specification uses a 10-fold cross validation and experiments with a range of lasso penalty
parameters. Results suggest minimal overfitting. Lasso chooses a zero coefficient on 29 out

of 166 variables, but this results in economically insignificant changes to prediction accuracy.
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The third column introduces several thousand additional variables and uses the same 10-
fold cross validation to select variables for inclusion, with the lasso penalty parameter chosen
endogenously by the optimizer. Because the main specification includes predominantly bi-
nary dummy variables, the focus is on interactions, rather than higher order polynomials.
The third column includes interactions of every income category and income linearly with
year, state dummies, urban indicator, family size dummies, number in household under 18
dummies, number in household over 64 dummies, and a dummy for marital status. State by
year fixed effects are also included. Despite selecting over 1,800 variables for inclusion, the
improvement in prediction is minimal, and, from the point of view of achieving a Pareto im-
provement, barely perceptible. Additional experimentation with other interactions of these
core variables produced similar results.

This is only a basic attempt to introduce prediction methods, but the lack of significant
improvement from broader specification searches suggests that the variation in the burdens in
the CEX is not predictable with the set of cross-sectional measures (household demographics,

location of residence, and income) that is most plausibly usable as part of the tax code.

4.1.5 Robustness to parameter choices

In this section, I present results that alter three assumptions about the data. First and
most simply, I increase the number of data points that are winsorized. Second, I modify the
elasticity of gasoline consumption from -0.4 to -0.6 and then -0.8, to reflect higher estimates
from the literature. Greater elasticities are important because they will lead to greater
welfare gains, which aids the elimination of losers. Third, I greatly increase the externality
per gallon of gasoline consumed, from around $0.31 to $2.

For a given level of prediction accuracy and revenue gap, it is straightforward to calculate
the mean efficiency gain that would cause the impossibility condition to hold exactly. In this
case, it can be found by taking the average absolute error from Table 4, Column C, ($43.2)
and adding the average revenue gap ($1), and dividing by the number of gallons saved on
average from the tax (26.7). This yields a mean efficiency gain of $1.66 per gallon. That is
the externality that would cause the impossibility condition to hold exactly.

Such a high number could be justified based on either of two approaches. First, the social
cost of carbon is a highly uncertain number. A prominent recent study suggested a central
estimate of $185 per metric ton, which translates to $1.43 per gallon for E10 (Rennert et al.
2022). Interpreting this full value as accruing to current drivers is still implausibly generous
to the case, but it is meant to illustrate the possible importance of a much higher social cost
of carbon.

Another argument for higher welfare gain might come from considering other externali-
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Table 6: Fraction of Losers Under Alternative Assumptions

Elasticity Externality per gallon Percent Winsorized Percent Losers

-0.4 $0.31 1% 37.0%
-0.4 $2 1% 15.5%
-0.6 $2 1% 9.7%
-0.8 $2 1% 6.2%
-0.8 $2 10% 3.0%

Each row comes from a separate regression of the burden of a 10-cent gasoline tax on
the same set of covariates as specification C in Table 4. Each row varies a parameter

as listed in the first three columns.

ties. Harrington, Parry, and Walls (2007) survey the literature and conclude that greenhouse
gas emissions externalities are quite modest compared to accident and congestion externali-
ties (though this was at a much lower social cost of carbon than is now preferred by many).
A gas tax is a very poor instrument for targeting congestion, and a mediocre at best instru-
ment for targeting accidents or local air pollution. Nevertheless, I now show cases where the
gas tax could have much larger benefits in order to compare results.

In arriving at a $2 per gallon externality, I modify the values from Harrington, Parry,
and Walls (2007) to account for a higher accident externality, at $0.91 per gallon based on
Anderson and Auffhammer (2014), but interpret the carbon benefits as negligible. I then
subtract off the sales-weighted average gas tax in the US of $0.48. In terms of the literature
on second-best gasoline taxes, however, note that this is still a generous interpretation in
that it ignores fiscal interactions that exacerbate labor market distortions. Parry and Small
(2005), for instance, argue that the second-best tax is only around 60% of marginal damages
due to fiscal interactions.

At these higher values, the impossibility condition no longer binds, but that is necessary,
not sufficient, for creating a Pareto improvement. Table 6 uses targeted transfers from
specification C from Table 4, under alternative assumptions, to calculate the number of
households that are net losers. Dramatically increasing the interpreted externality gain per
mile roughly halves the number of households who are net losers from a gasoline tax. Increase
the elasticity of gasoline consumption to much higher rates further drives down the fraction
of losers. In this scenario, the number of net losers is driven down to 6%. This is a modest
number, but it should be kept in mind that there are many generous assumptions deployed
in this case, so it should be interpreted as a frontier possibility rather than a realistic point

estimate. Even in this case, some households are net losers. Finally, taking all of the prior
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assumptions and also winsorizing a full 10% of the data drives down the number of losers to
3%. This suggests the potential for sharply limiting the number of losers, but only when a

variety of optimistic cases hold simultaneously.

4.2 Burdens from other externality-correcting taxes are no easier

to predict

The focus of this paper empirically is on a gasoline tax, but the CEX enables me to make
quick assessment of the degree of predictability of other consumption categories that might
be the focus of sin taxes. A gas tax has the advantage that it is relatively easy to translate
expenditure data into quantities using gasoline price information, and hence to estimate the
impact of a specific (per gallon) gasoline tax. The impact of other sin taxes is more difficult
to determine because the goods are more heterogenous (e.g., there are many types of alcohol)
and are subject to non-linear prices (e.g., two-part tariffs for electricity and natural gas).

Nevertheless, a broad picture of heterogeneity and predictability can be gained by simply
regressing total expenditures in these categories on the demographic variables to see how
much of the baseline expenditure variation is predictable. This exercise would exactly mimic
the burden of an ad valorem sin tax, and they likely come close to mimicking the scale effect
of sin tax levied per unit of the sin good in question.

Note that Table 1 shows that electricity has a similar coefficient of variation with motor
fuels, but that other categories have even larger variability. OLS regressions in Table 7 shows
the same pattern in terms of predictability. Electricity consumption is very similar in its
predictability to motor fuels, but other sin goods are substantially harder to predict.

This analysis is incomplete, as it does not account for the welfare gains and is based
on an ad hoc assumption about how a corrective tax would impact prices. But, the results
suggest that a gasoline tax is likely the easiest place to achieve broad gains, and that the
other externality-creating goods are likely to create even larger numbers of losers because of

the greater inability to predict variation in baseline expenditures.

4.3 Historical baselines

In a cross section, the consumption of externality-creating goods is difficult to predict. In
a panel, there may be more scope for prediction if one can base the transfer function on
past consumption or behavior. Moreover, this can be efficient if agents are unaware of the
fact that behavior in a time period will be used to determine future transfers until after the

fact. Indeed, transfers based on historical emissions are often used in cap and trade systems,
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Table 7: Predictability of Other Sin Expenditures (OLS)

All statistics are R? A B C
Motor Fuels .336 .382 403
Electricity 281 .324 327
Natural gas 179 211 214
Alcohol .051 126 129
Tobacco .043 .046 .050
All energy 399 AT71 490
All sin goods 367 441 459
N 197,668 197,668 197,668
Year FE Y Y Y
Demog. & geog. controls Y Y Y
Linear income Y Y
Binned income Y

Each entry in the table is the R? from a separate regression that predicts expenditures
(not burdens) on the category listed in the row, with control variables that vary by
column. Column A includes year fixed effects and dummy variables for number of
household members, reference person married, number in household over 64, number
under 18. Column B adds a linear control for before tax household income. Column C

adds dummies for every $5,000 of income.

25



which frequently give away permits as a function of emissions in a baseline period before
policy was implemented (Schmalensee and Stavins 2017).

This is harder to envision for households, but not impossible. The challenge is that pol-
icymakers do not already have a census of consumption behavior for most relevant goods.
New data collection systems would need to be created to, for example, measure every house-
hold’s consumption of gasoline. The challenge would be to create new systems without
making actors believe that the systems will be used to determine future transfers, which is
important lest actors strategically manipulate baseline measures. (For cap and trade sys-
tems, pollutants were already regulated and measured in most systems, which mitigated this
concern.) These considerable practical challenges notwithstanding, it is worth asking how
well past behavior predicts future consumption for relevant goods. Unfortunately, the CEX
is a poor data source for studying panel variation, but other data sources can give some
guidance on how past consumption data might be used.

Sallee and Tarduno (2022) study an experimental congestion pricing scheme in the Seat-
tle metropolitan area. A group of 255 volunteers were enrolled in the study and had a
transponder installed in their vehicle, but the nature of the future pricing experiment was
not explained at that time. Driving patterns were measured for several months. Then, a
road pricing scheme was implemented where drivers had to pay a surcharge to use key roads
during peak hours. Surveys taken throughout the process provided demographic covariates.

Sallee and Tarduno (2022) use the observed congestion charges borne by drivers, tak-
ing their behavioral adjustments into account, as a measure of ¢; and show (a) household
demographics predict a modest fraction of cost variation (R* = .24); (b) neighborhood de-
mographics explain very little variation (R* = .04); and (c) baseline “tolls” (the tolls that
a household would have paid had the pricing program been in affect during the baseline
driving period) explains much more (R* = .57). This suggests that baseline consumption
is a better predictor than other covariates. But, Sallee and Tarduno (2022) find that the
impossibility condition still holds, with average absolute errors being more than three and a
half times the estimated average efficiency gain in this case.

Panel data on California electricity: In this section, I discuss what may be the
most optimistic case for the use of panel data, which is home energy consumption. This is an
optimistic case because comprehensive measures of consumption do in fact exist, though they
reside in a patchwork of utilities across the country and are not centralized in a government
agency.

For the analysis, I gained access to a large panel of electricity billing data from the
universe of households that are served by California’s three large investor owned utilities,
Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas
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Table 8: Electricity consumption prediction using historical data

Dependent variable = annual kWh consumed in 2019
PG&E PG&E SDG&E SDG&E SCE SCE

2018 annual kWh 0.99 1.02 0.92 0.93 0.93 0.94
(0.004)  (0.018)  (0.004)  (0.021)  (0.004)  (0.023)

Avg. Abs. Error (kWh)  851.27 852.88 1053.29 1054.15 937.53 934.31

R? 0.97 0.97 0.96 0.96 0.76 0.76

N 3,093,970 3,093,970 1,254,364 1,254,364 4,304,757 4,304,757
Unit observed account account account account meter meter
2017 annual kWh N Y N Y N Y
Rooftop solar N Y N Y N Y
CARE participation N Y N Y N Y

Table reports OLS regression coefficients and related statistics for regressions from three different utilities
in California. The dependent variable is annual consumption in 2019 (in kWh), which is regressed on an
intercept and the prior year’s consumption. Some specifications include 2017 consumption, an indicator for
whether a household has rooftop solar or participates in a low-income pricing program. Data for PG&E and
SDG&E are at the level of an account, but SCE data are linked by meter.

and Electric (SDG&E). I have account-specific monthly billing data that includes electricity
consumption monthly from 2017 to 2019. For this analysis, I take annual average consump-
tion for all households that have complete records over all three years, which is more than
8 and a half million accounts.! For PG&E and SDG&E, the records indicate a unique
customer account attached to a particular residence. For SCE, the data indicate a unique
identified for a particular meter, so in the panel data there is some variation due to changes
in the account holder at an address that I cannot observe.

Table 8 reports the R? and average absolute error from regressions that use 2018 con-
sumption to predict 2019 consumption across households. The coefficients are close to one,
and the R? are extremely high.!' In some specifications, I also include 2017 annual con-
sumption and dummy variables for participation in a low-income pricing program (CARE)
and whether a household has rooftop solar. Adding these has minimal impact. Overall,
these results show that energy consumption is quite stable, so historical data can lead to a

dramatic improvement in prediction quality as compared to using only covariates.

10The billing data have no demographic information or other covariates, except location. For that reason,
I do not use the billing data for the preceding analysis, but do use it here just to test the potential of using
historical consumption.

"The R? for SCE is much lower. This is probably because different households are moving in and out of
a particular location, so much of the unexplained variation is likely due to the fact that the same meter is
linked to different households over time.
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However, even in this case the impossibility condition holds depending on parameter
choices. For ease of interpretation, consider a 1 cent per kWh tax. The average absolute
error for each utility can then be calculated by just multiplying the values in table 8 by $0.01
to get an estimate of ¢;. For example, this is $8.51 for PG&E.

The welfare gains from such a tax depend on the elasticity, the current price, and the
externality. I use an elasticity of -0.5, which is almost certainly too high, and I take current
prices in PG&E ($0.25 per kWh) and the externality (0.39 tons of carbon dioxide equivalent
per MWh) from Borenstein, Fowlie, and Sallee (2021). The price and elasticity values imply
that a 1 cent increase in price creates a 4% change in price and a 2% change in quantity,
equivalent to 121 kWh in PG&E, where average consumption is 6,031 kWh per year. At a $40
per ton social cost of carbon, 121 kWh (equates to 0.047 tons) is a per household reduction in
the externality of only $1.88.12 Two times this value is far below the average absolute error,
so the impossibility condition continues to hold, even where the predictability of consumption
is so strong. The impossibility condition breaks when the social cost of carbon is around $100
a ton. This is a plausible value, but the exercise demonstrates that, even where predicability
is highest, the impossibility condition still holds for plausible parameter values.

I interpret this exercise as showing that, on the one hand, the use of historical con-
sumption can radically improve predictability, but that this alone is not sufficient to ensure
that the impossibility condition does not hold. Thus, I interpret the billing data analysis as

suggesting yet again that a Pareto improvement is implausible, if not impossible.!?

5 Conclusion

This paper uses theory and data to argue that policies like Pigouvian taxes—which improve
social efficiency but create heterogeneous costs and benefits—will inevitably create some
losers because transfers targeting the losers will tend to be imprecise.

The theory demonstrates how one’s ability to compensate losers depends on the pre-
dictability of heterogeneous policy burdens and the size of efficiency gains. The theory

delivers a specific test that can be taken directly to data. Empirically, the case of a gasoline

12The marginal price of electricity is actually above the social marginal cost in these utilities because
California utilities recover system costs via high volumetric (marginal) prices (Borenstein, Fowlie, and Sallee
2021). As a result, efficiency requires that we lower prices, not increase them. The exploration here should
be interpreted with this in mind.

13These results are driven in large part by the fact that there is much greater heterogeneity in measured
kWh consumption in these billing data than is implied in the equivalent data sets from the CEX or RECS. In
the billing data, the coefficient of variation in annual consumption in all three utilities is around 2, whereas
that value is close to 1 in the CEX. This large variation means that, even with a very high R?, the average
absolute errors turn out to be large.
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tax is considered, and the possibility of a Pareto improvement is soundly rejected. Prelim-
inary evidence on other externality creating goods suggests the same conclusion. In short,
Pigouvian taxes create losers.

This is an important conclusion as it suggests the need for nuance in a range of important
policy debates. Economists sometimes argue that efficiency-enhancing policies, at least in
principle, can be paired with targeted transfers so as to rationalize completely abstracting
from distributional implications and judging policies purely on efficiency grounds. This paper
argues for more caution in this line of reasoning. The fact that a policy creates losers is not
in and of itself a reason to reject the policy, but it does point out one reason why efficiency
enhancing policies may not prevail in the policy-making process and more broadly suggests

a shift in our approach to discussing the tension between equity and efficiency.
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A Appendix: Proofs

Condition 1. Let ¢; be the initial costs from a policy, N be the number of agents, X; be a
vector of exogenous covariates observed by the planner, T(X;) be a transfer scheme, A the
average funding gap, and g be the average efficiency gain. If the average absolute targeting
error exceeds twice the average efficiency gain minus the average funding gap; i.e.,

1 N B _
NZM —T(X;)| > 29 — A,

then there is no distribution of g with g; > 0 Vi for which the policy and transfers create a
Pareto improvement.

The proof proceeds by stating the total size of all losses (initial burdens net of transfer,
excluding the surplus gains) among losers as an algebraic expression of the average absolute
error and the average funding gap. If the total losses among losers exceeds the total surplus
gains enjoyed by participants in the market, then it is not possible that these surplus gains
are distributed so as to compensate all losers.

For any transfer regime 7'(X;) and distribution of costs ¢, partition the data into losers
(anyone with ¢ — T'(X;) > 0) and winners (anyone with ¢ — T(X;) < 0). Denote the set of
losers as ¢ € L, with their number being N. Denote the set of winners as ¢ € W, with their
number being Ny .

Having partitioned the data into winners and losers, one can define the total losses among
losers (which will be positive by construction), denoted Z; and the total losses (which will
be negative by construction) among winners as Zy:

Z,=) (6-T(X)) >0  Zw=) (&-T(X)) <0.

i€l €L

The sum Zj, is the total amount of loss among losers. If this loss exceeds the total
efficiency gains ) . g;, then it is impossible to achieve a Pareto improvement, because even if
those gains are distributed in the most favorable way among all losers, there are not enough
gains to compensate all losers. The goal now is to redefine Z; in terms of the average
absolute error among all ¢ (because this relates to an empirically estimable object) and the
average funding gap.

The funding gap is the amount by which initial costs exceed revenue available for trans-
fers, A = R — C, with the budget constraint implying that > . T(X;) = R. The funding
gap is equal to the sum of Z; and Zy: A = Zy + Z;. (To see thiss A = C — R =
>.:(& —T(X;)) = Z + Zw, with the latter equality true because Z;, and Zy just partition
the full set.) We will want to relate absolute values and will want an expression to substitute
out Zy . Because Zy is always negative and 7, is always positive:

1Zw| = 1Z1] = A (2)
For notational convenience, denote the average absolute error as |¢;—T'(X;)| = |¢|. Denote
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the average absolute error among all individuals by |e|, with |e;| and |eyy| representing the
average absolute error of losers and winners respectively. The average absolute errors are
equal to Z divided by N for each group:

- s _ 1%l _ 12wl
€r] = ¢ —T(X;)| === and |ey| = ¢ —T(Xy) — 3
lerl = | ( N, lew| =) ¢ Ny (3)

€L ieW

The average absolute value of all of the data is simply the sample-size weighted average
of the absolute average among winners and losers, which is written in terms of Zy, and 7,
via substitution of (5):

Niles| + Nwlew| _ |Zi| + | Zw]

el = N, + Ny N

Substituting for |Zy/| using (2) yields:

Zol + 12wl _ 120l +120] —
N N

el =
Rearrange to solve for an expression of |Zy|, which is positive by construction:

N - A
7 =7 = Sl + 5 (4)

This is an expression for the total loss among losers. If this loss exceeds the sum of efficiency
gains, then a Pareto improvement is not possible. L.e., a Pareto improvement is not possible
if Z;, = %\e[ + % > . g;- Rearranging yields the result:

N - A - R
§|6H—§>zi:gi(:>]e|>2g—A.

The statement in the proof uses the definition of |e|. O

Condition 2. Let ¢; be the initial costs from a policy assuming no behavioral responses, N be
the number of agents, X; be a vector of exogenous covariates observed by the planner, T(X;)
be o transfer scheme, A the average funding gap, § be the average efficiency gain, and b be
the average private welfare gain from behavioral responses. If the average absolute targeting
error exceeds twice the sum of the average efficiency gain and behavioral adjustment gain
minus the average funding gap; i.e.,

—Zm X)) > 2(G+0b) — A,

then there is no distribution of g with g; > 0 Vi for which the policy and transfers create a
Pareto improvement.

The derivation of this result is the same as above. The only difference is that losers and
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winners are identified and partitioned according to ¢; (rather than ¢;). The welfare gains, b;
are then added to the efficiency gains g;.
The losses among losers and gains among winners is defined as:

- Z - Z
erl = Y ke = 7060 = 22 and e = 3 Jer - 7x0) = 124

S iceW

(5)

Given the definitions of Z; and Zy, that uses ¢;, the steps in the prior proof are the same
through equation 4, where the total losses among losers is equal to:

N - A
ZL = |ZL| = ?|€| + E

A Pareto improvement is impossible if losses among losers exceeds all of the welfare gains
from efficiency enhancements (g;) plus the gains from behavioral adjustments (b;):

N- A - o
§|6|+§>;(9i+bi)<:>]6|>2(g+b)—A.

The statement in the proof uses the definition of |e|. O

Condition 3. Let ¢; be the initial costs from a policy, N be the number of agents, X; be a
vector of endogenous covariates observed by the planner conszstent with a transfer scheme
T(Xi), T(X ) be a transfer scheme, A the average funding gap, 77 be the average distortion
from responses to the transfer function, and g be the average efficiency gain. If the average
absolute targeting error exceeds twice the average efficiency gain minus the average funding
gap; i.e.,

—Z|CZ X;)| > 29— A~ 7",

then there is no distribution ofg with g; > 0 Vi for which the policy and transfers create a
Pareto improvement.

The steps in this proof are all exactly the same as for condition 1, except that the
inefficiency loss from distortions, 77 acts as an increase in the revenue gap A. Replacing A
in the original proof with A + 771 is sufficient. O
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B Appendix: Data comparisons

The CEX was chosen as the primary data source for this analysis because it includes a rich
set of demographic covariates and a measure of gasoline expenditures, and because it is the
standard data source in the most closely related literature. Gasoline expenditures, however,
are based on self-reports and may be subject to mismeasurement. If there is a lot of noise
in the expenditure data, this will make prediction more difficult. This section attempts to
establish some sense of the reliability of CEX data by comparison to other surveys.

Of course, at the very highest level, problems of measurement do not challenge the key
thesis of this paper. Instead, these problems reinforce it. If the best available data on
expenditures are noisy measures of true burdens, it only makes it more difficult to design an
accurate targeting scheme and thereby to compensate losers.

The National Household Travel Survey

An alternative measure of motor fuel consumption can be taken from the National Household
Travel Survey, which is a nationally representative survey performed most recently in 2001,
2009 and 2017. That survey gathers a measure of annual vehicle miles traveled and then
divides by the EPA estimated fuel economy of a vehicle to arrive at an estimate of annual
fuel consumed. This is multiplied by average gasoline prices from the Energy Information
Administration to impute expenditures. In contrast, the CEX asks consumers directly about
expenditures.

The 2009 version of the NHTS is the most recent survey in which the miles traveled
variable was based on two odometer readings (the survey respondent is asked to look at
their odometer), rather than a retrospective self report. I compare the motor fuels expen-
diture data from that survey to the CEX from 2009. Figure 3 shows that fuel expenditure
distribution from the two surveys for different samples. The top panel shows all households.
This shows that the NHTS has higher expenditures on average, with a substantially longer
right tail.

In part this may be due to differences in unit definitions across the two surveys, as
the CEX is broken into smaller consumer units than the household definition used in the
NHTS. Differences persist, however, when comparing households with the same number of
members. The bottom two panels of Figure 3 compare households with one vehicle (on the
left) and with two vehicles (on the right). In particular for the one vehicle households, the
distributions do fit better. Nevertheless, the two data sources do show non-trivial differences
in this fundamental measure.

Though there are some advantages to the measure of fuel expenditure in the NHTS, it
has the disadvantages of requiring imputation of fuel economy and gasoline prices. Gasoline
prices vary significantly across locations and time. Fuel economy varies substantially with
where a vehicle is driven. Thus, it is not obvious which survey measure is more reliable.
Regardless, the fact that there are substantial differences suggests that mismeasurement
could be important.

Ultimately for the purposes of this paper, what matters is predictability. To compare
predictability across the surveys I identify a set of demographic variables that appear to be
defined consistently in both surveys: income, Census region, an urban indicator, family size
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Figure 2: Comparison of Distribution of Implied Fuel Expenditure in CEX and NHTS

Gas Exp: CEX (2009 only) and NHTS 2009
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Figure shows histogram of estimated annual fuel expenditure by households using CEX and NHTS data.
Left panel is for households with one vehicle. Right panel is for households with two vehicles. Both are from

2009 surveys. All distributions are truncated at $10,000 of annual expenditure.

and number of persons over 18. Table 9 reports the R? for parallel regressions of gasoline
expenditures on these controls, varying the set of controls and whether the regressions using
sample weights.

For the base set of controls, the CEX and NHTS show similar levels of predictability as
summarized by the R%. This is true regardless of weighting. In additional specifications (not
shown), the results change very little when using dummies for the household size variables
or adding state dummies instead of Census regions. The one difference that did emerge in
a specification search was that the total number of vehicles owned by the household has a
stronger explanatory power in the NHTS, and in particular when weighting, this variable
notably increases prediction accuracy. The NHTS collects mileage information (from which
expenditures are imputed) for each car, ensuring a mechanical connection. Table 9 reports
the weighted and unweighted versions of these regressions showing the greater impact of
vehicle controls in the NHTS.

Overall, the comparison of the CEX with the NHTS suggests that there are some notable
differences in estimated gasoline expenditure, though in most cases there is not a large
difference in predictability within the two samples. While mismeasured expenditures in the
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Table 9: Predictability of Gasoline Expenditures in CEX versus NHTS

CEX NHTS CEX NHTS CEX NHTS CEX NHTS

R? 278 232 .250 267 .359 .380 .322 431
Base controls Y Y Y Y Y Y Y Y
Number of vehicles N N N N Y Y Y Y
Weighted N N Y Y N N Y Y

N 9,116 137,938 9,116 137,938 9,116 137,938 9,116 137,938

Table compares 2009 CEX to 2009 NHTS. Dependent variable is annualized gasoline expenditures. Base
controls include income, Census regions, urban dummy, family size and number of persons over 18. The

additional variable is total number of vehicles in the household.

CEX may imply that the R? is artificially low as compared to some theoretical baseline, it is
worth emphasizing a final time that trouble measuring consumption (and hence the burden
of a tax) actually makes targeting transfers accurately more difficult.

The Residential Energy Consumption Survey

This paper focuses on gasoline taxes, but it also briefly presents results on home energy
consumption. The data quality of the home energy consumption variables in the CEX can
be explored by comparison with the Residential Energy Consumption Survey (RECS), which
is most recently available in 2009 and 2015. The RECS has the key advantage that electricity
and natural gas expenditures are validated against billing records, so the data quality are
much better for those variables than in most surveys.

Figure 3 shows the distribution of electricity and natural gas expenditures in the CEX
and RECS, pooled for 2009 and 2015. Overall, the similarity in the distributions is broadly
encouraging, but there are differences. The CEX shows more observations with low con-
sumption, especially for gas. It also has a longer right tail. This may be in part because the
CEX consumer units are on average smaller, but it may also be evidence of mismeasurement.

The primary concern with mismeasurement for the core purposes of this study is that it
might artificially deflate the degree of predictability. Table 10 shows the R? from regressions
with the overlapping common set of covariates between the RECS and CEX. The RECS
does show a somewhat higher R2. The data are not winsorized in these regressions. In other
specifications (not shown), truncating the right tail of the distribution for high values has
little effect on the R?. Again, the high level point that consumption will be hard to measure
and predict is reinforced if the CEX has measurement problems, though it certainly opens
the possibility of using better measured surveys to design the transfer system.
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Figure 3: Comparison of Distribution of Implied Electricity and Natural Gas Expenditures
in CEX and RECS

Electricity Expenditures: RECS and CEX, 2009 and 2015
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Figure shows histogram of estimated home energy expenditures by households using CEX and RECS data.
Left panel is for electricity. Right panel is for natural gas. Both use 2009 and 2015 survey data combined.

Table 10: Predictability of Home Energy Expenditures in CEX versus NHTS

Electricity Natural Gas
CEX RECS CEX RECS CEX RECS CEX RECS
R? 198 .262 180 .263 123 218 114 178
Base controls Y Y Y Y Y Y Y Y
Weighted N N Y Y N N Y Y
N 17,802 17,769 17,802 17,769 11,263 10,798 11,263 10,798

Table compares 2009 and 2015 CEX to 2009 and 2015 RECS. Dependent variable is annualized expenditures
on electricity or natural gas. Base controls include income, Census regions, urban dummy, family size and

number of persons over 18. Samples are restricted to households with positive expenditures for natural gas.
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