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Abstract

Widespread electrification of the transportation sector is a key component of most strate-
gies for deep decarbonization of the U.S. economy. While the acceptance of EVs has grown
dramatically over the last decade, much of this growth has been spurred by substantial sup-
port from public funds and other related policies. Major electrification on the time scales sup-
ported in many climate policy plans will require substantial investment spurred by policy. In
this whitepaper we discuss the policy options for expanding the EV market. Our particular
focus is on the potential role that a Low-Carbon Fuel Standard (LCFS) can play in supporting
electrification. Standards like the LCFS are typically positioned as “technology neutral”, and
the LCFS itself relies upon a dense set of calculations and assumptions to rate a wide variety
of fuels based upon their life-cycle carbon intensity (CI). The LCFS in California is currently
directing hundreds of millions of dollars to the EV market in California. However, it is likely
that for a LCFS to support the kinds of investments on a magnitude likely necessary to reach
electrification goals, it may have to be altered in such fundamental ways as to no longer really

function as a technology-neutral fuel standard.
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1 Introduction

A key element of most visions for achieving climate stabilization involves the widespread tran-
sition of the transportation sector to electricity via the adoption of electric vehicles (EVs). Gov-
ernments around the world have set ambitious targets for EV adoption or set goals to phase
out the sale of EVs entirely, often supporting these objectives with policies designed to encour-
age adoption. While the growth of the EV market over the last decade has been spectacular in
percentage terms, EVs still remain a modest fraction of overall passenger vehicles.

One policy tool that has emerged to support EV growth in regions such as California is the
Low Carbon Fuel Standard (LCFS). The LCFS allows suppliers of low carbon transportation
energy to earn credits that are sold to producers of higher-carbon transportation fuels. It was
initially positioned as a “technology-neutral” standard that scores a broad set of fuels based
upon their life-cycle carbon intensity. While the LCFS was designed to promote low-carbon
transportation, its original design was most easily applied to blends of lower-carbon fuel used
in similar (internal combustion engine) vehicles. Adapting the LCFS to promote dramatically
different transportation technologies, such as hydrogen or electricity, has therefore necessitated
adopting a series of complex and arguably dubious assumptions that, if taken to a large scale,
will fundamentally reshape and redefine the nature and function of the LCFS. To the extent
that these assumptions create favorable conditions for specific fuels, the standard loses one of
its main initial benefits: technological neutrality.

In this paper we discuss the policy challenges presented by a goal of rapid large-scale ex-
pansion of EVs. We focus on the market for passenger vehicles, which constitutes almost all of
the EV industry for which there is currently useful empirical evidence. There are three channels
in which EV adoption can be supported: operational (fuel) costs, up-front (vehicle) costs, and
operational convenience. In each dimension the policy challenge is to establish or expand an
advantage (or minimize a disadvantage) of EVs relative to conventional internal combustion
engine (ICE) vehicles.

We then survey the standard policy options available for promoting the expansion of EVs,
including carbon pricing, intensity standards (such as the LCFS), and subsidies provided by
either general public funds or utility ratepayers. Each option has its particular advantages and
disadvantages with regards to economic efficiency, transparency, and broad public appeal.

Notably, the LCFS in its purest form is a policy that targets the first of the three channels of
EV support, relative fuel costs. For most fuels, the LCFS increases revenues for the producers

of low carbon fuels and indirectly works to lower the retail prices of those fuels. The intent



was to promote both the innovation and production of low-carbon fuels by providing subsi-
dies that increase as the carbon-intensity of those fuels decline. However, in practice, while a
small amount of the revenue generated by LCFS credits may translate into a fuel price reduc-
tion in the cases of fleet owners and perhaps those using public charging (if the owner chooses
to pass along some of the credit value to the consumer), the vast majority of EV-generated rev-
enue coming from residential charging does not generally translate to a fuel price reduction
for EV users. Additionally, the LCFS in California has added several elements designed to re-
duce vehicle costs, by directing a large proportion of residential charging value to a statewide
point-of-purchase rebate for EVS, and promote the provision of services that increase charging
convenience, by allowing credit generation for unused fueling capacity for zero emission ve-
hicles (ZEVs), namely EVs and hydrogen. While these measures arguably increase the appeal
of EVs and ZEVs more generally, they also alter the nature of the LCFS in ways that carry un-
predictable implications for the production of other types of low carbon fuels. For example,
there are no specific rewards available for the sale of flex-fuel cars that would be analogous to
those available for EVs, or for “blender” pumps that could facilitate more large scale usage of
biofuels; any LCFES credit revenue directed toward these is completely at the discretion of the
credit seller. Thus, where more distribution channels have opened for non-ZEV fuels, as in the
case of renewable diesel, it has been on the strength of the LCES incentive on the flow of fuels.

We conclude by summarizing what is known from the available academic and policy litera-
ture about the relative costs and effectiveness of supports flowing through the three consumer
channels of fuel prices, vehicle prices, and convenience. Unfortunately given the early stage of
the EV market, the empirical literature is relatively limited. One major takeaway is that future
policies need to be designed in a way that better allows for credible policy evaluation so that
the impacts of these policies can be understood. One key advantage of more flexible, market-
based policies such as an LCFES is that they more easily accommodate course corrections as we
learn more about the relative costs and benefits of different technology options.

If EVs are to be supported either through vehicle subsidies or through promoting conve-
nience and accessibility through measures such as expanded charging networks, this leaves
policy makers with one of two choices. Support for vehicle costs and charging networks could
either be provided via policies specifically designed and directed for those purposes, or such
support could be added to a LCFS at a magnitude and in a fashion that so alters the nature of

that regulation that it no longer resembles or operates as an actual fuel standard.



2 The EV Policy Landscape

A wide set of factors, from financial considerations to convenience to a desire to make a per-
sonal statement, influence consumer vehicle purchase decisions and, specifically, the decision
of whether to adopt an electric vehicle. Yet government policies related to light duty adoption
focus almost exclusively on three possible margins of the consumer’s decision.

First and foremost, government policy targets the purchase price of the vehicle. Even with
the striking reduction in battery prices over the past decade, EVs remain more costly to build
and purchase than conventional vehicles. As one illustration, the 2020 Nissan Versa and Leaf
have roughly similar footprints, dimensions, cargo space and performance, although the Leaf
has more user amenities.! Yet, the suggested retail price of the 2020 Leaf is $31,600, almost
twice the suggested retail price of the Versa.

In the U.S., both federal and state governments offer targeted subsidies that aim the narrow
the gap in purchase prices between EVs and their conventional counterparts. As part of the
American Recovery and Reinvestment Act of 2009, the federal government offers a tax credit
of up to $7,500 per vehicle.? The federal tax credit is supplemented by direct subsidies at
the state-level. Two such examples are the Clean Vehicle Rebate Project and Clean Cars 4 All
(formerly the Enhanced Fleet Modernization Program) in California, both of which provide
rebates at or shortly after the time of purchase. In addition to direct subsidies, the purchase
price of new vehicles is also indirectly subsidized through mandates such as the Zero Emission
Vehicle Mandate in California and through other regulations such as the federal Corporate
Average Fuel Economy standards, both of which raise the price of “dirty” vehicles and lower
the price of “clean” vehicles.

Second, government policy directly and indirectly influences the operational costs of elec-
tric vehicles relative to conventional vehicles. While the upfront sticker cost of the vehicle may
be the most salient cost at the time of purchase, consumers incorporate the costs of operation
into their purchase decisions.? Reflective of the higher efficiency of an electric drive-train, elec-
tric vehicles tend to be less costly to operate than conventional counterparts. But, state and

local taxes on transportation fuels and state regulation of electric utilities heavily influence the

IWhile not completely definitive about the comparability of the models, buyers of the Leaf often cite the Versa when
surveyed as their “second choice”.

2The credits are automaker specific in the sense that the value is linked to the the total number of qualifying vehicles
sold by automaker. The credits phase out gradually once a given automaker has sold more than 200,000 EVs.

3Busse et al. (2013), Allcott and Wozny (2014), and Sallee et al. (2016) document that future gasoline costs are largely
incorporated into purchase decisions. Yet, less in known about how consumers electricity prices influence EV pur-
chases. Evidence from Bushnell et al. (2020) suggests that electricity prices influence EV purchases considerably less
than commensurate changes in gasoline prices.



magnitude of the potential savings. Where taxes on gasoline are low or where residential con-
sumers pay a high price for each unit of electricity they consume, the relative savings from an
electric vehicle are modest. In the U.S., examples include California and the states in New Eng-
land, where high residential electricity prices lead to modest operational savings from driving
an electric vehicle, despite relatively high gasoline prices. In contrast, where fuel taxes are
high and electricity prices are modest (e.g., in Washington and Oregon), the operational sav-
ings offered by an electric vehicle can be considerable. Rough estimates of the operational cost
savings of driving an electric vehicle instead of a comparable conventional vehicle vary from a
low of 10 - 20 percent savings per mile in the former states to upwards of 60 - 70 percent sav-
ings per mile in the latter set of states. Although lower or higher fuel prices might also impact
the number of miles a vehicle is driven, such rebound effects, which might offset some of the
operational cost savings or costs, are generally estimates to be rather modest in magnitude (see
e.g., Gillingham (2014)).

Lastly, some policies aim to make the experience of owning an electric vehicle more pleasant
and convenient, attempting to remove potential non-pecuniary obstacles to purchase. Here, the
range of targeted obstacles is fairly broad. One set of state and federal policies seeks to speed
the construction and increase the density of public charging stations, through a combination
of incentives and mandates. Although survey evidence (e.g., Hardman et al. (2018), Dunckley
and Tal (2016)) suggests that most EV charging occurs at home, these policies seek to increase
the convenience of charging away from home as a way of reducing range anxiety or increasing
the ability of EV drivers to travel longer distances.* Another set of policies seeks to offer a va-
riety of conveniences to EV drivers. The most notable is the ability to drive in high-occupancy
vehicle (“HOV”) lanes without a second passenger. Consumers survey evidence (e.g., Jenn
et al. (2020)) and evidence from used vehicle sales (e.g., Shewmake and Jarvis (2014)) suggest
consumers in areas with substantial traffic congestion place a high value on single-occupancy
HOV lane access. Similar incentives extend to (more modest) benefits such as decreased regis-
tration fees and dedicated parking.

To be clear, all of the incentives designed to encourage consumer adoption are partially
motivated (rhetorically) by supply-side considerations as well, with the idea that stimulating
consumer adoption will help kick-start the industry. For example, if consumers’ lack of knowl-
edge or experience is an impediment to adoption, increasing market penetration of electric ve-

hicles might help overcome the information barrier. Alternatively, stimulating adoption might

4Empirical evidence (e.g., Springel (2017), Li (2017), and Li et al. (2017)) documents that EV vehicle adoption in-
creases with the extent of the public charging network.



encourage manufacturers to offer a wider variety of EVs for purchase or enable manufacturers

to capture learning externalities or economies of scale present in the nascent industry.

2.1 Policy options

Although government policies influence different margins of a consumer’s decisions, policies
related to EVs can broadly be characterized into one of three categories: (1) emissions taxes (or
tradeable permit systems) that levy a fee on emissions regardless of the source, (2) intensity
standards that set a target within a particular segment (e.g., transportation fuels as in the case
of the LCFS) of the market, against which products are measured and taxed or subsidized, and

(3) targeted incentives for particular products.

2.1.1 Emissions and Fuel Taxes

An emissions tax offers the broadest scope for policy, levying a per unit tax on emissions re-
gardless of the source.® Levied on transportation fuels, sellers are responsible for the carbon
content of that fuel, which will eventually be combusted in on-road vehicles. If combusting a
gallon of gasoline results in 20 lbs of CO, emissions, then at carbon price of $20/ton of CO,
sellers of gasoline would be responsible for a charge of $ 0.20/gallon. Similarly, if combusting
a gallon of biofuel results in net 4 Ibs of CO,, sellers of biofuel would be taxed at $0.04/gallon.
Ideally, the tax per unit of emissions is set so as to equate the benefit of additional emissions
reductions to society with the cost of additional emissions reductions by polluters.

An emission tax (optimally set) offers several attractive advantages from a policy perspec-
tive. First, by virtue of the common tax per unit of pollution, more polluting sources or prod-
ucts are more heavily taxed than less polluting sources or products, in proportion to their
relative emissions intensities. This technological-neutrality provide attractive incentives and
disincentives directly linked to the cleanliness or dirtiness of a good or input. Levied on pro-
ducers, firms incorporate the tax as an additional cost of production, which acts as an incentive
to identify less-emission intensive production technologies or sources of inputs. Specifically,
the tax encourages firms to make investments or change production in ways that are less costly
on a per-unit of pollution reduction basis than paying the tax. To the extent that the tax is

passed through to consumers in the form of higher retail prices, the tax further acts to discour-

5See Muehlegger and Rapson (2021) for a deeper discussion of the economics of EV markets and policies.

®For expositional purposes, we focus on emissions taxes. A system of tradeable emissions permits shares the ad-
vantages (and economics) of emissions taxes, where the equilibrium price of permits allocated to achieve the welfare
maximizing level of abatement is equal to the emissions tax set to achieve the same outcome.



age consumers from purchasing carbon-intensive goods, and in the case of fuels discourages
consumption on the intensive margin.

Second, the scope of policy (covering a broad set of sources) provides a common disincen-
tive to pollute across different types of products. A carbon tax applied to all of the transporta-
tion sector, for example, would levy a similar per-unit tax on the production of vehicles and
the emissions associated with transportation fuels. The common disincentive provides iden-
tical encouragement to all segments in a sector to reduce emissions, rather than foisting the
burden of emission reductions on a single segment (e.g., fuels or vehicles) of the industry. This
“equality” ensures that a given amount of emissions reduction is achieved efficiently at lowest
cost. In contrast, if industry segments face different incentives, some segments may reduce
pollution at very high costs while others, facing less of an incentive, exert very little effort to
reduce pollution. In this case, a similar level of emission reduction might be achieved at lower
cost by asking less of the heavily regulated segment and more of the lightly-regulated segment.

Finally, an emissions tax is net positive from the perspective of public funds. Emissions tax
revenues can be used to reduce other taxes (described as the “double-dividend” by environ-
mental economists), rebated to consumers or, as is more often the case, allocated to support
subsidies for green goods. From a fiscal perspective, of particular attraction is the taxation of
goods with relatively inelastic demand, for which the market distortions are modest in rela-
tion to the amount of tax revenue generated. While emissions taxes have the potential to affect
the price of many types of goods, the most direct impacts likely fall on the price of relatively
inelastic energy goods (e.g., electricity and transportation fuels). To be clear, though, the pri-
mary purpose of the emissions tax from a policy perspective is to provide a common, uniform

incentive to reduce emissions, rather than the fiscal benefits.

2.2 Intensity Standards

Intensity standards share (partially) the spirit of emissions taxes. Applied to pollution, reg-
ulators set a standard (X) which represents the target emissions intensity within a particular
segment (e.g., transportation fuels). Each firm’s production is benchmarked relative to this
standard. In tradable systems like the ones examined here in the US, if a firm’s products gen-
erate less pollution than the standard, the firm generates compliance credits. In contrast, if a
firm’s set of products generate more pollution than the standard, the firm generates a com-
pliance deficit, which must be met by purchasing credits from firms with excess compliance

credits. The requirement of firms to meet a shortfall through purchasing compliance credits



Figure 1: Policies Influencing EV Adoption

Margins of Influence

Policy Options Upfront Vehicle Cost Fuel Cost Infrastrucl:ture /
Convenience
Emissions Tax Carbon Tax / Cap-and-Trade
CA ZEV Mandate,
Intensity Standard Federal CAFE Lo Ceitee ]
Standard
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Government-Financed Clean Vehicle Rebate Gasoline Taxes, Charging Station
Subsid Project, Federal Tax Subsidized EV Subsidies, HOV lane
y Credit Electricity Rates access

ensures that the intensity standard will be met, within the regulated industry segment.

Similar to a system of tradeable permits, the number of firms in- and out-of-compliance
influence the price at which the credits trade. If a lax standard is set, where most firms are in
compliance, the price for credits will be low. But, if policymakers set an ambitious standard,
the price of credits will adjust, so as to act as a sufficient subsidy to equate the supply and
demand of compliance credits and meet the intensity standard.

Ideally designed, an intensity standard applies a common disincentive to pollution. Like
emissions taxes, intensity standards as conceived are “technologically-neutral,” although often
the neutrality is limited to a particular segment of the market such as transportation fuels. For-
mally, if a firm emits X units of pollution relative to the standard X, and the equilibrium price
for credits is given by P, a firm faces an effective per-unit tax equal to P, * (X — X), represent-
ing the cost of the compliance credits they need to purchase for each unit of production. Where
a firm’s emissions intensity (X) exceeds the intensity standard (X), the intensity standard acts
as an implicit tax. Set with equivalent stringency, an intensity standard creates a similar wedge
between the price of dirty and clean goods as does an emissions tax. As a result, producers
face very similar incentives to shift production away from dirty goods to clean goods and for
innovation in lowering pollution intensity. But notably (and in contrast to an emissions tax), an
intensity standard implicitly subsidizes production at firms with lower pollution intensities than
the standard. If X is below X, each unit of production generates (X — X) compliance credits
which can be sold to more polluting firms. Thus, intensity standards impose smaller impacts
on the average price of all the goods (clean and dirty) in a sector. This dichotomy, of imposing

a strong incentive on producers to innovate and shift away from dirty inputs, while moderat-



ing the effect on the average prices paid by consumers forms one attraction of intensity-based
standards for policymakers.”

Yet, one drawback is that, in contrast to emission taxes, an intensity standard is typically
more narrow in scope, limited to a particular set of products within a specific segment of the
industry. This has important implications for the cost efficiency of reducing pollution. If firms
face standards of differing stringency, the cost and effort to reduce pollution will be higher in
stringently regulated markets than in markets with lax standards. This inconsistency increases
the cost of achieving a given level of pollution reduction, as low cost methods of pollution
reduction are forgone as a result of less stringent standards.

Although above we describe an example of an emissions intensity standard, mandates are
functionally equivalent. As an example, California’s Zero Emission Vehicle (ZEV) mandate
sets a standard for the ZEV share of a firm’s vehicles sales. Tesla (and other companies) that
sell a high proportion of ZEVs generate compliance credits. These credits act to subsidize ZEV
production, as ZEV firms sell the credits to companies that are out-of-compliance with the
standard set by the ZEV mandate.

From a fiscal perspective, binding incentive standards are revenue neutral, neither generat-
ing nor requiring tax revenue to support. By virtue of the transferability of the credits, “taxes”
paid by firms out-of-compliance are directly transferred as “subsidies” paid to firms in com-
pliance. This revenue neutrality can be attractive politically as an incentive standard does not
compete with other policies for a jurisdiction’s budget.

Finally, some policies share features of intensity standards while relaxing the binding na-
ture of the credit system. One such example is the federal CAFE standard. The standard sets
an automaker-specific benchmark based on the footprint of the fleet of vehicles sold. Over-
compliance with the standard generates credits which can either be retained by the firm (and
used in future periods) or traded to firms out-of-compliance. But, firms out-of-compliance have
an alternative - they can opt to pay a fine rather than meet the target by purchasing tradeable
credits from a firm in compliance. This caps the potential credit price, amounting to a per-
vehicle tax proportional to the amount the firm’s average fuel economy of its sold fleet fails to

meet the CAFE standard.

"While moderating the average price impacts on consumers might be attractive for political reasons, the taxation of
dirty fuels and subsidization of clean fuels limits the potential of an intensity-based standard to impact the intensive
margin of vehicle miles travelled.



2.3 Government-Financed Subsidies

The last set of policies are subsidies or taxes that are funded by or contribute to government
budgets and are targeted at specific products. Examples of these subsidies abound in trans-
portation policy, from vehicle subsidies to incentives for public charging station installations.
As with emissions taxes or intensity standards, targeted subsidies can in principle create sim-
ilar financial incentives for producers to shift production and innovative activity away from
dirty towards clean goods or inputs.

But, from a broader perspective, these subsidies often lack the efficiency benefits of either an
emissions tax or an incentive standard. Rather, the generosity of the incentive as well as which
products are targeted are left to the discretion of the policy maker. In contrast to emissions
taxes and intensity standards, targeted subsidies require the policy maker to pick and choose
technologies in a way potentially unrelated to their emissions abatement potential. If the policy
maker does not correctly foresee the set of policies or products with the greatest potential to
reduce pollution at lowest cost, pollution reductions might be more costly to achieve. Further,
from a fiscal perspective, targeted subsidies require funding support and, thus, compete with
other policy objectives over (potentially) scarce government resources.®

Despite these disadvantages, targeted taxes or subsidies do offer an attractive feature for
policymakers. By their nature, emissions taxes or intensity-standards like the ZEV mandate
are agnostic as to how an emissions reduction or an increase in EV penetration is acheived. Yet,
policymakers often have multiple objectives when setting EV policy. As one common exam-
ple, policymakers often hope to target benefits of policy towards disadvantaged socioeconomic
groups. In the case of pollution, policymakers guided by environmental justice considerations
might seek to ameliorate pollution faced by historically disadvantaged groups. For EV adop-
tion, policies might seek to stimulate adoption amongst groups with low EV penetration rates.

This type of conditional targeting is easy (and fairly common) with a subsidy. In California,
for example, the Clean Vehicle Rebate Project is means-tested - only households with incomes
below cutoffs’ are eligible to receive subsidies, with more generous subsidies available for
lower income households. Clean Cars 4 All (formerly the Enhanced Fleet Modernization Pro-
gram studied in Muehlegger and Rapson (2018)) extends this idea further, offering subsidies

based on household income and whether a recipient lives in a “disadvantaged” community.

8Targeted taxes can also be used to discourage pollution-intensive production techniques or pollution intensive
goods and can be set in a continuous fashion that penalizes (or subsidizes) goods in proportion to their pollution-
intensity.

9Household income cutoffs for CVRP are $150k for single-filers and $300k for joint filers.
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24 Policy Summary

Virtually all of the policies that directly or indirectly impact electric vehicle adoption can be
categorizes as one of the options above. In figure 1, we arrange many of the most well-known
policies that impact three margins discussed above into the three policy categories.

As illustrated, a emission tax spans all three industry segments as it sets a common tax
on carbon emissions regardless of the source. Intensity standards, that impose a binding con-
straint within a particular segment, include California’s ZEV mandate and the Low Carbon
Fuel Standard, which set binding benchmarks for ZEV sales and for the carbon-intensity of
transportation fuels respectively. Targeted policies include gasoline taxes, subsidized rates for
electricity, and monetary incentives for electric vehicle purchases or charging station construc-
tion.

In figure 2, we summarize the efficiency and political tradeoffs amongst the three differ-
ent types of policies. We evaluate each of the options based on how, for a comparable policy
incentive, we would expect them to impact the cost of the dirty and clean fuels (or vehicles),
the overall impact on the retail price of fuels, the revenue consequences of the approaches,
whether the approaches create a consistent incentive across or within segments, and whether
the approaches are easily tailored towards more targeted socioeconomic or distributional goals.
Emissions taxes, at one end of the spectrum, offer an approach that creates a common incen-
tive for all segments within the transportation sector to reduce emissions and generates fiscal
revenue. Targeted subsidies, at the other end, allow policymakers greater discretion to target

the policy towards particular products or particular socioeconomic groups.

3 Low Carbon Fuel Standards and EVs

State and local policy makers in the U.S. and beyond are looking to Low Carbon Fuel Stan-
dards (LCFS) as a policy instrument for reducing GHG emissions in the transportation sector.
California implemented its LCFS in 2011, setting a target of a ten percent reduction in carbon
intensity (CI) values for transport fuels used in the state by 2020 from 2011 levels, as part of its
climate policy. The target has since been updated to a 20 percent reduction below 2011 levels by
2030. Oregon fully implemented its LCFS, the Clean Fuels Program (CFP), in 2016, seeking to
reduce CI values of Oregon transportation fuels by ten percent from 2015 to 2025. Washington
State failed in several legislative attempts to pass a LCFS before passing one in 2021, to begin in

2023 and reach 20% below 2017 levels by 2038. Other jurisdictions with, developing, or consid-
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Figure 2: Assessment of Policy Categories

Policy Options
Evaluation Criteria Emissions Tax Intensity Standard .Government.-
Financed Subsidy
Raise cost of dirty fuels Large Small None
Lower cost of green fuels None Smaller than subsidy Large

Variable, depends on

Overall impact on fuel price Positive fuel type & pass- Negative
through
Impact on public funds Positive Neutral Negative
Yes, across Yes, within
Technology-neutral ! ! No
segments segment
Easily targeted to No No Yes

demographic groups

Note: For expositional simplicity, we focus on targeted subsidies. A targeted tax would share similar attributes to a
targeted subsidy with the exception that it would raise the price of dirty goods, lower the cost of green goods, and
contribute to rather than draw upon public funds.
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ering an LCFS-like program include British Columbia (in effect since 2011), Canada and Brazil
(under development and in effect, respectively), and Colorado (initial feasibility analysis).
While the LCFS regulation is now moving forward, its history is not without controversy.
There have been legal challenges linked to the way it differentiates fuels originating in differ-
ent locations. As we discuss below, the implementation of an LCFS requires a combination of
detailed modeling and strong assumptions about the usage of the fuels. There have also been
extensive debates about the models and assumptions used to establish the carbon intensities of
different fuels used for compliance, particularly aspects linked to the indirect land use effects
caused by biofuels. Opponents have raised concerns about the efficiency of the regulation and
its potential impact on fuel prices, while proponents tout the potential to boost clean transport
energy development.!® Concerns contributed to the continued debate over the LCFS mecha-
nism in some states, notably Oregon and Washington, that eventually passed LCFS legislation.
Importantly, the LCFS was built around a paradigm of reducing the carbon content of trans-
portation fuels compared to reference fuels such as gasoline or diesel. Initial scenario analysis
featured several possible compliance profiles, some heavily depending on using an increasing
amount of low carbon fuel in ICE vehicles, and others laying out a larger role for other vehicle
technologies, such as natural gas, hydrogen, and electricity. However, because the program as
implemented did not focus on direct incentives beyond the fuel itself, it was not likely to be
enough to promote the adoption and usage of alternative fuels such as natural gas, hydrogen,
and particularly electricity that required investments in new vehicles and delivery infrastruc-
ture. In any event, the LCFS has expanded from a mechanism solely impacting the prices and
costs of fuels, to one that also incentivizes infrastructure investments for particular alternative
fuels - but not others - as well as direct GHG capture. While impacts thus far are small, the
change has in turn transformed the way in which carbon prices are calculated and transmitted

within the operation of the regulation.

3.1 The California LCFS

The California Low Carbon Fuel Standard was initially implemented in 2011, amended in 2013,
re-adopted in 2015, and extended in 2019 to set targets through 2030. The LCFS sets a carbon
intensity (CI) standard percentage reduction from the petroleum-based reference fuel that de-
creases each year. Implementation involves classifying all fuel volumes into a fuel pool defined

by the reference fuel used or displaced and setting a nominal CI standard for each fuel pool.

1OSee, e.g., https://thelens.news/2021/03/10/1cfs-debate-continues-in-senate-committee/
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The reference fuels are diesel, E10 gasoline, and, from 2019 forward, jet fuel.! The LCFS falls
within a general regulatory framework known as intensity standards. It regulates the carbon
intensity (e.g., gCO2e per megajoule) of transportation fuels, rather than the total amount of
CO2 released through fuels.

As with all intensity standard mechanisms, the LCFS implicitly subsidizes the sales of fuels
that are “cleaner” that is, lower in carbon intensity than the standard, and pays for the sub-
sidy through charges imposed on fuel that is “dirtier” than the standard (CI rating above the
standard). Sales of individual fuels rated at a CI below the standard generate credits, and fu-
els rated at a CI above the standard generate deficits, in amounts proportionate to volumes,
with credits and deficits accruing on emissions relative to the standard. The LCFS requires an-
nual compliance by regulated entities; all incurred deficits must be met by credits generated by
production of low-carbon fuels or purchased from a credit market. The units of LCFS credits
are dollars per metric ton of CO2e. LCFS credits can be banked without limit, allowing over-
compliance under less stringent standards to help cover increased obligations as the standard
grows more stringent, and they are fungible - meaning credits generated in any fuel pool are
treated equivalently.

One of the attractions of policies like the LCFES to the policy community is that these sub-
sidies and charges can work to partially offset each other; this, plus the fact that the charge or
subsidy falls only on emissions relative to the standard, dilutes the pass-through of the implied
carbon cost to retail fuel prices. For example, currently in California LCFS credits are valued
at a little under $200/ton of CO2e, while credits under California’s cap-and-trade program are
valued at a little under $20/ton. Despite the fact that the LCFS carbon price is an order of
magnitude larger than the price in the cap-and-trade program, the impacts of the two charges
on retail fuel prices for conventional gasoline is roughly the same (about 18 cents per gallon).
This consequence of the LCFS has also been criticized by environmental economists, who note
that the dilution of the carbon cost works to encourage more fuel consumption than would
arise under alternative instruments such as a carbon tax. In an extreme case, the subsidy of
“cleaner” fuel could spur consumption growth to the point where the quantity of fuel that
is consumed overwhelms the reduction in the carbon intensity of the fuel and carbon emis-
sions can increase. With conventional fuels, this extreme case is unlikely as it would require
extremely price-elastic fuel demand. However, the overall point that, relative to other regula-

tions, the LCFS can encourage consumption of fuels has continued to raise concerns in some

11 Alternative jet fuel can generate credits, but petroleum fuel is not charged deficits. Thus alternative jet is another
pool of credits for offsetting on-road petroleum use.
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circles.

Within the EV context, the negative consequences of the subsidy effect are linked to the
question of how much conventional travel, and therefore fuel consumption, is displaced by the
EV vehicle miles travelled (eVMT) induced through heavy subsidies. At one extreme, if EV
subsidies induce eVMT from a household that previously relied exclusively on mass transit,
the GHG savings are negative. At the other extreme, if every mile driven in an EV displaces a
mile in an ICE vehicle, the GHG savings would be a function of the relative carbon intensities
and fuel efficiencies of the two technologies. The LCFES framework adopts this latter approach,
assuming that each eVMT offsets an amount of petroleum blend fuel used in a representative

conventional vehicle.

3.1.1 Carbon Intensity: The Foundational Metric

The complicated process of calculating the carbon intensity (CI) of each fuel (or activity) is a
foundational element of the LCFS. The reasons for the complexity are twofold. First there has
been a desire to include GHG emissions from as much of the “lifecycle” of a fuel’s production
as possible. This tendency toward lifecycle measures is an offshoot of the wide use of biofu-
els to comply with the regulation. Since the tailpipe GHG emissions of biofuels are not that
different from those of petroleum-based fuels, any GHG benefit from the use of biofuels re-
quires consideration of the carbon captured while growing feedstock crops.'> Once the door
to considering one aspect of a fuel’s lifecycle - crop production - was opened, it was natural
to consider other aspects of the lifecycle - ranging from emissions from fuels burned in the re-
fining process to the GHG impacts of “indirect land use change” (ILUC) such as deforestation
stimulated by higher demand for croplands.

The second complication with developing and applying a CI score within an LCFS is that
assumptions are necessary to link the carbon intensity (grams per megajoule) of a given fuel
into a metric (tons of CO2e) that is directly comparable across fuels. The issue is that different
fuels are used in different vehicles under different conditions and therefore create different
GHG impacts. A "low carbon” fuel used in a very fuel inefficient vehicle could still produce a
relatively large amount of GHG. In order to make different fuels directly comparable, the LCFS
maintains a series of formulas representing assumptions about aspects of the fuel use, such as

the average mileage (joules/mile) of vehicles using a specific fuel.

12Carbon cap-and-trade programs, which typically encompass a much broader set of carbon emissions, usually treat
biofuel emissions as zero-carbon, essentially assuming that the lifecycle emissions are zero. In principle lifecycle ac-
counting methods could also be used under a carbon tax or carbon cap system, but to date they have not been.
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The depth of complexity in this process is reflected in the CI scores awarded to a fuel such
as “renewable” or captured, methane. The production of renewable methane results from the
capture of methane from some location, such as landfill sites or animal-waste ponds at farms,
that would otherwise emit methane directly to the atmosphere. Capturing methane therefore
creates climate benefits, under the condition that its release was unregulated to begin with.
In order to translate that benefit into a metric comparable with a gallon of ethanol, the LCFS
makes an assumption about what would have happened to the methane if it had not been
used in transportation, as well as how much methane is needed for a given mile of transport.
When the resulting CI score of this fuel is negative (e.g. consuming the fuel in a vehicle creates
climate benefits), sellers of renewable methane indeed benefit from the fact that most natural
gas powered vehicles are assumed to be less efficient than their conventional counterparts, and
in this way “sequester” more carbon per mile.

This example illustrates an idiosyncracy of the LCFS when it is applied to fuels that could be
used for applications outside transportation. The LCFS credits fuels used in transportation un-
der the assumption that they displace conventional transportation fuels, and ignores any other
potential alternative value. However, since methane (or natural gas) is also used in electricity
generation, home heating, and industrial applications, the consumption of renewable methane
in a vehicle eliminates the possibility that this methane could have been used elsewhere. Until
recently LCFS credits have only been available to methane that is “booked” against gas used
in vehicles, and therefore renewable methane earns a much higher price in the transport sector

than it would if used in one of these other sectors.!3

3.1.2 Setting Carbon Intensity for EVs

The previous sections allude to the fact that crediting a reduction in carbon content of liquid
fuels used in the same kinds of vehicles in (more or less) the same way as conventional fuels is
more straightforward than extrapolating the approach to new fuel/vehicle types. Calculating
the amount of LCFS credits produced through the sale and consumption of electricity in an

electric vehicle also requires:

(i) The amount of electricity used for vehicle charging.

(ii) The carbon intensity of the electricity used for vehicle charging.

13More recently, renewable methane that generates electricity can also be “booked” against electricity used for EV
charging. Biogas used to make renewable hydrogen can also be credited as a transport fuel or input to fuel production.
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Figure 3: Comparison of Residential Charging Load Estimates
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(iif) The amount of electricity required to produce a unit of travel (e.g. eVMT) and the amount

of carbon (gasoline) displaced by that eVMT.

There is little direct measurement of any of these factors. In most cases an administrative
value based upon analysis and assumptions made by the California Air Resources Board, the
agency overseeing the implementation of the regulation, is applied. Below we briefly summa-
rize the assumptions made about each of these factors and the resulting values assigned for

purposes of generating LCFS credits.

i Quantity of Electricity used for Charging.

At first glance, it may be somewhat surprising that even the amount of electricity going into
vehicles is in most cases not currently directly measured. This is because most households do
not separately meter the electricity going into vehicles from that going toward other household
uses. According to recent LCFS figures, roughly 85% of EV credits for passenger vehicles are
assigned for unmetered home charging. Until recently, the amount of home charging was
estimated based upon the observed charging of a small sample of households who chose to
install separate meters for charging their EV. All other homes with EVs were assumed to charge
at a level equal to that of the average of the sample of directly metered households in the
same utility area. There are strong reasons to believe that this is a highly biased sample of EV
charging. Recent estimates from Burlig et al. (2020) indicate that actual home charging may be
less than half as much as the values currently assigned to EV-owning households (figure 3).

Figure 3 highlights another shortcoming of the current load estimation approach - it makes
no accounting for the model or type of EV and instead assumes all vehicles charge equally.

If these estimates are correct and apply broadly in other utility regions, the amount of LCFS

17



credits generated and awarded for EV charging may be close to twice the amount warranted
by actual EV usage.'* As discussed below, the LCFS in California now includes measures that
provide additional incentives to directly measure residential vehicle charging, so presumably
the share of unmetered charging could decrease going forward. The implication of this result
is that EVs are likely being driven far less than LCFS assumes them to be. In addition, some
surveys of transportation usage Davis (2019) imply that the average EV is driven considerably
fewer miles than the average conventional vehicle. If EVs are being driven less, they are also
presumably not displacing as much conventional fuel as the regulation gives them credit for.
If EVs are not being driven less, it raises the question of where they are being charged. The
LCFS as currently structured appears to over-compensate for residential charging. If the LCFS
assumptions about total charging are correct than credits for away from home charging are

massively under-represented.

ii Carbon Intensity of the Electricity.

The ARB uses two distinct potential types of values for the CI score of the electricity. For
“generic” charging the ARB uses a value of 82.92 gCO2e/M], which is based upon an annually
updated estimate of the average carbon intensity of all electricity consumed in California. This
value could be misleading to the extent that the marginal electricity used for a vehicle may be
of higher (or lower) carbon intensity than the overall average. This is because the production
of electricity entails a mix of fuel sources, some of which (e.g. nuclear and solar) are producing
at their maximum output whenever possible. The key metric for the attribution of additional
carbon emissions is the change in total power sector emissions resulting from an increase in
charging demand. The marginal carbon emissions rate could also depend upon the time of
day, as well as other system conditions such as the amount of renewable electricity generation.

The ARB now allows entities to use CI scores that deviate from the average grid, in ways
that reflect actual or “booked” electricity associated with charging. An entity can claim “smart
charging” credits that are more reflective of marginal emissions, when hourly metered data for
electricity going into a vehicle are available. The CI score associated with this electricity varies
by the hour and is calculated based on CPUC data. The ARB also now offers the ability for
some electricity to claim a CI value lower than the grid average (often a CI score of zero) if

book-and-claim accounting establishes a contract for electricity of the appropriate CI, and the

4The original regulation foresaw the phaseout of crediting for unmetered residential EV charging around mid-
decade, but regulatory amendments removed that stipulation, allowing continued use of CARB'’s estimates of resi-
dential unmetered charging, already in effect to that point. The regulation also indicates use of the best available
informaiton to make the estimate for metered residential charging to be applied to unmetered charging, but does not

supply information on how the metered estimate is made.
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low-CI electricity can be shown to offset vehicle electricity charging.!> The intent of allowing
these categories of classification appears to be to reward, in the case of smart charging, timing
of charging to match lower marginal emissions on the grid, and in the case of zero or other low
carbon electricity credits, the procurement of this electricity by firms that sell either power for
vehicles or, in the case of metering via the use of onboard telematics, the vehicles themselves. ¢

While the low-CI electricity initiative has unlocked access to further EV credit values for
firms in EV supply chain, the logic applied to attribute carbon savings to such firms is ques-
tionable. For renewable electricity to be the marginal source of electricity in EV charging, said
charging would have to be occurring simultaneously (and geographically co-located) with the
curtailment of renewable energy sources due to some kind of “over-generation” condition.

Even in California, such curtailments are relatively minimal.

iii Electricity used and Gasoline displaced for a mile of travel

The LCEFS subsidizes the sale and usage of some types of energy. The justification for an
environmental payment for using energy is that the use of the subsidized fuel displaces some
amount of “dirtier” fuel. As discussed above, each eVMT is assumed to displace a conventional
ICE VMT. In the case of EVs, this means that, while the “mileage” of different EV models
varies (just as the mileage of ICE vehicles does), the LCFS necessitates an assumption about
the efficiency of a representative EV relative to a representative ICE vehicle. This value, called
the Energy Economy Ratio (EER), is set at 3.4 for light-duty electric vehicles.!” In other words,
a joule of electricity used for transportation is assumed to be consumed in a vehicle that is 3.4
times as efficient (in joules/mile) as the ICE vehicle whose VMT is assumed displaced by the
eVMT.

The EER, as a ratio, is dimensionless. However, the GHG credit calculation requires a con-
version of each type of energy (kWh of electricity, gallons of gasoline, mcf of methane) into
a common unit of energy before the ratio can be properly applied. This conversion uses the
Energy Density (ED) of each type of fuel. These factors are combined with the carbon intensity
(CI) of each form of fuel, to produce the following credit “obligation” formula for kWh sales

(in grams of CO2e).

15Contracted low-CI electricity must be either generated within the California Balancing Authority or meet CPUC
REC deliverability requirements(ARB 2019). In the case of zero-CI electricity, the source must be renewable, excluding

biomass, biomethane, geothermal, and municipal solid waste.

16 A fter recent amendments, automakers, utilities, or other entities involved in home charging, can earn credits on the
increment of CI savings below the grid average, if they provide the necessary telematics information to isolate home

charging, and the residential electricity is non-metered.

7The detailed regulation is described in https://ww?2.arb.ca.gov /sites/default/files/2020-07 /2020 lcfs_fro_oal-

approved_unofficial 06302020.pdf
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Since the CI of electricity is lower than that of the standard, this “obligation” is negative,
meaning that the above formula reflects the credits earned for each kWh of electricity that is
estimated to go into an EV. If the kWh earn the zero CI classification, then the credits generated
would equal the CI of the standard times the ED of electricity and the EER of 3.4. Under
the current regulation this equates to .00113 tons/kWh, which at a credit price of $200/ton
equates to about 22 cents/kWh. For reference that the wholesale cost of electricity is roughly
5 cents/kWh and the retail price in California is about 20 cents/kWh (Borenstein and Bushnell
(2018)).

3.2 Infrastructure Credits

In 2018, the LCFS was amended to allow for credit generation from zero emission vehicle fuel-
ing infrastructure, namely hydrogen refueling stations for fuel cell vehicles and DC fast charg-
ers for EVs. The fueling infrastructure had to be put into public service in or after 2019. In-
frastructure crediting for ZEVs was the first allowance for LCFS credit generation not directly
tied to actual low carbon fuel use, and was crafted in response to an Executive Order instruct-
ing ARB to recommend ways to use the LCFS program to assist ZEV infrastructure build-out.
EV fast charging infrastructure credits are limited to 2.5% of deficit generation from the prior
quarter; hydrogen has a similar limit. ARB also sets credit generation potential per charger to
try to stay within a bound of its installation costs. Infrastructure credits are issued based on
what would have been earned had unused charging capacity been in use. The infrastructure
credits awarded at a given facility decline as operating capacity - and LCFS credit generation
for actual fuel flows - increases. Thus more infrastructure credits can be earned at stations that
support little actual charging, than at those with high volumes of charging. Applications for

EV fast charging infrastructure credits are open until 2025.

3.3 Advanced Credits

As of mid-2020, the LCFS was amended so as to harden the program’s credit price ceiling by
drawing on residential electricity credits expected to be generated in the future. In the case
of lack of compliance with the standard once parties have pledged already-generated credits

to a clearinghouse credit sale at year’s end to cover any remaining outstanding deficits, ARB
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releases to the large utilities the necessary “advanced credits,” which are then sold to regu-
lated parties that need them for compliance. The regulation stipulates a limit on the allowable
amount of such “advanced credits” and a schedule for their “repayment” to the program (by
ARB withholding the predetermined amount of residential electricity credits generated in a
future year). The idea behind the system was to create a mechanism to shore up the program’s
“soft” credit price ceiling while enhancing near-term incentives for vehicle electrification. This
mechanism, if deployed, will mean additional carbon savings relative to a stricter standard in
the future will be needed for compliance, as some fuel flows are then diverted to repaying the

advanced credits.

3.4 Disposition of LCFS credits for Electricity Sales

There are two issues related to the disposition of LCFS credits for electricity sales: who earns
the credits and how the credit revenue is spent. Both have evolved under the LCFS to reduce
the chances for electricity sales to go uncredited altogether while expanding the list of who can
earn electricity credits,'® and adding additional restrictions to credit revenue use.

Initially, electric service providers - utilities or provider of electric charging infrastructure -
earned the credits, unless explicit agreements were made to transfer credit ownership to others.
Explicit agreements allowed credit generation rights to transfer to charging station owners or
homeowners. There were no restrictions, at least from the ARB, on how revenue from LCFS EV
credits was used. In 2012, the program was amended to give charging station and fleet owners
first claim on public charging EV credits, with the utility able to opt-in to claim credits if others
didn’t act. The utility remained the credit generator for residential charging. This narrowed
the scope for potential LCFS credits being “stranded” due to inaction. The 2012 amendments
also directed credit sales revenue to be used in ways that would benefit current EV customers,
provide rate options to encourage off-peak charging, and educate consumers on EV benefits.
Further amendments in 2016 loosened the first criterion so that sales revenue must benefit
current or future EV customers, made the list of eligible non-utility credit generation entities
for light-duty vehicles - charging stations and EV fleet owners - more explicit,! and closed the
loop on the potential for stranded credits by having all unclaimed electricity credits default to

the utility.

18Electricity is an opt-in fuel in the LCFS, meaning it is not explicitly regulated because its CI was deemed to meet
last-year targets from the outset.

19The amendments also expanded the list of EV types that could claim credits to include off-road sources, such as
electric forklifts and electric guideway (e.g., light rail)
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This system resulted in a patchwork of programs statewide to spend LCFS EV credit value.
For the utilities regulated by the CPUC, expenditure programs had to be approved and details
are in the public sphere. One utility, SDG&E, used EV revenue from 2017-2019 for an annual
rebate to registered EV owners in its utility area. The remaining CPUC utilities (PG&E and
SCE) instituted post-purchase EV rebates.?

Additional LCFS amendments in 2019 created the possibility for low-CI electricity credits,
as well as a framework to substantially shift EV credit revenue toward a single statewide point-
of-purchase rebate program. Residential charging at grid-average CI generates “base credits,”
with the electricity provider earning the credits. Low-CI residential electricity generates “in-
cremental credits” based on the gap between the grid-average CI and the charging electricity
CL?! For metered electricity, the entity with control over the metered data is eligible to earn the
credits, meaning EV manufacturers in the case of no at-home metering.

Residential “base credits” provide the funding for the statewide point-of-purchase rebate
program, called the California Clean Fuel Reward. Investor-owned utilities must funnel 67%
of residential base credit revenue towards point-of-purchase rebates. Publicly-owned utilities
have lower percentage contributions that vary by utility size, and edge up in 2023. The max-
imum amount of the rebate will increase with EV battery size. The funds support a rebate of
$1500 per vehicle that started November 17, 2020.22

Other utility EV credit value programs are closing out. Amendments made in 2020 added
an equity dimension to EV credit disposition. Starting in 2022, utilities must earmark a propor-
tion of the remainder of the EV base credit value (called “holdback credits”) for use in projects
that support transport electrification targeted at disadvantaged or low-income communities,
rural areas, and/or low-income individuals. The rest of the revenue from EV credits - includ-
ing incremental credits earned for low-ClI electricity used at residences - is subject to the same

spending restrictions as before.

4 Survey of Empirical Evidence

The extent to which LCFS can promote GHG abatement via EVs depends on its ability to shift

incentives on three margins: up-front cost relative to gasoline alternatives, relative usage ex-

20For SDG&E, annual per vehicle rebates for EV owners were $200, $500, and $850 for 2017-2019, respectively. The
other utility one-time post-purchase rebates ranged from $450 to $1000. In the case of SMUD, the EV owner could opt
for a one-time $599 cash incentive or a Level 2 charger.

2INon-residential low CI electricity credits do not have these categories.

2https:/ /ww2.arb.ca.gov/news /carb-and-california-electric-utilities-partner-offer-consumers-1500-electric-cars.
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pense, and convenience. There is a growing body of academic research seeking to quantify
the effects on these margins. On the other hand, the EV market is young, and high-quality
research often requires retrospective analysis that spans a high volume of cars over a long pe-
riod of time. For this reason, we continue to rely on evidence of consumer behavior in the
context of gasoline-powered vehicles. There are many questions still in need of deeper study.
In this section we review the state of peer-reviewed empirical evidence that exists today, refer
to works-in-progress (mainly by the authors) that has not yet reached the journal submission

phase, and identify gaps in our knowledge that require more research.

4.1 The importance of purchase incentives

Up-front purchase incentives, mainly in the form of government subsidies, are an important
policy lever for stimulating EV adoption. Several papers estimate the impact of these incentives
on demand for hybrid, electric or alternative-fuel vehicles.

Some insights can be gleaned from research on hybrid adoption. Both Gallagher and Mueh-
legger (2011) and Chandra et al. (2010) exploit the timing and coverage of U.S. state and Cana-
dian province hybrid vehicle incentives, and estimate that a $1000 tax incentive was associated
with 31 to 38 percent increase in hybrid vehicle adoption. These are enormous effects. They
may reflect the importance of incentives on early adoption of hybrids, or perhaps they stem
from particularities of the markets being studied. Estimates of the response to EV subsidies are
substantially lower.

A 10 percent subsidy-induced decrease in EV purchase price leads to a roughly 10-35 per-
cent increase in EV adoption, according to existing evidence in the U.S. Li et al. (2017), Li (2017),
and Springel (2017)) estimate demand elasticities for early EV adopters in the range of 1-2. Clin-
ton and Steinberg (2017) estimate an 11 percent increase in EV registrations for every $1000 in
subsidies. They don't report an elasticity in the paper, but at $30,000 purchase price their es-
timates imply an increase in demand of 33 percent in response to a 10 percent price decrease.
Muehlegger and Rapson (2018) examine the effect of subsidies on low- and middle-income EV
demand. They also find a 33 percent increase in demand from a 10 percent subsidy.?®

Some caution is warranted when considering extrapolating these results to future EV de-
mand. Research on past programs may not provide a good guide as to the impact or fiscal
costs of meeting ambitious EV adoption targets for two main reasons. First, past incentives

for alternative vehicles rarely offer the quasi-experimental variation necessary for clean causal

23The rate of subsidy pass-through is also an important policy parameter. All evidence points to full pass-through,
both in the context of hybrid cars (Sallee (2011), Gulati et al. (2017)) and EVs (Muehlegger and Rapson (2018).

23



identification. In virtually all cases, the decision to offer an incentive may be correlated with
underlying demand for EVs. States with populations predisposed to purchase EVs are more
likely to offer incentives, confounding estimation of the causal impact of incentives on vehicle
adoption. For example, Californians have a high underlying appetite for EVs, and California
offers among the most generous EV incentives in the country. Even in settings where subsidies
are plausibly exogenous, such as in the case of the program studied by Muehlegger and Rapson
(2018), other features of the setting may make it difficult to generalize to other states or popu-
lations. Second, the populations that have adopted EVs thus far may not exhibit the same price
sensitivity as subsequent target populations. It helps to have studies that examine EV demand
in low- and middle-income populations, such as Muehlegger and Rapson (2018); but there is
always a possibility that car buyers in regions that have not been exposed to EVs to the extent
that, say, California has, will be very different. Of particular interest are households living in
multi-unit dwellings. For these drivers, availability of in-building charging infrastructure may
be a far more effective inducement than up-front discounts to the purchase price.

Finally, we note that the fact that subsidies are effective at increasing EV demand consti-
tutes a ‘glass half-full, glass half-empty” paradox. On one hand, policymakers likely view high
responsiveness of EV demand to EV subsidies as a positive. Their policies are working! How-
ever, the same result can be viewed through a different lens. To the extent EV subsidies are
effective, and indeed perhaps responsible for the majority of EVs on the road today in the
world, this means that the EV market would be substantially smaller without those subsidies.
From that viewpoint, attempts to expand EV adoption into the mass market will prove to be
difficult due to the fact that relatively few customers appear willing to pay unsubsidized mar-
ket prices EV technology. This implies that large ongoing subsidy bills will be necessary to
meet ambitious adoption goals. Under such a scenario (which we view as entirely plausible),
the main justification for subsidies today ought to be to bring down EV costs in the future. Un-
fortunately, there is little theory that predicts governments will be more effective at reducing
long-run EV costs than private firms. Moreover, it is almost impossible to estimate that causal
effect of subsidies on future costs. This more pessimistic scenario reinforces the wisdom of

maintaining viable low-carbon transportation options beyond EVs.

4.2 The dual roles of energy costs

Energy costs affect two important consumer decisions: whether to adopt an EV in the first

place, and how much to drive it conditional on adoption. In this section we will review the
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state of evidence on each of these margins. The bulk of empirical work in this area studies
consumer behavior relating to gasoline-powered cars, but we nonetheless view it as relevant
to the EV market. The authors of the present study are writing what we believe is the first
study of the effect of energy costs on EV adoption, and we will mention preliminary results
from that study in this section as well.

There is a growing consensus in the academic literature that car buyers incorporate future
fuel costs in their willingness to pay for fuel economy at the time of purchase. This makes
sense, because energy costs and fuel economy determine how costly it is to drive a mile in the
car. To the extent buyers are forward-looking at the time of purchase, all else equal, they will
be willing to pay more for a car with lower future operating costs. To compare finding across
different papers, results are typically reported in terms of how much a car buyer is willing to
pay at the time of purchase for $100 in present value of future fuel savings.?*

Four recent papers find that consumers are willing to pay between $70 and $100 more for a
car today if it saves them $100 in (present value of) future fuel expenses, where $100 is referred
to as ‘full valuation’. Busse et al. (2013) find full valuation in the new and used car markets
in the U.S.; using different data and methodology, Sallee et al. (2016) find full valuation in the
used car market; Grigolon et al. (2018) find nearly full valuation ($91) in the European new
car market; and Allcott and Wozny (2014) estimate that car buyers are willing to pay $76 at
purchase for $100 in future savings.

Notwithstanding this evidence, controversy remains. Policymakers across the political
spectrum appear to be stuck on the idea that consumers are “myopic”, meaning that they are
not willing to pay today for future savings. This can be seen in assumptions of strong con-
sumer myopia that they build into their cost-benefit analyses. For example, both the Obama
(2016) and Trump (2018) EPA analyses of Corporate Average Fuel Economy (CAFE) Standards
assume that consumers are willing to pay only $15-$25 up front for $100 in (present value)
future fuel savings.

The valuation parameter is important for the EV market and prospects for EV adoption,
since electricity prices vary dramatically state-by-state. Potential EV buyers on a standard
residential electricity tariff in most of California are likely to be paying upwards of $0.30 per
kWh to charge their EV, as compare to roughly $0.10-$0.15 per kWh in most of the rest of the

country. These electricity price differences translate directly into cost per mile traveled by EV,

24“Present value” adjusts for the fact that a dollar received in the future are less valuable than a dollar received today.
Future receipts must be discounted in order to compare them to a payment made today. An appropriate discount rate
in this setting would be the interest rate at which car buyers can borrow money. Over the course of the studies we
discuss, a discount rate of 4-5 percent would be reasonable.
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making EVs far more costly to drive in California than in the rest of the mainland U.S.

The authors of this study have a working paper (Bushnell et al. (2020)) that estimates how
gasoline and electricity prices affect demand for EVs. We examine EV adoption behavior by
households on either side of electric utility boundaries in California, where many municipal
retailers sell electricity at prices far below those charged by the main investor-owned utilities in
the state. We find that high gasoline prices have a much larger effect on EV demand than high
electricity prices, at least among the relatively early adopters that we study (2014-2017). More
research is needed, particularly as EV adoption extends into the mass market, where financial
considerations may be more important than “warm glow” that motivates many early adopters.

Several papers also examine how VMT (intensity-of-use) is affected by cost-per-mile. The
highest quality evidence finds that a 10 percent increase in cost-per-mile induces a roughly 0-
2.5 percent decrease in VMT.?® Taken in total, these results imply that drivers may not adjust
their VMT very much in response to cost-per-mile incentives. However, direct evidence about

the effect of electricity prices on eVMT would be informative.

4.3 The role of EV charging infrastructure

It is often claimed that high EV charging station density stimulates EV adoption in nearby
neighborhoods. However, it is extremely challenging to assess these claims. Researchers must
disentangle a ‘chicken-and-egg’” problem to determine the direction of causation. In neigh-
borhoods with lots of charging stations and EVs, are the charging stations there in response
to many prospective customers, or was it the presence of the charging stations that induced
demand for EVs in the first place? Li (2017), Springel (2017), and Li et al. (2017) attempt to an-
swer this question. Readers of this literature are left with the impression that investments in EV
charging infrastructure are a more cost-effective at stimulating EV adoption than EV purchase
subsidies.

There is much more research needed to substantiate such a conclusion. To disentangle the
‘chicken-and-egg’ problem and understand the causal effect of charging station density on EV
adoption, researchers need a variable (a so-called ‘instrument’) that independently affects charg-
ing station density but is otherwise uncorrelated with EV demand. 1deally, there would be a policy
that affects the supply of charging stations in some places but not others. Unfortunately, such

variation has not been used yet in the empirical assessments. Instead, and understandably, the

ZKnittel and Sandler (Forthcoming) find a 1.5 percent decrease, but with substantial differences across vehicles.
Hughes et al. (2008) find a 0.3-0.8 percent decrease in recent years. Gillingham (2014) find a 2.3 percent decrease from
evidence in California. For a review of this literature, see Gillingham et al. (2016).
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literature attempts to estimate the relationship using either instruments that are likely to be
correlated with EV demand, and therefore not suitable to break the chicken-and-egg problem.

In the absence of credible estimates of the parameters of interest, theory can offer some in-
sight into the relationship. We offer three intuitive themes that are common to the empirical
research. First, network externalities operate largely at the local level, rather than the industry-
level. Although charging infrastructure in a distant metro area might make purchasing an
electric vehicle marginally more attractive, the local charging network is much more relevant
and valuable to a prospective buyer. Likewise, a large EV fleet in California might have little
impact on the decisions of a firm building charging stations in the Midwest. Like the external-
ities arising from local-pollution, a one-size-fits-all approach is unlikely to be successful, since
it will over-encourage adoption in some areas while under-encouraging it in others.

Second, if the network effects from each new EV on the road diminish as EVs become more
common, incentives are most valuable at the early stages of market development, and diminish
as the incremental network benefits from further increases in the fleet decline. Li (2017) offers
empirical evidence of diminishing marginal benefits - a 10 percent increase in level 2 charging
stations is associated with a 0.8 to 1.2 percent increase in the likelihood of adoption.

Third, compatibility plays an important role in facilitating network effects. Open standards
(in this case, charging stations that work with a wide range of vehicles) more readily generate
network effects across manufacturers. In contrast, closed standards (such as Tesla’s charging
network) generate benefits only for Tesla drivers and provide benefits that can be captured by
the manufacturer, limiting the external benefits that justify incentives for charging stations. Li
(2017) simulates that a common charging standard would both increase demand for EVs (by
facilitating network effects) and decrease the number of charging stations (by reducing overlap
of currently-incompatible networks).

What does this mean for LCFS? To the extent LCFS funds are used to subsidize charging
infrastructure investment, there would be enormous societal benefit to deploying those funds
in a manner that allows for credible ex post analysis of its effects. In the absence of more
credible evidence, it is unwise to rely heavily on EV charging investments as drivers of EV
adoption. While we may end up learning that such a causal relationship exists, we have little

confidence drawing such a conclusion from the existing literature.
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5 Conclusion

The electrification of transportation constitutes a transition of immense scale. There were fewer
than 350,000 EV sales in the U.S. during 2019, out of total auto sales of 17 million. While costs
of EVs are declining and acceptance of the technology has grown dramatically over the last
decade, a 2 percent EV market share implies that a shift to majority EV transportation is still
in its earliest phase. While the adoption of EVs would likely continue to expand (at least mod-
estly) absent aggressive policy support, major electrification on the time scales supported in
many climate policy plans will require substantial investment spurred by policy. In this white
paper we have summarized and discussed the three channels that policies typically influence:
vehicle cost, operating (or fuel) costs, and infrastructure support. To date, the most substan-
tial policy support of EV adoption has been directed at vehicle costs through tax credits and
a variety of other direct and indirect subsidies such as a ZEV mandate operating in several
states.

Despite the growing number of jurisdictions embracing electrification as a core greenhouse
gas mitigation strategy, and devoting considerable public and private funds in the pursuit of
this strategy, there are significant gaps in our knowledge about what margins most signifi-
cantly impact EV adoption. Therefore, we still do not know which policies are most likely to
successfully expand EVs on a significant scale, or even whether it is, in fact, even optimal to do
so. A major reason for these gaps in knowledge is the fact that, for the most part, policies sup-
porting EVs have not been implemented in way that makes them amenable to rigorous policy
evaluation. Simply put, policy evaluation requires being able to compare groups exposed to
these policies to similar groups that were not. Subsidies and infrastructure investment, where
they have been applied, have been rolled out simultaneously and broadly, making it very dif-
ficult to perform an empirical assessment of the causal relationship between policy support
and EV adoption. There are a handful of studies that have attempted to exploit the variation
over time, or geography, of tax credits, fuel prices, and infrastructure expansion, to measure
the impacts of these factors. While the research designs are not ideal, some preliminary lessons
have emerged.

First, as with conventional vehicles, purchasers of EVs are responsive to fuel prices. When
and where gasoline prices are high, consumers are more likely to favor EVs. In fact, consumers
appear to be much more sensitive to gasoline prices than they are to electricity prices when
choosing whether to buy an EV. This is probably due to the fact that electricity rates are often

complicated and not well understood, even by relatively sophisticated consumers. In parts of
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California it is more expensive to power an EV per mile than a reasonably fuel-efficient gasoline
car; and yet California is the epicenter of the U.S. EV market.

Second, EV purchase subsidies have been a key driver of EV demand in the U.S. Based on
the estimated effectiveness of federal and state EV incentives, it’s likely that over 30-50 percent
of the EVs currently driven in the US would not have been purchased without subsidies. There
are two important policy implications that follow from this result. On one hand, EV subsidies
will likely be an effective (and essential) component to future adoption of EVs. On the other
hand, the essential nature of EV subsidies reflects an unwillingness of car buyers to pay current
market prices for EVs. Why this may be the case holds the keys to shaping effective EV policy
in the future. If EVs simply do not provide people with the type of transportation services that
they desire, then it calls into question whether a full-scale EV transition is feasible (or even
a good idea). Alternatively, perhaps we are still so early in the EV transition that potential
buyers need to learn more about EV technology, and allow time for it to improve (e.g. cost,
range, charging networks) before considering it a genuine substitute to gasoline cars. The
advantage of more technology-neutral carbon policies is that they allow policy makers to keep
their options open, and allow consumer preferences and market forces to determine which
technologies are best suited to meet society’s transportation and environmental needs.

Third, EV infrastructure lags far behind the distribution and retail channel coverage of gaso-
line. Drivers on long-haul trips with EV technology currently have inferior refueling options,
and it would not be surprising if many prefer non-EV technology until that situation improves.
Moreover, people without parking at their place of residence (e.g. multi-unit dwellings) would
require access to charging elsewhere. Some research has shown that funds invested in charg-
ing networks induces more EV adoption than vehicle purchase rebates. However, this research
necessarily deals with the early phase of the EV market and is constrained by the lack of policy
and investment variation necessary to cleanly isolate the effect of charging infrastructure from
other factors.

The policy resources needed to dramatically expand the share EVs are potentially enor-
mous. The research described here estimates that a 10% decrease in the purchase price in-
creases EV sales by 10% to 35%. Electrification of even 20% of the US fleet would require an
increase of roughly 1000% over the 2019 EV market share, seemingly requiring a significant re-
duction in current EV costs and major continued subsidies. This raises a central policy question
about the support of electrification: where do these funds come from?

Broadly speaking there are two options: from general tax funds or from the petroleum
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based transportation sector. Subsidies and tax-credits drawn from general public funds could
continue to fund both infrastructure investment and vehicle purchases. A gasoline or carbon
tax can provide support in one or two ways. Such a tax (or carbon price) would make conven-
tional vehicles more expensive relative to EVs by raising their costs. If the funds raised through
the tax are further directed to EV subsidies it can further influence adoption. An intensity stan-
dard - the most prominent examples here are ZEV mandates and the LCFS - similarly charges
the high-carbon technology and automatically direct funds to subsidize EV adoption.

In many ways, the differences between an emissions charge and an intensity standard are
differences of optics and priorities. With a carbon tax, the main point is to set a price on carbon
and let firms and consumers decide how to change their behavior in response. The funds raised
is a secondary effect. With the LCFS (or a ZEV mandate) the point is to explicitly mandate lower
carbon sources (low carbon fuel or vehicles), and the mechanism that achieves the mandate is
an implicit tax on higher carbon sources that in turn funds the lower-carbon technologies. The
differences between “taxes” and “standards” is therefore sometimes overblown. Fundamen-
tally both act as taxes - either implicitly or explicitly - on dirty inputs. The main difference is
that a standard pre-commits the funds collected via the tax to a set of offsetting green inputs.
To date, public messaging around standards has also successfully avoided being pejoratively
labelled as “taxes.” However, it is not clear how long this success can be maintained. Cap-
and-trade programs were once considered politically easier to implement than taxation largely
because they imposed implicit, rather than explicit taxes. This advantage faded as opponents
were able to successfully frame such efforts as “cap-and-tax” programs.

What both approaches do share are elements of technology neutrality. The value of tech-
nology neutrality is largest when there is large uncertainty about the ultimate identity and mix
of fuels and technological solutions that can best achieve policy goals. Such policies reward
compliance based upon estimates of how much carbon savings they provide, rather than by
how they provide it.

This report has focused on the potential for a specific intensity standard, the low-carbon
fuel standard (LCFS) to significantly boost EV adoption. There is a paradox inherent in relying
upon a technology-neutral standard as a prominent source of funds for advancing a specific
technology, EVs. In order for a LCFS to direct sufficient revenues to the channels that appear
necessary to promote substantial EV adoption, it needs to changed in such a fundamental way
as to no longer really be a technology-neutral standard. In other words, it is possible to imagine

how the mechanism of a LCFS - raising revenue from sellers of high carbon fuels - can direct
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significant resources to EV purchases and infrastructure - but in doing so it departs substan-
tially from its original design paradigm of supporting low-carbon fuels.

California’s LCFS has started down this path by both awarding credits for activities other
than selling low-carbon fuels (such as installing charging stations) and by directing revenues
from electricity sales toward vehicle rebates, rather than lowering the electricity price paid for
charging vehicles. By contrast, the program contains no analogous incentives for biofuels in-
frastructure, such as the installation of e85 pumps. The resources directed to light duty EVs
amount to roughly 10% of the $3 Billion currently raised annually by the LCFS, under a se-
ries of extremely generous administrative rules and assumptions that favor EVs. Policymakers
have begun to treat the LCFS as a means for directing resources to preferred technology solu-
tions, such as ZEVS in California, setting the policy on a path different from the science-based,
technology-neutral fuel standard it was originally positioned to be.

From a policy perspective this transformation of the LCFS may be considered a feature
rather than a bug, at least for supporters of EVs. California leadership has decided upon EVs
as policy priority and is working to steer its existing climate policies toward that goal. The
complicated and subtle ways in which the LCFS now raises funds and directs them toward a
preferred technology solution may in the end make it a more durable and acceptable policy
tool than one that works in a more explicit and transparent fashion. In the process, however,
it will likely reduce the rewards for innovation in other solutions that are either more widely
applied today or readily put to use, and may have an important role to play in future low-
carbon transportation, particularly beyond the light duty sector in focus here.

One last potentially important factor through which a LCES can provide support is through
the price of electricity itself. Somewhat ironically, high electricity prices are a both barrier
that a LCFS in its “pure” form would be well positioned to address and the one aspect of
electrification that has not benefited from the LCFS to date. While research on California has
indicated that electricity prices have less salience than gasoline prices for purchasers of EVs,
this may be short-lived. The price of electricity does have an impact and there is reason to
believe that EV drivers will become aware of it over time.

The importance of electricity prices could also be larger outside of California, for two rea-
sons. First, electricity prices are considerably less complex in most US states than in California;
and, second, if the assumptions supporting the credit values of electricity in California are
taken at face value, the carbon savings from using electricity in an EV should be enough to

offset the complete cost of electricity. A zero-cost fuel could have considerable salience in pro-

31



moting the attractiveness of EVs. Therefore one role for a LCFS that has been largely untapped
may be to deploy it in the way it was originally designed, as means for subsidizing the price of

low-carbon fuel.
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