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Abstract

Real-world congestion zones are imperfect because they charge heterogeneous road users

uniform prices, and invite externality spillovers in space and time. I show that given these

imperfections, calculating optimal prices requires (i) individual-level externalities, (ii) indi-

vidual elasticities, and (iii) cross-price elasticities between priced and unpriced trips. Using

tolling microdata from California, I estimate a model of driving demand that yields these

parameters. I then estimate optimal prices for proposed zones in three U.S. cities. I find

that leakage pushes second-best prices below trip-level externalities, and that optimal peak

pricing recovers just 30-40% of the welfare gains of a first-best policy.
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1. Introduction

Economists have long advocated for charging road users to address the negative externalities

associated with urban driving (Vickrey, 1963; Parry, 2002). Following early policy experiments

in Singapore and London, a growing number of cities, including New York, Los Angeles, and

San Francisco, are considering implementing road pricing. Despite its history of advocating for

road pricing, however, the economics literature o↵ers little insight on how to implement road

pricing in practice, especially given that real-world policy instruments di↵er significantly from

the first-best policies prescribed by economists.

A first-best road pricing policy would charge drivers for the marginal social damages (the

time cost imposed on others plus the social cost of pollution generated) associated with every

vehicle trip. Practical constraints, however, render first-best road pricing infeasible in most

settings. Implementing a first-best policy would require detailed information about each driver’s

routes and emissions, as well as real-time tra�c data. It is typically too costly to collect this

information through a passive sensor network, and proposals for GPS-based pricing schemes

are often rejected on privacy grounds (Lehe, 2019). Consequently, city-wide road pricing often

takes the form of cordon zones — regions in the center of a city where drivers are charged for

entry. Real-world road pricing schemes therefore deviate from the first-best policy along two

important dimensions: First, feasible cordon systems cannot account for all of the heterogeneity

in congestion and pollution externalities across trips that all enter the cordon. Second, cordon

zones leave nearby roads unpriced, allowing for externality leakage. As a result, it is generally

unclear how to set cordon prices even if policymakers have perfect information about the social

damages associated with trips that pass through the city center (Parry, 2009).

In this paper, I adapt models from public finance to characterize optimal cordon prices

in the face of these policy imperfections. I then generate empirical estimates of how drivers

would respond to road pricing, and use these estimates together with formulas derived from the

theoretical framework to calculate second-best cordon prices.

The second-best pricing framework I build stipulates a set of parameters necessary for cal-

culating second-best road prices accounting for both leakage and imperfect pricing (i.e., many

vehicle trips with di↵erent externalities are charged the same price). Calculating optimal prices

requires information about (i) the heterogeneity in marginal trip-level externalities, (ii) the rela-

tionship between these externalities and individual price-responsiveness, and (iii) the elasticity

of substitution between priced and unpriced trips. Outside of road pricing, this framework can

be applied to any setting where externality heterogeneity and leakage simultaneously prevent

the implementation of a first-best corrective policy (e.g., electricity markets, or sin taxes).

In theory, the two policy imperfections –– leakage and heterogeneity –– have an ambiguous
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e↵ect on optimal cordon prices relative to prices in a first-best policy. Depending on the cor-

relation between social damages and driver elasticities, heterogeneous externalities could imply

optimal prices that are either above or below social damages (Diamond, 1973). The discrete

spatial and temporal cuto↵s in cordon pricing incentivize some drivers to shift trips in time and

space to avoid tolls. Absent heterogeneity, this leakage would imply optimal prices that are un-

ambiguously below average social damages (Green and Sheshinski, 1976). Whether second-best

prices are above or below average Pigouvian prices therefore depends on the sign and strength

of the correlation between price-responsiveness and individual externalities, as well as the size

of the leakage e↵ect.

In the empirical section of this paper, I use a natural experiment from the San Francisco

Bay Area to recover estimates of each of the parameters necessary to calculate optimal cordon

prices. In 2010, bridge tolls increased on all of the region’s bridges, and peak-hour pricing

was implemented on the region’s busiest bridge. I use this variation in road prices together with

administrative microdata from the region’s electronic tolling system to estimate a discrete choice

model of driving demand. The structure of this discrete choice model simplifies the information

required to apply the second-best tax framework (items (i)-(iii), above). Namely, it allows me

to populate a substitution matrix between alternative driving times and routes based on a small

number of parameters that describe driving choices.

I use this model of driving demand to calculate second-best optimal prices for the proposed

cordon zones in San Francisco, Los Angeles, and New York. I find leakage is the dominant

consideration in calculating second-best cordon prices; the possibility of drivers substituting

their trips in time or space leads to second-best optimal prices that are below the average social

damages associated with trips that enter the cordon. In San Francisco, for example, when

cordon prices are constrained to peak hours, the second-best optimal prices that account for

both heterogeneity and leakage are $2 to $3. This is below the average social damages generated

by trips that use the cordon during those periods ($3 to $4). Unsurprisingly, peak-hour cordon

pricing performs poorly relative to the (infeasible) Pigouvian prescription. The second-best

optimal road pricing scheme in San Francisco, for example, achieves only 33% of the total

welfare gains, 34% of the congestion reductions, and 30% of pollution reductions relative to a

policy where drivers are charged according to the marginal damages of each trip. Notably, these

results are driven by the policy’s ability to address congestion externalities, which tend to be 2

to 10 times larger on a per-trip basis than are pollution externalities.

To conclude, I investigate the prospects for improving cordon pricing policies. Allowing a

policymaker to set a fixed schedule of hourly prices between 6 a.m. and 7 p.m. generates sizable

welfare gains relative to a cordon policy constrained to charge prices only during peak hours.
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I estimate that these welfare gains range from $146 million annually in San Francisco to $543

million annually in New York. In each city, however, a cordon zone with second-best hourly

prices would still leave a substantial portion (roughly 20 to 40%) of the possible welfare gains

unrealized due to remaining issues of spatial leakage and imprecise pricing.

This paper makes three primary contributions. First, this paper provides the first empirical

estimates of optimal cordon prices that account for both pollution and congestion. I recover

optimal peak-hour cordon prices that range from $2-3 in San Francisco to $4-7 in New York.

While there are robust literatures documenting the reduced-form relationship between road pric-

ing and tra�c speeds (Yang, Purevjav, and Li, 2020; Gibson and Carnovale, 2015; Leape, 2006),

as well as tra�c and local air pollution (Currie and Walker, 2011; Anderson, 2020; Gibson and

Carnovale, 2015), these results have yet to be combined into optimal cordon prices that account

for both of these externalities, as noted by Parry (2009). Importantly, the optimal road prices

presented in the paper also account for imperfections in real-world policies. Both theoretical

and empirical studies suggest that while price or quantity-based cordons can ameliorate pol-

lution and congestion in some settings (Zhong, Cao, and Wang, 2017; Börjesson et al., 2012),

policies designed without regard to agent re-optimization and heterogeneity may lead to poor or

perverse policy outcomes (Davis, 2008; Zhang, Lawell, and Umanskaya, 2017; Hanna, Kreindler,

and Olken, 2017; Green, Heywood, and Paniagua, 2020). Calculating optimal cordon prices

through a second-best tax framework explicitly accounts for these considerations.

Second, this paper contributes to the literature on externality taxation by characterizing

second-best prices in the presence of both heterogeneous externalities and externality leakage.

This framework combines two canonical models of second-best pricing: the “Diamond” model

(Diamond, 1973), which shows that second-best uniform prices are a weighted average of hetero-

geneous externalities, and the “leakage” model, where second-best optimal prices reflect marginal

damages, less a term that captures leakage (substitution) to other unpriced goods that also gen-

erate externalities (Green and Sheshinski, 1976, see also Davis and Sallee, 2020; Holland, 2012).

Specifically, I consider the setting where there are many externality-generating goods, the ex-

ternalities vary across consumers and goods, and only a subset of the goods are taxable. I show

that in the presence of both heterogeneity and substitution, the optimal second-best tax formula

combines characteristics of the canonical Diamond and leakage models. Holding fixed all other

taxes, the optimal tax on any one good is the Diamond-weighted marginal damages associated

with the consumption of the good, less a term governed by the Diamond-weighted leakage to

other goods. The optimal second-best tax vector solves a system of equations where terms

in this system reflect individual externalities, own-price elasticities, and cross-price elasticities.

This characterization is most closely related to Allcott, Lockwood, and Taubinsky (2019), who
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characterize the optimal vector of taxes on sugary drinks in the setting with welfare weights that

reflect a planner’s distaste for inequality.

This extension of optimal second-best pricing is applicable in settings outside of transporta-

tion. In energy markets, for example, the externalities associated with electricity generation

di↵er based on the location of powerplants (urban or rural; upwind or downwind of popula-

tion centers), and policies implemented by states or utilities may allow for externality leakage if

electricity is imported from other jurisdictions. Sin taxes (e.g., cigarette taxes) similarly have

heterogeneous impacts on consumers, and taxing any single product may induce consumers to

substitute towards related (and under-taxed) sin products.

Lastly, this paper presents a new approach for estimating the willingness of commuters to

reschedule of their trips. Scheduling costs are key parameters in transportation economics (Vick-

rey, 1963; Arnott, De Palma, and Lindsey, 1990) and an important factor in determining the

possible welfare gains from peak-hour congestion pricing (Kreindler, 2018). Adapting tools from

the public finance literature on bunching, I develop an estimator that infers scheduling costs

from the excess density of trips taken during times of day that fall just outside a peak pricing

window. Because peak pricing is used to alleviate congestion in bridges and tunnels in many

cities, this estimation approach can be applied to understand scheduling in other metro areas.

2. Theory: Externality Taxation Under Heterogeneity and Leakage

Public economics provides an unambiguous prescription for addressing market externali-

ties: apply a (Pigouvian) tax equal to the marginal damages associated with consuming the

externality-generating good. In practice, policy instruments typically lack the precision and

coverage to execute this prescription. When corrective taxation cannot account for heteroge-

neous externalities or leakage (substitution) to other externality-generating goods, the second-

best optimal tax on any given good may di↵er substantially from the tax instituted in the ideal

policy. In this section, I outline canonical models of optimal taxation under each of these sep-

arate imperfections (heterogeneity and leakage), and then present a model that can be applied

to instances where heterogeneity and leakage simultaneously prevent the implementation of the

first-best.

2.1. Heterogeneity

For practical or legal reasons, policymakers are often constrained to apply a uniform corrective

price to a good where the consumption externalities associated with that good are not uniform.

In cordon zones, for example, drivers typically face a single charge for daytime trips, or a toll

that charges one price for peak-hour trips, and a lower price for o↵-peak trips.
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Under these pricing schemes, many trips that generate di↵erent externalities are charged the

same price. Sources of congestion heterogeneity include the total length of the trip, the time

that the trip is taken, and the specific roads used within and outside of the cordon. Sources of

pollution heterogeneity include vehicle attributes, travel speed, and trip length.

Diamond (1973) characterizes the second-best optimal uniform tax on a good which generates

heterogeneous externalities when consumed by di↵erent agents: The optimal tax is a weighted

average of the individual externalities, where the weights (henceforth Diamond weights) are the

individual own-price elasticities.

Setup: consider n consumers that derive utility from their consumption of an externality-

generating good, ↵i, and disutility from other’s consumption of this good: U i = U(↵1, ...,↵n) +

µi. The second-best optimal uniform tax in this setting is:

⌧⇤ =
�
P

h

P
h 6=i

@Uh

@↵i
↵0
iP

h ↵
0
h

(1)

Where ↵0
i is the derivative of consumer i’s demand for ↵ with respect to the price of ↵, and @Uh

@↵i

is the marginal external cost that consumer i imposes on consumer h by consuming ↵.

This expression captures an important principle in second-best corrective taxation: If in-

dividual elasticities are positively (negatively) correlated with idiosyncratic externalities, the

second-best uniform tax on the externality-generating good will be larger (smaller) than the

naive average of marginal damages. Intuitively, the role of corrective taxes is to move individu-

als to adjust their consumption of a product to the level where private marginal benefit equals

the social marginal cost. If a given group is unresponsive to price, however, the second-best op-

timal tax described above will provide the correct incentive for the responsive group to consume

at the level that balances private and social marginal costs.

2.2. Leakage

Just as legal or practical constraints prevent policymakers from perfectly targeting exter-

nalities, these constraints often also prevent policymakers from pricing all related externality-

producing goods. Cordon prices, for example, price only trips that pass over the cordon’s

boundary, leaving trips that avoid the cordon unpriced.

Green and Sheshinski (1976) show that in the case of two externality-generating goods (where

one is taxable and the other is not) and homogeneous marginal damages, the second-best pre-

scription is to tax the taxable good at its marginal damages, less a term that is increasing in

both the substitutability of the two goods, and the marginal damages of the untaxable good.

Consider a setting with two goods, x and y, and associated marginal external damages �x

and �y, respectively. A representative consumer with an exogenous income derives utility from

these two goods, and a quasilinear numeraire: U = U(x, y)+z. If a social planner is constrained
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to only tax x, then optimal tax is:

⌧⇤x = �x +
dy/dpx
dx/dpx

�y (2)

The second-best optimal price balances the direct social damages associated with consumption

of the taxable good (�x), with the leakage-associated social damages that result from an increase

in the price of the taxable good ( dy/dpx

dx/dpx
�y). In this paper, I will refer to the first term in this

expression ( dy/dpx

dx/dpx
) as the leakage share between x and y.

In the remainder of this section, I cover two extensions to the above models, the second of

which characterizes optimal cordon prices.

2.3. Leakage with Many Goods

Before characterizing second-best optimal taxes under both heterogeneity and leakage, I

first extend the two-good model in Section 2.2 to the case of many (homogeneous) externality-

generating goods, some of which are untaxable. This intermediate setting provides intuition

useful for understanding the model with heterogeneity presented in Section 2.4.

Setup: A representative consumer chooses quantities of M goods, (h1, ..., hM ) and a nu-

meraire, z. Each non-numeraire good has an associated (homogeneous) externality, �m that is

linear in the consumption of m. A policymaker can choose tax levels ⌧j for goods j 2 {1, ..., J}

where J < M . I assume goods k /2 {1, ..., J} are un- or under-taxed.

In Appendix A, I show that under these constraints the optimal tax for good j holding fixed

the taxes on all other taxable goods k is:

⌧j = �j +
1

@hj

@pj

0

@
JX

k 6=j

@hk

@pj
[�k � ⌧k] +

MX

l=J+1

@hl

@pj
�l

1

A (3)

This intermediate results is a generalization of the two-good case. Holding fixed all taxes other

than ⌧j , the optimal value for the final tax is its externality, �m, plus a term that captures

consumer substitution to other goods, and the level of unpriced externality of those goods.

Identifying the optimal tax vector requires simultaneously solving J equations in the form of

Equation 3. To do so, one can rewrite Equation 3 to separate the tax and externality terms:

⌧j +
1

@hj

@pj

(
JX

k 6=j

@hk

@pj
⌧k) = �j +

1
@hj

@pj

MX

l=1

@hl

@pj
�l

This yields J equations, each linear in the J tax levels:

aj1⌧1 + ...+ ajl ⌧l + ...+ ajJ⌧J = bj 8 j 2 [1, J ] (4)

Where ajl and bj are defined as: ajl =

@hl
@pj

@hj

@pj

and bj = �j +
MX

m=1

@hm
@pj

@hj

@pj

�l
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The a and b terms have intuitive interpretations. ajl is the share of the reduction in overall

consumption of good j that shifts to good l as a results of an increase in the price of good j.

That is, each a term is a leakage share between two taxable goods. bj is the overall reduction

in externalities that results from the increase in the price of good j; this consists of a direct

component, �j , plus the sum of leakage terms:
PM

m=1
@hm
@pj

/@hj

@pj
�l, which are negative if j is a

normal good and m is a substitute for j. This system can be written compactly as:
2

6664

a11 ... a1J

...

aJ1 ... aJJ

3

7775

| {z }
A

2

6664

⌧⇤1

...

⌧⇤J

3

7775

| {z }
⌧

=

2

6664

b1

...

bJ

3

7775

| {z }
b

The optimal tax vector with taxable J goods out of M total externality-generating goods is:

⌧ = A�1b (5)

Equation 5 shows that solving for the second-best optimal vector of corrective taxes in a set-

ting with incomplete tax coverage and substitution between many externality-generating goods

requires a) the consumption externalities associated with each good, and b) the substitution ma-

trix between all goods. Note that this substitution matrix contains cross-price derivatives and

not cross-price elasticities. A contains 1’s along the diagonal; when all j goods are substitutes,

the o↵-diagonal terms of A fall in the interval [0,�1].

2.4. Heterogeneity and Leakage

Finally, I characterize second-best taxes where a) there are many externality-generating prod-

ucts, b) policymakers can tax only a subset of these products, and c) externalities are heteroge-

neous in consumption of the products.

Although I apply this model to urban driving externalities in this paper, many markets

feature externalities and policy instruments that fit this description. Electricity generation,

for example, produces externalities that vary by location (Muller and Mendelsohn, 2007), and

local pollution policies may induce leakage if utilities or states import electricity across borders.

Similarly, “sin” goods have externalities or internalities that vary across consumers, and taxing

any one product (e.g., cigarettes) may induce leakage towards other products (e.g., vape pens)

that do not fall under a policymaker’s purview (Herrnstadt, Parry, and Siikamäki, 2015).

Lastly, as I introduce heterogeneity, it is worth noting that I assume that the social planner

acts to maximize aggregate welfare, as in Diamond (1973). The formulae that follow do not

account for redistributive preferences — heterogeneity is included in the model to reflect the

implications of di↵erences in externalities, rather than understand how externality taxation

interacts with inequality aversion.
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Setup: N heterogeneous consumers choose between M externality-generating goods and a

numeraire, z. I denote individual i’s consumption of good m as hm
i . Each individual has an

exogenous income µi. I assume that each consumer’s utility is a function of their consumption of

these M goods and a quasilinear numeraire, as well as other’s consumption of these goods (which

generate externalities and decrease i’s utility): Ui(h1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h1

N , ...hM
N ) + zi.

As in Section 2.3, a policymaker can choose tax levels for goods j 2 {1, ..., J} where J < M .

I assume goods m /2 {1, ..., J} are un- or under-taxed. I denote ⌧ j as the tax on good j. In

Appendix A, I show that the optimal tax on ⌧j as a function of the k other tax levels is:

⌧j =

PN
i=1

PN
g (@U

i

@h1
g

@h1
g

@pj
+ ...+ @Ui

@hM
g

@hM
g

@pj
)

PN
i=1

@hj
i

@pj

+

PJ
k 6=j

@hk
i

@pj
⌧k

PN
i=1

@hj
i

@pj

(6)

This expression resembles the homogeneous case (Equation 3), but each of the externality terms

is replaced by a Diamond-weighted term that account for individual-level heterogeneity in ex-

ternalities. As in the previous case, the optimal tax vector solves a system of J equations:

2

6664

a11 ... a1J

...

aJ1 ... aJJ

3

7775

| {z }
A

2

6664

⌧⇤1

...

⌧⇤J

3

7775

| {z }
⌧

=

2

6664

b1

...

bJ

3

7775

| {z }
b

(7)

Now, ajl and bj are defined as:

ajl =

PN
i=1

@hl
i

pj

PN
i=1

@hj
i

@pj

bj =

PN
i

PN
g 6=i

@Ui

@hj
g

@hj
g

@pj

PN
i

@hj
i

@pj| {z }
Diamond-weighted externality of j

+
MX

l 6=j

PN
i

PN
g 6=i

@Ui

@hl
g

@hl
g

@pj

PN
i

@hj
i

@pj| {z }
Diamond-weighted leakage shares

(8)

Solving for the second-best optimal vector of corrective taxes therefore requires (i) the (heteroge-

neous) externalities associated with each good, (ii) the relationship between these heterogeneous

externalities and individual price elasticities, and (iii) individual-level substitution matrices be-

tween goods.

These are considerable information requirements. In what follows, I demonstrate how to use

the structure of a discrete choice model to reduce the dimensionality of this problem. Specifically,

rather than estimating how each driver substitutes between each possible trip, I use a discrete

choice model over routes and times of day to populate the substitution matrix of options facing

drivers based on the attributes of those trips.
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3. A Discrete Choice Model of Driver Behavior

The theory outlined in Section 2 stipulates that calculating the second-best optimal cordon

prices requires information about the heterogeneity in the price responsiveness of di↵erent types

of trips that cross a cordon, as well as the rates of substitution between trips that can and trips

that cannot be priced. To recover these parameters, I estimate a canonical “bottleneck” model

of driving demand (Arnott, De Palma, and Lindsey, 1990, 1993).

Formally, imagine drivers i who choose between departure times h 2 H and a routes r 2 R

to satisfy their demand for travel. Included in this choice set is the outside (no trip) option.

Each driver has an exogenous ideal arrival time, h̃i. Drivers are atomistic and face travel times

T i(h, r) and tolls p(h, r) that may vary by route and time of day. A driver arriving before

or after their ideal arrival time incurs disutilities �e and �l per minute, respectively. Drivers

also incur disutility ↵ from each minute spent commuting. Lastly, each driver has idiosyncratic

preferences for routes and travel times, "ih,r. Driver i thus receives the following indirect utility

from traveling via route r at time h:

ui(h, r) = �↵T i(h, r)� �e |h+ T i(h, r)� h̃i|�| {z }
time early

��l |h+ T i(h, r)� h̃i|+| {z }
time late

��p(h, r) + "ih,r (9)

To clarify the mapping between this discrete choice model and the optimal tax formula

(Equation 7), a “good” (hj in the notation used in Section 2) is a trip taken on a given route

at a given time of day : g 2 H ⇥ R. Typical cordon zones have discrete spatial and temporal

cuto↵s.1 The possibility of leakage reflects the ability of drivers to adjust trips in time (h)

and space (r) to avoid tolls. Heterogeneity in externalities results from the fact that trips that

enter a cordon zone during the same time of day are charged the same price, but di↵er in

pollution externalities (a function of trip length, vehicle characteristics, and travel speed) as

well as congestion externalities (a function of trip length and tra�c density along the trip). To

estimate the relationship between idiosyncratic externalities and price-responsiveness, I allow �

(the coe�cient on price) to vary across externality quantiles during estimation.

The value of estimating this discrete choice model is that it greatly reduces the number of

parameter estimates required for applying the optimal tax formula outlined in Section 2. For

any choice set (e.g., cordon vs. non-cordon routes at various times of day), Equation 9 implies

a matrix of own and cross-price elasticities between choices, which reflect model primitives (↵e,

�e, �l, �) and trip attributes (T i(h, r), p, time late, and time early). In Section 4 through 7, I

1The London Cordon Zone, for example, charges road users £15 between 7 am and 10 pm. The Milan Cordon
Zone charges users €2 to €5 based on vehicle type between 7:30 am and 7:30 pm. San Francisco’s proposed zone
would only charge drivers during morning and evening peak hours.
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use tolling microdata to recover estimates of each of these parameters using a multinomial logit

model. I also apply a bunching estimator to the introduction of peak-hour pricing in the Bay

Area to produce separate estimates of scheduling parameters, �e and �l.

4. Natural Experiment: Tra�c Tolling in the San Francisco Bay Area

I use administrative tolling data from the San Francisco Bay Area together with revisions to

regional bridge tolls to estimate the model of driving demand outlined in Section 3.

4.1. Bay Area Bridge Tolls

FasTrak is an electronic tolling system used in California. Drivers are charged for using

certain roads (bridges and high-occupancy toll lanes) via transponders mounted to the car’s

dash. Drivers can pay with cash if they do not purchase a FasTrak device. Between 2010 and

2019, cash payers represented roughly 10% of all trips on Bay Area bridges. In the San Francisco

Bay Area, tolls are collected on each of the region’s trans-bay bridges (mapped in Figure 1) for

westbound trips only.

Figure 1 — San Francisco Bay Area Bridges

Before 7/1/2010 After 7/1/2010

Figure 1: This maps shows the four San Francisco Bay Area bridges used to estimate driver responses to toll
prices in this paper. The Richmond Bridge connects Richmond and the eastern Bay Area to San Rafael and
Marin County. The Bay Bridge connects Oakland to San Francisco. The San Mateo Bridge connects Hayward
to San Mateo. The Dumbarton Bridge connects Fremont to Palo Alto. Each of these bridges charges drivers for
westbound trips (as detailed in Figure A2).

4.2. Variation in Toll Prices

Bay Area FasTrak tolls vary by bridge, vehicle type, and time of day. I focus on passenger

vehicles (as opposed to light and heavy-duty trucks), which constitute roughly 97% of vehicle
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trips on Bay Area bridges. Currently, passenger vehicles are charged between $3 and $7 dollars,

depending on the time of day, the number of occupants, and whether or not the vehicle is

electric/hybrid.

In this paper, I leverage several changes in the tolling structure that occurred on July 1, 2010

to identify the parameters necessary to calculate optimal road prices. In 2009, the Bay Area

Toll Authority (BATA) adopted Resolution 90, which increased the base prices for passenger

vehicles from $4 to $5 beginning on July 1, 2010, and established peak-hour pricing on the Bay

Bridge (detailed below). This intertemporal variation in toll prices is plotted in Figure A2.

4.3. Peak-hour Pricing on the Bay Bridge

To address acute congestion on the region’s busiest bridge, the Bay Area Toll Authority

imposed peak hour pricing on the Bay Bridge (which connects San Francisco and Oakland)

beginning on July 1, 2010. Passenger vehicles crossing westbound through the Bay Bridge toll

plaza on weekdays between 5 a.m. and 10 a.m., or between 3 p.m. and 7 p.m. (peak hours)

were charged $6. Tolls for all other hours (o↵-peak) remained at the pre-2010 price of $4.

Prior to July 1, 2010, passenger vehicles with two or more passengers, as well as eligible

electric and hybrid electric vehicles were not subject to tolls on any Bay Area bridges. Starting

in 2010, these vehicles were subject to the full toll value during o↵-peak hours, but retained

a discount during peak hours: EV/carpool trips were charged $2.50 to use Bay Area bridges

between July 1, 2010 and January 1, 2019.

Foreman (2016) uses reduced-form approaches to provide valuable estimates of the responses

of Bay Area drivers to this change in bridge prices. The number of vehicle trips during peak

hours on the Bay Bridge decreased by 6 to 8% (400 to 550 vehicles per hour) following the

imposition of peak hour pricing. Travel during o↵-peak hours on the Bay Bridge increased by

4 to 20% (225 to 400 vehicles per hour). Point estimates suggest the $1 increase on the San

Mateo and Dumbarton bridges led to modest decreases in bridge use (15 to 48 vehicles per

hour). Notably, crossings on the San Mateo Bridge increased by 100 to 200 vehicles (around

a 5%) during peak hours, implying that some drivers switched from the Bay Bridge its closest

substitute in response to the peak-hour price di↵erence across routes.

To summarize this variation in road prices in this empirical setting, the 2010 revision to

bridge tolls in the San Francisco Bay Area replaced uniform prices with prices that varied across

bridges and times of day. Reduced-form analyses of this policy suggest that drivers responded

to these pricing by reducing the overall number of trips, as well as shifting their trips in time

and space. In the following sections, I use this variation in prices together with microdata on

driver choices to estimate the model of personal vehicle travel described in Section 3.
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5. Data

5.1. Reconstructing Choice Sets

Estimating the model outlined in Section 3 requires individual-level data on travel choices,

travel times, and road prices. To construct this choice set, I combine administrative microdata

from the FasTrak tolling system with historic travel time data purchased from TomTom’s Historic

Tra�c Stats database.

FasTrak Toll Data: I use administrative microdata from the FasTrak tolling system to

create a panel of individual-level driving choices. These microdata record any electronic trans-

actions that occurred on the four trans-bay bridges between January 1, 2009 and July 1, 2019. A

single observation in this data set includes the date, time, and location of the vehicle crossing, as

well as the vehicle class (axle number), the price paid, and an indicator for whether the vehicle

used the EV/carpool lane. For vehicles with registered FasTrak devices (vehicles that did not

pay cash) the microdata also include a unique FasTrak id number. Roughly 40% of observations

that use a FasTrak device also list the home zip code associated with the FasTrak holder. These

data contain hundreds of millions of trip records.

In estimating the discrete choice model, restrict the dataset on several dimensions. First, I

include only devices with a valid (Bay Area) zip code. Second, for the purposes of estimation,

I consider only trips taken in a window (weekdays between June 15th to July 15th) before and

after the 2010 change in toll prices. Third, in estimation, I use only the morning commute hours

(4 a.m. to 1 p.m.). Lastly, I drop devices with infrequent use (fewer than 50 weekday trips in

the year prior to the 2010 price change), or users that take multiple westbound cross-bay trips

per day during the 30-day study period. The resulting pool consists of 9,724 FasTrak devices

and 85,079 bridge crossings. I estimate my preferred specification using a 40% sample from this

pool of candidate devices; I impose this additional restriction for computational tractability.

These sample restrictions reflect the information requirements of the discrete choice model

of driving demand. Recall that this model specifies driver utility as a function of trip attributes:

travel time, time late or early, and price. zip code information is necessary for assigning travel

times to vehicle trips based on the distance between households and bridges. The restrictions

based on the frequency of trips reflects the need to infer ideal arrival times for drivers. For

FasTrak devices associated with daily commuters, ideal arrival times can be inferred based on

bridge-crossing times prior to July 1, 2010 (detailed below). Drivers that infrequently use bridges,

or that use bridges many times a day, are not well-described by the discrete choice model I employ

in this paper, as it is unclear how to assign these trips an ideal arrival time and trip termini.

While imposing these sample restrictions comes at the cost comprehensiveness, estimating the
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discrete choice model provides a distinct benefit relative to a reduced-form approach: For any

given choice set (e.g., driving options subject to cordon prices) the structure of the discrete choice

model directly implies the substitution parameters required for calculating optimal prices.

Travel Time Data: Because the FasTrak microdata include only the device zip code and

bridge used, I must infer trip travel times. I do so in two steps.

First, based on the zip code and travel behavior of a given vehicle, I use data from the 2012

California Household Travel Survey (CHTS) to infer a probability distribution over destinations

for that vehicle. For example, if I observe a driver from Oakland traveling via the Bay Bridge,

I enumerate the destination cities of all CHTS drivers from Oakland who reported using the

Bay Bridge. I repeat this for all of the driver’s trips, resulting in a probability distribution over

endpoints for each FasTrak device.

Second, I use TomTom’s Historic Tra�c Stats data to reconstruct the travel time between

an individual’s home zip code and each of the possible destination endpoints. The FasTrak data

provide hourly tra�c speeds for major roads in the 12 months before and the 12 months after the

July 2010 adjustment to Bay Area tolls. Importantly, I also use the TomTom data to estimate

counterfactual travel times. The result is a reconstruction of each driver’s choice set, namely the

travel time and price for each trip that driver took, as well as the price and travel time if they

had taken that same trip at a di↵erent time of day, or using a di↵erent bridge. This choice set

construction is described in full detail in Appendix E.

Ideal Arrival Times: Ideal arrival times, h̃i in Equation 9, are not directly observed, and

therefore must be inferred from each driver’s activity. For each driver, I assign h̃i as the modal

bridge crossing time of each individual during weekdays between January 1, 2010 and July 1,

2010, plus the weighted average travel time between the bridge toll plaza and each of the possible

endpoints for that driver.

For an illustrative example, consider a driver who exclusively uses the Bay Bridge during

the pre-period, and who most commonly crosses this bridge at 9 in the morning. A trip taken

by this individual that crosses the bridge at 9 a.m. would be assigned a value of zero for time

late and time early. A trip taken by this individual that crosses the bridge at 10 a.m. would

be assigned a value of time late of 1, plus any di↵erence in expected after-bridge travel time

between 9 a.m. and 10 a.m.

Lastly, it is worth noting that pre-period bridge crossing times may not indicate actual ideal

crossing times if within-day tra�c conditions provide su�cient incentive for drivers to shift their

trips in time to reduce overall commute times. The estimates of scheduling elasticities that I

recover from responses to peak-hour pricing on the Bay Bridge, however, are inconsistent with

this type of strategic scheduling. If Bay Area drivers have schedule costs low enough to induce
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them to strategically reschedule trips in the absence of peak-hour pricing, a much higher portion

of drivers should have responded to the imposition of peak-hour pricing by rescheduling trips to

just outside of the peak pricing window.

5.2. Externalities

Although data on trip-level externalities is not necessary for estimating a model of driving

demand, second-best optimal road prices depend on the correlation between the price elasticity a

given trip and the idiosyncratic externalities associated with that trip (see Section 2). I therefore

estimate the externalities (congestion and pollution) associated with each FasTrak trip.

I do not include accident externalities when calculating trip-level externalities. Although

most estimates of per-mile externalities in the economics literature suggest that accident exter-

nalities constitute a significant portion of the overall social costs of driving (Parry and Small,

2005; Anderson and Au↵hammer, 2014), empirical evidence suggests that the social benefits

from reduced accidents in cordon zones are an order of magnitude smaller than the benefits

associated with reduced congestion and air pollution (Green, Heywood, and Paniagua, 2020).

Broadly, this empirical evidence reflects the fact that the type of driving curtailed by cordon

pricing–––slow, daytime trips in cities–––results in relatively few fatal tra�c accidents. I provide

further discussion of accidents and optimal cordon prices in Appendix H.

Congestion Externalities: Congestion externalities vary significantly in space and time.

The transportation economics literature canonically presents congestion externalities as a func-

tion of tra�c density, measured in vehicles per lane-mile (Small, Verhoef, and Lindsey, 2007).

To assign congestion externalities to trips in the FasTrak dataset, I use estimates from Yang,

Purevjav, and Li (2020), who show that the marginal external (travel time) cost of tra�c is

convex in tra�c density. That is, congestion externalities are negligible when there are few

other vehicles on the road, but increase sharply with the number of vehicles per lane-mile. The

congestion costs from this paper are reproduced in Figure A3.

Using a network of tra�c sensors on roadways in the Bay Area, I infer the density along the

route for each FasTrak trip. These tra�c sensors are mapped in Figure A5. For each trip, I

use HERE Technology’s Routes API to identify the likely route between the zip code associated

with the device and the bridge crossed. For each tra�c sensor along the driver’s route, I use

estimates from Yang, Purevjav, and Li (2020) to assign a marginal external congestion cost (in

dollars/mile)2 to this point based on the average tra�c density at that sensor at the time of day

2The estimates from Yang, Purevjav, and Li (2020) are in yuan/vehicle/km. I convert these values to dollars
by a) converting currencies, and b) replacing the Beijing-specific value of time from (50% of the average wage
rate in Beijing) with a $20 value of travel time, which reflects research by Goldszmidt et al. (2020).

14



when the trip was taken. A trip’s total congestion externality is then the average of the external

congestion costs (in dollars/mile) along the route, times the length of the trip.

As noted above, because one trip termini is missing from the FasTrak data, I impute the

congestion externalities for the missing segment of the trip (between the bridge and the place of

work) using the likely destination locations conditional on observable characteristics (home zip

code, bridge used). Note that the majority of variation in externalities is driven by the choice of

bridge and time of day, suggesting any noise in this imputation process should not meaningfully

impact estimates of the relationship between idiosyncratic externalities and price responsiveness.

Emissions Externalities: Fuel combustion and brake wear in passenger vehicles generates

several air pollutants. These include “global” pollutants like CO2 and methane, which contribute

to climate change, as well as “local” pollutants like particulate matter (PM), nitrogen oxides

(NOx) and reactive organic compounds (ROCs), which negatively impact the health of nearby

residents (Anderson, 2020; Currie and Walker, 2011). Vehicle emissions factors–––the amount

of a particular pollutant that a vehicle emits while traveling a mile–––depend on a number of

variables, including type of fuel consumed, fuel economy, vehicle age, and vehicle speed.

I estimate emissions for FasTrak trips using data from the California Air Resource Board’s

Emissions Factor Database (EMFAC). This database contains estimates of the average emissions

rates of vehicles registered in each county as a function of vehicle speed. I then assign social costs

to these trip-level emissions. For global pollutants, I use the EPA’s 2021 social cost of carbon

($51 per ton) and methane ($1,500), respectively. Local pollutant damages reflect the cost of

emitting each pollutant at ground level in San Francisco, according to the EASIUR model of

local pollution damages. See Appendix C for details on individual pollutant costs.

Together, the data outlined in this section allow me to recreate the choices and choice sets

facing a sample of FasTrak users, as well as the social costs associated with these choices.

6. Empirical Strategy

I use two strategies to recover the primitives that determine driving behavior. In my preferred

specification, I use the variation in toll prices in 2010 together with the FasTrak microdata to

estimate 9 via multinomial logit regression. As a check for these results, I apply a bunching

estimator to the Bay Bridge’s notched tolling, producing a second estimate of scheduling costs.

6.1. Discrete Choice Model

As described in Section 5, the FasTrak microdata and the TomTom historic tra�c data allow

me to reconstruct the attributes of alternatives in the choice set (routes and times of day) for

each driver. I then use this reconstructed choice set to estimate the discrete choice model of

driving demand outlined in Section 3. The indirect utility from traveling along a given route at
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a time of day (Equation 9) can be written in terms of alternative-specific and individual-specific

components:

ui(h, r) = �h,r + �Xi
h,r + ✏ih,r (10)

Where �h,r reflects utility from common attributes of traveling at a given time on a given bridge

(namely the price of that trip), and Xi
h,r consists of the attributes of a given route and travel

time that are individual-specific (time late, time early, and total travel time).

I estimate this model in two steps. In the first step, I estimate choice probabilities and mean

utilities using a multinomial logit regression. In the second step, I regress mean utility on price,

using the 2010 toll adjustment as an instrument. This procedure follows Bayer and Timmins

(2007), and more immediately resembles Bakkensen and Ma (2020) and Cuesta, González, and

Philippi (2020), both of which leverage temporal variation in mean attribute utilities during the

second stage.

First stage: Assuming that idiosyncratic preferences ✏ih,r are i.i.d. type 1 extreme value, and

that an individual chooses the alternative that maximizes her utility, the expected probability

that individual i travels on route r at time h is during time period t is:

Pri(h, r, t) =
eu

i(h,r,t)

P
eui(h,r,t)

(11)

In the first stage, I estimate Equation 11 with a multinomial logit regression. This regression

has two periods: pre- and post toll adjustment. This equation produces estimates of coe�cients

individual-specific attributes (�) that are constant across the study period, and alternative-

specific mean utilities (�h,r,t) which very with time period t 2 {pre, post}.

Second stage: In the second stage, I regress the alternative-specific mean utilities on price.

To address the endogeneity of price (high prices on the bay bridge during peak hours reflect

high demand), I instrument for price using the 2010 adjustment in bay area bridge tolls. The

instrumental variables are (1) bay bridge peak, an indicator that equals one for peak hours on

the bay bridge after June 30, 2010, and (2) non bay bridge post, an indicator that equals one for

all bridges other than the bay bridge in the period after June 30, 2010.

�h,r,t = ↵1 + �[ph,r,t + ⇠h,r,t (12)

ph,r,t = ↵0 + ⇡1 ⇤ non bay bridge posth,r,t + ⇡2 ⇤ bay bridge peakh,r,t + ⌘h,r,t (13)

In my preferred specification, I interact ph,r,t and its instruments with a set of dummies for each

externality quantile (defined as the average externality associated with a given individual’s trips

during the pre period) to produce estimates of price responsiveness that vary with idiosyncratic

externalities.
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6.2. Own and Cross-Price Derivatives

The two-stage process described above yields estimates of each of the primitives in Equation

9. Recall from Section 2 that the optimal cordon price formula requires information about how

individuals substitute between available trip options. Given a set of routes and trip attributes,

these parameter estimates imply a matrix of own- and cross-price derivatives. I can therefore

use the parameter estimates from Equation 12 to predict substitution behavior in counterfac-

tual settings. As shown by Train (2009), for goods goods xj and xk, the own and cross-price

derivatives implied by a multinomial logit regression with individual-level attributes are:

@Pri(xj)/@pk =

8
><

>:

�iPri(xj)(1� Pri(xj)), if j = k

�iPri(xj)(Pri(xk)), otherwise
(14)

6.3. Bunching Estimator

In this section, I outline how I use notches in the peak-hour tolling on San Francisco’s Bay

Bridge to recover the scheduling costs of drivers. This alternative empirical approach acts as a

check for the results from the logit regressions.

Bunching estimators are used to infer structural parameters from the empirical density of

choice variables around kinks or notches in a budget set (Chetty et al., 2011; Saez, 2010; Kleven

and Waseem, 2013).3 Broadly, bunching estimators use changes in the density of choice variables

to identify characteristics of a “marginal buncher” –– an individual who is indi↵erent between

two positions along a notched/kinked budget set. Before presenting the bunching estimator, it

is therefore useful to characterize the marginal bunching individual in this setting.

Consider a group of drivers with homogeneous scheduling costs and perfect control over when

they cross a bridge that charges di↵erent tolls during peak and o↵-peak hours. A “buncher”

is a driver who would cross the bridge during peak hours in the absence of peak-hour pricing,

but who would adjust their travel time to just avoid the extra toll in a world with peak-hour

pricing. For the marginal buncher, the utility from the lower price is equal to the scheduling

costs of adjusting their trip to cross outside of peak hours. Equation 15 shows this indi↵erence

condition in terms of structural parameters. For simplicity, I examine the case of a driver who

faces a decision of whether or not to shift their trip earlier:

��p|{z}
Benefit from shifting

= �e�h| {z }
Cost of shifting

(15)

3Blomquist et al. (2021) notes that bunching estimators in cross-sectional settings rely on strong assumptions
about the distribution of choices under a counterfactual budget set. The panel data in this setting allow me to
directly compare the density of trips under notched and non-notched pricing schemes.
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Following the notation from Equation 9, � is the marginal utility of a dollar (normalized to 1),

�p is the change in price at the notch, �e is the cost (in dollars/hour) of shifting a trip earlier,

and �h is the number of hours between the price notch and the time of day when the marginal

buncher would have crossed the bridge in the absence of a price notch. The scheduling cost, �e,

can then be written as a function of the size of the price notch, and the time that the marginal

buncher would have to adjust their trip in order to cross the bridge before peak hours:

�e =
��p

�h
(16)

If travel times also di↵er significantly in the neighborhood of the price notch, this condition

becomes:

�e =
��p+ ↵�T

�h
(17)

Where �T is the di↵erence between a driver’s total travel time if they cross the bridge just

before the beginning of peak hours, and a driver’s total travel time if they cross the bridge at

the time of day when the marginal buncher would have crossed the bridge in the absence of a

price notch. The characterization of a marginal buncher is plotted in Figure A6.

Equations 16 and 17 imply that the relevant scheduling cost (either �e or �l) is inversely

proportional to the width of the density trough on the relatively expensive side of the peak-hour

price notch. Intuitively, the width of the density trough reflects how far the marginal buncher

moves their trip in response to a price incentive. All else equal, decreasing scheduling costs

makes drivers more willing to shift their trips further from their ideal travel time for a given

level of compensation. A wider density gap therefore implies lower scheduling costs.

Because the peak-hour pricing on the Bay Bridge (see Figure A1) creates notches rather than

kinks in the budget sets of drivers, the region immediately adjacent to the price notch is strictly

dominated under any scheduling cost. The fact that there is still a positive density of crossings

during this dominated period suggests frictions may prevent drivers from perfectly optimizing

(Kleven, 2016). In this setting, these ‘frictions’ may reflect inattentiveness (as in Finkelstein

2009) or the inability to perfectly time bridge crossings due to tra�c shocks.

To account for these optimization frictions, as well as heterogeneity in scheduling costs, I

use an estimator similar to Kleven and Waseem (2013). I first compare the density of trips in

the dominated region before and after the imposition of peak pricing to identify the fraction of

individuals with crossing times in the vicinity of the notch who are unresponsive to the price

signal. I then estimate the excess trip mass on the relatively inexpensive side of the price notch:

B =

Z

�e

Z h⇤+�h

h⇤
(1� a)f0(h)dh ' (1� a)f0(h

⇤)E[�h] (18)

Where B is the excess bunching mass on the relatively inexpensive side of the notch, a is the
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fraction of drivers in the strictly dominated region, and f0(h) is the counterfactual (no-notch)

density of vehicle crossings as a function of the time of day, h. E[�h] is the average adjustment

among drivers who bunch at the price notch. Solving Equation 18 for �h and plugging into

Equation 17 yields the bunching estimator:

�e =
��p

B/((1 � a)f0(h
⇤))

(19)

Relaxing the assumption that travel times are relatively flat around the notch point is straight-

forward, but necessitates the value of travel time:

�e =
��p+ ↵�T

B/((1 � a)f0(h
⇤))

(20)

In all bunching estimates, I use a $20 value of travel time, which reflects San Francisco specific

findings from Goldszmidt et al. (2020). I also present estimates of scheduling parameters that

ignore time savings (Equation 19) in Appendix D.

7. Results

7.1. Discrete Choice Model Results

Table 1 presents the parameter estimates for the discrete choice model of driving demand

(Equation 9), recovered in the two-step process (multinomial logit and mean utility decompo-

sition) described in Section 6. The first column shows the model estimated with a uniform

price-responsiveness. The coe�cient on travel time, time early, and time late can be converted

into units of dollars per hour by dividing the point estimate by the coe�cient on price. Column

1 therefore suggest that drivers are indi↵erent between saving roughly $25.20 and saving an hour

of travel time; they are indi↵erent between saving roughly $13.27 arriving an hour early, and

they are indi↵erent between saving roughly $10.55 arriving an hour late.

In Column 2 of Table 1, I allow price responsiveness to vary with road users’ idiosyncratic

externalities. To do so, I break FasTrak devices into quantiles based on the average estimated

externality (both pollution and congestion) of each device’s choices in the month prior to the

study period. I find little evidence that price elasticity varies systematically with idiosyncratic

externalities in this sample. Point estimates of price-responsiveness are slightly smaller for drivers

that travel longer distances at more congested times and places, but these di↵erences are not

statistically significant.
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1 — Discrete Choice Model Estimates

Model

Coe�cient (1) (2)

Time Early -1.8391 -1.8556

(0.0151) (0.0154)

Time Late -1.4618 -1.4074

(0.0114) (0.0116)

Travel Time -3.493 -3.7028

(0.0266) (0.0303)

Price -0.1386

(0.0145)

Price (Quantile 1) -0.1575

(0.0358)

Price (Quantile 2) -0.139

(0.0358)

Price (Quantile 3) -0.122

(0.0358)

Price (Quantile 4) -0.1322

(0.0358)

n drivers = 3, 858; drivers ⇥ choices ⇥ dates = 6, 890, 388

Table 1: Parameter estimates for Equation 9, recovered using FasTrak tolling microdata in a two-step process
(multinomial logit and mean utility decomposition) described in Section 6. The dependent variable is whether
an individual i elects to take a trip on route r at time of day h. Travel time is the travel time (in hours) that
driver i would incur by traveling via route r at time h. Time early is the number of hours that driver i would
arrive before their ideal arrival time if they were to travel via route r at hour h. Time late is analogously defined.
Price is the toll that driver i would incur by traveling via route r at hour h. In each column, Post*Peak*Bay
Bridge and Post*Non-Bay Bridge act as instruments for Price, where Post is an indicator for travel days after
June 30th, 2010.

7.2. Bunching Estimator Results

Applying a bunching estimator to notches in the pricing schedule on the Bay Bridge, I recover

scheduling cost parameters (�e and �l in Equation 9) that range from $6 to $15 per hour.

Figure 2 plots the di↵erence between the density of trips by time of day before vs. after the

imposition of peak-hour pricing for the 5 a.m. price notch on San Francisco’s Bay Bridge. The

bunch in the density of trips prior to 5 a.m. (which is does not exist in the data prior to July

1, 2010) is consistent with a model of driving demand where drivers are willing to shift their

trips in response to price incentives, but scheduling costs a) prevent all drivers from doing so,

and b) lead drivers that do shift to adjust their travel time by the minimum amount necessary

to receive the incentive.
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Figures A8 and A9 plot the frequency of vehicle trips of before versus after the imposition of

peak hour pricing for all hours of day. Qualitatively, the bunches appear to be most pronounced

during the early morning (5 a.m.) and early afternoon (3 p.m.) price notches. Intuitively, this

suggests that it is less costly to arrive early than arrive late for both morning and evening trips.

Using Equation 20, I estimate that during morning commute hours, the marginal driver is

roughly indi↵erent between saving $6 being an hour early, and indi↵erent between saving $15 and

being an hour late. During evening commute hours, the marginal driver is roughly indi↵erent

between saving $9 being an hour early, and indi↵erent between saving $13 and being an hour

late. These estimates are summarized in Table 2.

Figure 2 — Bunching in Response to Peak-Hour Pricing

Figure 2: This figure plots the di↵erence in the number of trips in the 6 months before (blue) vs the 6 months
after (red) the imposition of peak-hour pricing on the Bay Bridge on July 1, 2010. To facilitate comparison,
the number of trips at each time of day is normalized (divided by the total number of daily pre or post-period
vehicle trips). The red shaded region demarcates times of day that were subject to peak-hour pricing after July 1,
2010. The vehicle trip counts reflect administrative tolling microdata collected by the Bay Area Toll Authority.
Excluded from this graph are trip using the carpool/EV lane, which face a di↵erent pricing scheme. Figures A8
and A9 plot bunches for the other price notches (10 a.m., 3 p.m., and 7 p.m.) in the peak-hour pricing scheme
on the Bay Bridge.
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Table 2 — Estimating Scheduling Costs via Bunching

Parameter Estimate ($\hour)

Time Early (5 a.m. notch) 6.195

(0.419)

Time Early (3 p.m. notch) 9.744

(1.545)

Time Late (10 a.m. notch) 15.498

(2.593)

Time Late (7 p.m. notch) 13.759

(1.306)

Table 2: This table shows estimates of the costs to drivers of scheduling trips earlier or later than the driver’s ideal
trip time (�e and �l in Equation 9). I recover these estimates using Equation 20, which relates scheduling costs to
the number of additional vehicle trips observed in the period just outside of the peak-hour pricing period on San
Francisco’s Bay Bridge. In addition to the number of extra trips, Equation 20 reflects scheduling frictions, as well
as any time savings that result from drivers adjusting their trips to fall just outside of peak hours (assuming a $20
value of travel time for Bay-Area travelers, as estimated by Goldszmidt et al. (2020)). The additional bunching
mass at price notches is estimated by comparing the number of trips in the neighborhood of the threshold time
before vs. after the imposition of peak-hour pricing (see Equation 18) using administrative tolling data from the
Bay Area Toll Authority. Bootstrapped standard errors are in parentheses. All values are in 2010 dollars.

Appendix B contains figures that examine the persistence of bunching behavior and the role of

tax salience in determining bunching. Figure A11 shows that the bunching behavior is more

extreme for drivers who pay in cash than it is for drivers who pay electronic tolls, corroborating

findings by Finkelstein (2009). The scheduling cost estimates in Table 2 and elsewhere in this

paper reflect behavior of drivers using electronic toll systems, as this is the technology that would

be used in many of the world’s planned cordons. The di↵erence in cash vs. non-cash responses

to time-of-day toll systems suggests that factors that increase the salience of electronic tags (e.g,

variable message signs displaying cordon costs) may lead to larger temporal adjustment. Figure

A10 compares bunching behavior at 6 months, 1 year, and 5 years after the beginning of peak

hour pricing: the bunches become smaller over time, and the additional density is spread over

a larger o↵-peak time zone at year 5 than it is at six months. Thus, while some drivers may

be able to adjust their ideal arrival times in the long run, the parameters that drive bunching

(schedule costs and ideal arrival times) appear stable for a large fraction of road users.

7.3. Comparisons to Parameter Estimates from the Literature

Several studies from the transportation economics literature provide valuable context for the

logit and bunching estimator results presented in this subsection. A common heuristic for the

value of travel time is 50% of the wage rate, which reflects seminal work by Lave (1969), as

well as research collated by Small (2012). According to the 2010 - 2012 California Household
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Transportation Survey, the median Bay Area household earned roughly $66,000 per worker,

equivalent to $31.74 per hour. The 50% heuristic therefore implies a median value of travel time

of just under $16. Recent empirical estimates suggest slightly higher travel time: using a field

experiment among Lyft riders, Goldszmidt et al. (2020) recover estimates of the value of travel

time in San Francisco equal to roughly $20, or roughly 75% of the 2017 after-tax wage rate

($17.79 in 2010 dollars). Broadly, the implied value of time in Table 1 is similar to, if slightly

larger than, similar estimates from the literature.

Estimates of scheduling costs (�e and �l) are less common in the economics literature. In

general, existing studies accord with the canonical analysis by Small (1982), which found that a)

it is more costly for drivers to be late than early, b) on a per-hour basis, the cost of being early

is lower than the value of travel time, and c) the cost of being late can be higher or lower than

the value of travel time depending on the setting. Kreindler (2018), for example, estimates that

for drivers in Bangalore, India, early-arrival schedule costs are roughly a quarter of the value

of travel time, and late-arrival is more costly than early arrival. In a 2005 choice experiment,

Tseng, Ubbels, and Verhoef (2005) find that for drivers in the Netherlands, the cost of early

arrival (€4.9/hour) is roughly half of the value of travel time (€9.8/hour), but late arrivals are

very costly (€19.7/hour).

The scheduling costs I recover using discrete choice and bunching estimators are qualitatively

similar to previous findings: the bunching estimator suggest that drivers prefer being early to

being late, and both sets of results suggest that early and late costs are lower than the value of

travel time on a per-hour basis.

8. Second-Best Optimal Cordon Prices

In this section I use the discrete choice model estimated in Section 7 together with the tax

framework from Section 2 to calculate optimal cordon prices. I first demonstrate this procedure

using San Francisco’s proposed cordon, and then consider cordon zones in Los Angeles and New

York.

At a high level, calculating optimal cordon prices in any city takes four steps: First, use travel

survey data (e.g., the National Household Transportation Survey) to identify a representative

sample of trips that pass through a city’s proposed cordon. Second, assign externalities to those

trips using information about the vehicle driven in each trip, and the tra�c density along the trip

(this process is similar to the process described in Section 5). Third, use the model estimated in

Section 7 to calculate substitution elasticities between di↵erent trips available to drivers. And

fourth, apply the optimal tax formula outlined in Section 2 to the ingredients from steps 1-3.
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8.1. San Francsico’s Proposed Cordon Zone

The San Francisco County Transportation Authority (SFCTA) intends to pilot a downtown

congestion pricing program in the next 3-5 years, with the goal of implementing cordon pricing

by the end of the decade (San Francisco County Tra�c Authority, 2021). Figure 3 shows a map

of the proposed cordon zone, and Table A2 the proposed tolling schedule.

In the main results presented in this section, I treat as fixed the shape of the cordon and the

time periods where prices will be charged. Doing so accords with the setup of the second-best

tax problem described in Section 2, where the set of taxable goods is an exogenous constraint.

Here the set of taxable goods, J , includes only two goods: morning and evening peak-hour trips

that pass through the cordon zone. I present results from expanding the set of taxable goods in

Section 8.8.

For simplicity, I also assume that all passenger vehicles will be charged the same price for using

the cordon zone. This assumption abstracts from the low-income cordon price exemptions being

considered by planning organizations in many cities. In Appendix K, I show that because the

majority of commuters would not qualify for this exemption, the changes in welfare, congestion,

and pollution that would result from exempting low-income drivers in the San Francisco Bay

Area are second-order. As acknowledged in Section 2, the setup of this problem also assumes

that policymakers do not weigh marginal utility across income groups. For a characterization

of optimal corrective taxation under preferences for redistribution, see Allcott, Lockwood, and

Taubinsky (2019).
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Figure 3 — San Francisco’s Proposed Congestion Pricing Zone

Figure 3: San Francisco’s proposed cordon pricing scheme as of September 1, 2021. Trips that enter the cordon
(see Figure 3) would be charged during peak hours according to the income of the registered vehicle. Tolls will be
levied using electronic tag readers mounted on gantries that span roadways on the border of the cordon region.
An individual’s income group depends both on income and family size. For single individuals, the annual income
thresholds for high, middle, low, and very low income are $150,000, $116,000, $66,000 and $46,000, respectively.
For a household of four, the thresholds are $65,000, $95,000, $142,000, $166,000.

8.2. Personal Vehicle Trips in the San Francisco Area

The National Household Transportation Survey (NHTS) is a survey of US individual travel

habits administered by the Federal Highway Administration. Participants in this survey are

recruited via mail; survey responses are incentivized by small ($5 to $20) rewards, and can be

completed through mail-back forms or online. The 2017 NHTS garnered responses from 381,975

individuals, each of whom filled out “Travel Diaries” that detailed their travel habits during

one randomly selected 24-hour period. In addition to information about the attributes of the

trip taken, the NHTS also collects demographic information about surveyed persons and their

households.

I use the 2017 NHTS California Add-On to build a representative dataset of trips that cross

San Francisco’s proposed cordon zone.4 Each trip in this dataset consists of a start location (zip

code or Census Block), an end location (zip code or Census Block), information about the vehicle

4Note that the FasTrak microdata used in Section 7 are ill-suited for this task because many of the trips that
cross San Francisco’s proposed cordon do not use any bridge.
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that took the trip (make, vintage, fuel type), and the time of day that the trip was taken. I

determine whether or not a trip passes through the cordon using the HERE Technology’s Routes

API. The resulting dataset contains 1,891 routes that cross the cordon zone during weekdays

between the hours of 4 a.m. and 10 p.m., which I plot in the left pane of Figure A7.

To predict substitution in time and space under San Francisco’s cordon, I construct a set of

alternatives for each trip. For every cordon trip in the NHTS, I construct alternative departure

times at 12-minute intervals throughout the day. Using HERE Technology’s Routes API, I can

assign travel times to each of these alternative trips by varying the departure time. For trips with

termini that lie outside of the cordon zone (i.e., trips that only pass through the cordon zone en

route to their destination), I identify the most direct detour that circumvents the cordon zone.

I then calculate travel times for this non-cordon route for each 12-minute interval throughout

an average tra�c day. These detour routes are plotted in the right pane of Figure A7.

The result of this data collation is a set of trip endpoints for the San Francisco area, where

drivers can choose over route 2 {cordon, non-cordon} and time of day 2 {4.0, 4.2, ... , 22.0},

as well as a generic outside option. This choice set allows me to predict how drivers would

choose between options based on the attributes (travel time, time early, time late, and toll price)

specified by the discrete choice model estimated in Section 3.

8.3. Trip-Level Externalities

For each trip described above (trips in the NHTS with suggested routes that pass through the

cordon, as well as alternative trips in space and time), I assign tra�c and pollution externalities

in a manner similar to the process described in Section 5. The detail of the NHTS survey

data, however, allows for more precise estimation of both congestion and pollution externalities

relative to trips observed in the FasTrak tolling data.

As shown in Figure A4, emissions vary by vehicle attributes as well as travel speed. The

NHTS includes information about the vehicle used on each trip, including the vehicle vintage,

make, and fuel type (gasoline, diesel, EV, or hybrid). Using the travel time and distance in-

formation for each trip returned by the HERE Routes API, I assign an average speed to each

trip. I then merge emissions factors onto each trip based on vehicle vintage, fuel type, and travel

speed, using data from California’s EMFAC database. I plot the emissions externalities for the

1,891 NHTS trips that cross the proposed cordon in Figure 4.

To assign congestion externalities to trips, I use estimates from Yang, Purevjav, and Li (2020),

who show that the marginal external (travel time) cost of tra�c is convex in tra�c density. Fol-

lowing the procedure used to assign externalities to FasTrak trips, I rely on a comprehensive

network of tra�c sensors on roadways in the Bay Area to estimate the tra�c density along each

route at di↵erent times of day. Concretely, this requires first identifying sensors along the trip’s
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route, then assign a marginal external congestion cost (in dollars per mile) to this point based

on the average tra�c density at that sensor at the time of day associated with the trip. A trip’s

total congestion externality is then the average of the external congestion costs (in dollars per

mile) along the route, multiplied by the length of the trip. I plot the trip-level externalities for

the 1,891 NHTS trips that cross the proposed cordon in Figure 4.

Figure 4 — External Costs for Trips Crossing San Francisco’s Proposed Cordon

Figure 4: This Figure plots pollution (brown) and congestion (orange) externalities by hour for trips in the 2017
National Household Transportation Survey (NHTS) with suggested routes that pass through San Francisco’s
proposed cordon zone. The mean externality within any given hour is represented by a dot; the box spans the
25th to 75th externality percentile, and the bars span the 5th to 95th externality percentile. Trip routes reflect
the suggested directions from HERE Technology’s Routes API. Congestion costs were calculated by identifying
tra�c sensors along a given route and assigning per-mile congestion costs to each sensor using estimates of the
density-congestion relationship from Yang, Purevjav, and Li (2020) and an average value of travel time of $20, as
per Goldszmidt et al. (2020). Pollution emissions were calculated by merging emissions factors from California
Air Resources Board’s EMFAC database to trips based on vehicle fuel type, vehicle age, and average trip travel
speed. I convert emissions to externalities using EPA social costs for global pollutants and EAISUR costs for
local pollutant emissions in San Francisco.

8.4. Substitution Between Trips

The last set of parameters necessary for calculating optimal cordon prices are the parameters

that govern how substitutable trips are in time and space. Specifically, calculating optimal prices

using Equation 7 requires leakage shares between trips: dhk
dpj

/dhj

dpj
. Recall that if j and k are trips

(defined as a specific route 2 {cordon, non-cordon} at a specific hour of day 2 {4.0, 4.2, ...,

22.0} ) the leakage share between trip k and trip j represents the share of the reduction in usage

of trip k that shifts to trip j as a result of the increase of the price of taking trip j. For a

concrete example, imagine that a one dollar increase in the price of driving through a cordon
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zone between the hours of 8 a.m. and 9 a.m. reduces trips by 10%, with 6% of all trips shifting

one hour earlier (call these trips y) and 4% of trips shifting to routes that circumvent the cordon

(call these trips z). The leakage shares are dhy

dpx
/dhx
dpx

= 0.6 and dhz
dpx

/dhx
dpx

= 0.4, respectively.

Using Equation 14, leakage shares are implied directly from parameters of the multinomial

logit regression estimated in Section 7.

8.5. Optimal Prices

Figure 5 plots three lines relevant for understanding optimal cordon prices. The blue line

plots the average externalities for trips that pass through San Francisco’s cordon zone by hour

of day, estimated using the process detailed above. The green line shows these externalities re-

weighted as per Diamond (1973) to account for the correlation between the price-responsiveness

of trips and idiosyncratic trip-level externalities, as reported in Table 1. Finally, the red (dashed)

line plots the second-best optimal prices for San Francisco’s proposed cordon when tolling is

restricted to morning and evening peak hours (6-10 a.m. and 3-7 p.m., respectively). The

second-best optimal scheme charges $2.52 during morning peak hours, and $3.09 during evening

peak hours. These second-best optimal prices are calculated using Equation 7, and take into

account both the correlation between externalities and elasticities, as well as the substitution to

unpriced alternatives in time and space.
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Figure 5 — Second-Best Optimal Cordon Prices

Figure 5: This figure plots three prices relevant for understanding optimal second-best cordon tolls. The blue
line plots the average externality (pollution and congestion) for trips that cross San Francisco’s cordon by hour of
day, estimated using data from the 2017 NHTS (see Section 8.3). The green line plots externalities re-weighted
to account for the correlation between trip-level externalities and trip-level elasticities, as per Diamond (1973).
The red (dashed) line plots the second-best optimal price for San Francisco’s proposed cordon when tolling is
restricted to morning and evening peak hours (6-10 a.m. and 3-7 p.m., respectively). These second-best optimal
prices are calculated using Equation 7, and take into account both the correlation between externalities and
elasticities (“Diamond weights”), as well as the substitution (leakage) to unpriced alternative trips in time or
space.

The results plotted in Figure 5 reflect social damages calculated using driving conditions that

exist in the current, untaxed equilibrium. Consistent with the literature on externality taxation,

the second-best tax formula presented in Section 8 phrases optimal taxes as a function of exter-

nalities at the optimum. As shown in figures A3 and A20, the marginal damages associated with

driving are non-constant in tra�c density/speed, meaning that in general, damages at the taxed

equilibrium will be di↵erent (lower) than those observed in the untaxed equilibrium. Whether

or not the di↵erence between marginal damages calculated at versus away from the optimum is

a first-order concern depends on the slope of the marginal damages function and the responsive-

ness of drivers to taxation. In Appendix F, I use simulations where I iteratively calculate taxes

and tra�c density to bound the second-best optimal cordon prices in San Francisco. The fixed

point from this exercise constitutes a lower bound because it ignores “induced demand”, which

will tend to attenuate the di↵erence in tra�c conditions between taxed and untaxed equilibria

(Duranton and Turner, 2011). I recover lower bounds of $2.17 and $2.52 for the morning and

evening peak-hours, respectively.
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8.6. The Impact of Pricing on Congestion, Emissions, and Welfare

Figure 5 shows that because tolls would incentivize drivers to substitute to routes that avoid

the cordon zone (where they would still cause congestion and pollution), the optimal peak-hour

cordon prices are below the marginal social damages associated with the average vehicle trip

using the cordon zone. In this subsection, I estimate counterfactual driving behavior under a

number of tax scenarios to understand the extent to which the imperfections in cordon pricing

policies undermine the congestion, pollution, and welfare gains engendered by road pricing poli-

cies. These three scenarios are:

1. No congestion pricing. This is the status quo; the only charges that trips may face are

the existing Bay Area bridge tolls, set to 2020 levels.

2. First-best (Pigouvian) pricing. Every trip a driver could choose would be priced accord-

ing to its social damages, which include both congestion and pollution externalities.

3. Second-best optimal peak-hour cordon prices. These prices are calculated using Equa-

tion 7. Trips that pass through the cordon area are charged $2.52 during morning peak hours,

and $3.09 during evening peak hours (see Figure 5).

I plot outcomes from these simulations in Figures A12 through A14, and summarize the results

in Table A3. Two themes emerge: first, on all three outcome measures ––– trips, congestion

externalities, and pollution externalities ––– second-best optimal peak-hour pricing more closely

resembles the status quo than the first-best policy. Second, there are distinct bunches in total

trips, congestion, and pollution just outside peak-hour pricing periods.

8.7. Cordon Pricing in New York and Los Angeles

In addition to San Francisco, city governments in New York and Los Angeles are also con-

sidering implementing cordon pricing zones (mapped in Figure 6). In this section, I calculate

optimal peak-hour cordon prices for each of these cities, and evaluate the performance of the

second-best optimal cordon pricing scheme relative to a policy that prices every trip at social

marginal damages.
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Figure 6 — Proposed Cordons in New York and Los Angeles

Figure 6: Proposed cordon pricing schemes in New York and Los Angeles. All proposals are as of August, 2021.
The New York congestion map is courtesy of the Regional Plan Association; The Los Angeles map is courtesy
of the LA Metro.

As outlined in Section 2, calculating the second-best optimal cordon prices requires information

about the marginal damages of trips that cross through a cordon zone, as well as information

about the elasticity and substitutability of these trips. For each of the above cities, I follow the

same general template as in San Francisco (see Sections 8.2 through 8.4): First, I use survey

data5 and Here Technology’s Routes API to identify trips where the fastest route passes through

the city’s proposed cordon. Second, I use vehicle attributes and travel speed to assign pollution

externalities, and use tra�c density data6 from city roads to assign congestion externalities to

those trips. Third, I calculate substitution parameters between those trips.

Ideally, there would be a natural experiment in each city that would allow for the estimation

of city-specific driving demand primitives (price responsiveness, �, scheduling costs, �e and �l,

and the value of travel time, ↵) that are used to calculate substitution parameters, as well

as city-specific correlations between externalities and price responsiveness (Diamond weights).

Absent such experiments, I calculate optimal cordon prices and welfare outcomes in New York

and Los Angeles using the driving demand primitives and Diamond weights estimated in San

Francisco (see Table 1). These results are reported in Tables 3 and 4.

In Appendix I, I use questions from the 2017 NHTS to examine the external validity of

5The NHTS does not report detailed trip start and end locations for states that are not part of the NHTS
Add-On program. The trip-level data for New York come from the 2018 NY Citywide Mobility Survey.

6Tra�c density data for Los Angeles is publicly available through PeMS. Tra�c density for NY is courtesy
of the NYSDOT Tra�c Monitoring Section.
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the model estimated in San Francisco. Specifically, the NHTS asks respondents to report their

schedule flexibility (Yes/No) as well as their responsiveness to gasoline demand (Scale of 1 to 5).

These proxies for demand primitives are broadly similar across the three cities I examine in this

paper. In Appendix J, I document substitution to public transit in response to the increase in

Bay Area bridge tolls, and discuss how optimal cordon prices may di↵er based on the availability

of public transportation options. While estimates from a regression discontinuity performed on

data from the Bay Area Rapid Transit (BART) system suggest that transit ridership increased

after July 2010 (see Table A7), the implied magnitude of mode shifting is small: These estimates

suggest that only 6% of drivers who chose not to drive in response to the higher toll prices

substituted those trips with BART. In Table A8, I test whether access to public transit impacts

the price responsiveness of Bay Area drivers. Point estimates suggest that drivers who live

in zip codes near transit stations may be modestly more price responsive than those who live

far away from transit stations, but this di↵erence is not statistically significant. Broadly, the

public transit ridership patterns in the Bay Area imply that while some drivers do shift to public

transit when the price of their commuting trips increase, these shifts are relatively small, even

in transit-rich areas.

Table 3 — Comparing Second-Best Cordon Prices to Social Damages

Value ($)

San Francisco Los Angeles New York

Second-Best Price, AM Peak (6-10) 2.516 3.375 4.468

Second-Best Price, PM Peak (3-7) 3.092 4.086 7.414

Average Marginal Damages, AM Peak (6-10) 3.120 4.408 6.170

Average Marginal Damages, PM Peak (3-7) 3.813 5.384 9.629

Table 3: This table compares second-best optimal peak hour prices for the proposed cordons in San Francisco, Los
Angeles, and New York to the average social damages associated with trips that pass through the cordon zones
during this period. “Social damages” include both congestion and pollution damages. The second-best optimal
cordon prices were calculated using Equation 7 — they reflect both heterogeneity in trip-level externalities, and
leakage in time and space.
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Table 4—Congestion, Pollution, & Welfare Effects of Peak-Hour Cordon Pricing

Performance Relative to the First-Best (%)

Outcome San Francisco Los Angeles New York

Reduction in Total Externalities 34.315 41.526 38.808

Reduction in Congestion 34.790 41.596 37.668

Reduction in Pollution 30.529 40.795 51.638

Welfare Gain 33.053 37.693 38.008

Table 4: This table compares the second-best optimal peak-hour cordon pricing scheme in 3 US cities to a first-
best policy where all vehicle trips (all times of day; cordon and non-cordon) are charged based on the social
damages they generate. “Peak hours” are defined as 6-10 a.m. and 3-7 p.m.; second-best cordon prices are
constrained to be uniform during these hours. The four outcomes of interest are total externalities (pollution
and congestion), congestion alone, pollution alone, and total welfare (the utility of drivers, in dollars, less total
externalities). The results in this table reflect the simulated choices of 600,000 (SF and LA) to 1 million (NY)
drivers. The choice probabilities for di↵erent alternatives (cordon vs. non-cordon trips at di↵erent times of day,
and a generic outside option) were generated by applying the multinomial logit model shown in Table 1 to the
driver choice sets constructed using transportation survey data (see Section 8).

8.8. Hourly Cordon Pricing

Tables A3, 3, and 4 describe results where the policymaker is restricted to only price cordon

trips during peak hours, as is proposed by the San Francisco County Tra�c Authority. In this

section I relax this constraint, allowing the policymaker to set a fixed hourly toll schedule during

normal commuting times. In the notation of the second-best tax model outlines in Section 2,

The set J now includes 13 taxable “goods,” where each good covers all cordon trips for a given

hour of day 2 {6, 7, ..., 18}.

Tables A4 and 5 display estimates of welfare outcomes under second-best tax with hourly

cordon pricing versus a first-best policy where every trip is charged according to the social dam-

ages associated with that trip. Relaxing this constraint leads to significant improvements, with

welfare gains in each city roughly doubling with respect to the gains under uniform peak-hour

pricing. In each city, however, a cordon zone with second-best hourly prices would still leave a

substantial portion (roughly 20 to 40%) of the possible welfare gains unrealized due to remaining

issues of spatial leakage and imprecise pricing.
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Table 5 — Back of the Envelope Welfare Gains From Cordon Pricing

Welfare Gain Relative to the Status Quo ($ Million)

Policy San Francisco Los Angeles New York

First-Best 487 656 1, 696

Second-Best (Peak Only) 161 247 645

Second-Best (Flexible Hourly) 307 520 1, 188

Table 5: This table displays back of the envelope calculations for the annual welfare gains under three road
pricing policies: 1) The first-best policy where all trips (including those that re-route to avoid a city’s cordon)
are priced according to marginal congestion and pollution damages; 2) second-best peak hour (6-10 a.m. and
3-7 p.m.) prices (see Table 3); and 3) second-best-optimal time-of-day prices, which are allowed to vary by hour
according to a fixed schedule between 6 a.m. and 7 p.m. The cordon prices in rows (2) and (3) are calculated
using Equation 7 — they reflect both heterogeneity in trip-level externalities, and leakage in time and space. The
figures in this table reflect simulated choices using the multinomial logit model shown in Table 1. The number
of simulated trips reflect the number of daily trips in the cordon regions proposed in each city (600,000 in San
Francisco and Los Angeles, and 1,040,000 in New York), as estimated by the planning authorities responsible for
designing the cordon in each respective city.

9. Discussion

Cordon prices di↵er from a first-best driving tax in two important ways: incomplete coverage

allows for leakage, and uniform prices cannot reflect the heterogeneity in trip-level damages.

Whether these imperfections lead to optimal prices that are above or below trip-level damages

depends on the degree and sign of the correlation between price-responsiveness and idiosyncratic

externalities, and the strength of the leakage e↵ect.

The results from Figure 5 show that the leakage e↵ect drives the deviation between social

marginal damages and second-best prices: In San Francisco, Optimal prices are $2.52 for the

morning peak period and $3.09 for the evening peak period — significantly below the social cost

for trips that pass through the cordon at those times.

My findings suggest that if the primitive determinants of driver decisions (price responsive-

ness, value of travel time, schedule flexibility) are similar across cities, then optimal cordon

prices are also below the average of social damages generated by downtown trips in New York

and Los Angeles. Table 3 shows that in New York, for example, the second-best optimal cordon

prices are about $4.46 and 7.41 for morning and evening peaks, respectively, which is below the

average social damages associated with cordon trips in each of those periods ($6.17 and $9.63,

respectively). In Los Angeles, the optimal morning and evening peak prices are $3.38 and $4.09,

compared to average social damages of $4.41 and $5.38.

Cordon zones charging the second-best prices described in Table 3 would generate significant

welfare gains for commuters and city residents in all three cities. The benefits from optimal peak-

hour cordon prices range from $161 million annually in San Francisco to $645 million annually
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in New York (Table 5). To put these figures in perspective, the 2021 annual budget of the City

of San Francisco is $13.7 billion, and the 2021 annual budget of New York is $88.2 billion. These

annual welfare gains are therefore on the order of 1% to 4% of city budgets.

Despite these gains, the results in Section 8 suggest that the blunt nature of cordon pricing

limits their e↵ectiveness relative to an ideal policy. Optimal peak-hour cordons achieve between

33% (San Francisco) and 38% (New York) of the welfare gains that would be realized under a

first-best policy. Notably, the welfare gains of peak-hour pricing policies largely track reductions

in congestion externalities. This reflects the fact that on a per-trip basis, the estimated social

damages associated with congestion tend to be much larger than the social damages associated

with pollution (see Figure 4). This feature may not hold in metro areas outside of the US, which

tend to have vehicle fleets with higher per-mile local pollution rates.

What adjustments could improve the performance of the proposed cordon zones in the United

States? Relative to a peak-only tolling scheme, allowing policymakers to set a fixed schedule of

prices that vary by time of day (Table A4) provides sizeable welfare gains: $146 million in San

Francisco, $273 million in Los Angeles, and $543 million in New York. In each city, however,

this flexible pricing strategy fails still leave a significant portion of the first-best welfare gains

unrealized.

This paper takes as given the spatial layout of cordon zones. The central role of leakage

in determining optimal prices, however, highlights the importance of a city’s choice of cordon

boundaries. The theory provided in Section 2 suggests that policymakers may want to set

boundaries to preempt spatial leakage. Depending on the idiosyncratic geography of a city, an

optimal cordon zone may include outlying or relatively uncongested routes that provide close

substitutes for congested central roads. Expanding cordon zones, however, comes at a cost;

regardless of the design of the tolling system at the boundaries, trips that remain entirely inside

the cordon are not priced. Expanding the cordon too far may therefore undermine the policy’s

overall coverage. A full characterization of this tradeo↵ is beyond the scope of this paper, but

may prove an interesting question for future research.

10. Conclusion

This paper makes three contributions: First, this paper generates the first estimates of opti-

mal cordon prices that account for both pollution and congestion externalities. While optimal

prices vary across proposed cordon zones in the US, several themes emerge: Congestion exter-

nalities constitute the bulk of marginal damages that determine optimal cordon prices, generally

outweighing pollution externalities two- to ten-fold. This finding accords with work by Parry

and Small (2005), who suggest that congestion (rather than pollution) is the largest component
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of an optimal gasoline tax. Additionally, optimal cordon prices tend to be below the average

social damages associated with trips that cross through a cordon because of externality leakage

in time and space. This leakage e↵ect is much larger than the heterogeneity e↵ect (see Diamond,

1973), which also depresses second-best optimal prices.

Second, this paper presents the first estimates of the welfare losses that result from imper-

fections in real-world cordon policies. Back of the envelope calculations suggest that while a

second-best peak hour cordon price in San Francisco would produce roughly $161 million dol-

lars worth of welfare gains, this policy would fall short of the first-best policy by $326 million

annually. This foregone welfare is significant: $326 million is roughly 2.5% of the City of San

Francisco’s 2020-2021 Budget ($13.7 billion). The predicted performance of proposed cordons in

New York and Los Angeles are qualitatively similar. The role of leakage in this setting suggests

that there may be large gains from designing cordon zones to preempt spatial leakage, and that

certain cities may see larger welfare gains due to cordon pricing because of idiosyncratic city

geography that makes spatial trip substitution more di�cult.

Lastly, this paper contributes to the literature in public and environmental economics by

extending existing models of second best-taxation to simultaneously account for leakage and

heterogeneity in externalities. Accounting for these policy imperfections implies subtly di↵erent

policy prescriptions than the canonical “Principle of Targeting” Sandmo (1975). When external-

ity leakage and externality heterogeneity are present, the policy instrument that generates the

largest welfare improvements may not be the tax that best targets the naive average of exter-

nalities. Instead, for each good, the optimal instrument balances the magnitude of externality

reduction with the damages that would result from leakage. The results in this paper highlight

a case where, due to policy imperfections, the optimal policy di↵ers significantly from a tax

that best targets the average of consumption externalities. While applying the second-best tax

framework outlined in this paper requires detailed information about externalities and consumer

demand, the increasing availability of microdata continues to lower the costs for credible estima-

tion of demand systems. This trend, together with the ubiquity of imperfections in externality

taxation, suggest that this framework will be useful for future research in settings outside of

optimal road pricing.
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Appendix
For Online Publication Only.

A. Theory Appendix

A.1. Substitution with Many Goods

Setup: A representative consumer chooses quantities of M goods, (h1, ..., hM ) and a numeraire,

z. Each non-numeraire good has an associated externality, �m. A policymaker can choose tax

levels for goods j 2 {1, ..., J} where J < M . I assume goods k /2 {1, ..., J} are un- or under-

taxed.

The consumer’s problem: An agent maximizes utility over M goods (h1, ..., hM ) and a

numeraire good z.

max{U(h1, ..., hM ) + z} s.t. (21)

(p1 + ⌧1)h1 + (pJ + ⌧J)hJ + pJ+1hJ+1 + ...+ pMhM + z  I (22)

The first-order conditions for an interior solution to the consumer’s problem are:

Uj = �(pj + ⌧j) 8 j 2 {1, ..., J} (23)

Uk = �(pk) 8 k /2 {1, ..., J} (24)

� = 1 (25)

The planner’s problem: I assume that the planner seeks to maximize aggregate welfare,

which is the utility of the representative consumer less the aggregate social cost of consumption,
PM

1 �mhm. The planner’s choice variables are tax levels ⌧1...⌧J , which are applied to the taxable

goods j 2 {1, ..., J}.

max{U(h1, ..., hM ) + z �
MX

1

�mhm} st.

p1h1 + ...+ pNhN + z  I

(26)

Assuming an internal solution, first-order condition wrt pj (where j 2 {1, ..., J}) is:

0 =
@hj

@pj
[Uj � �j � pj ] +

MX

k 6=j

@hk

@pj
[Uk � �k � pk] (27)
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Plugging in the consumer’s first order conditions and solving for ⌧m...

0 =
@hj

@pj
[⌧j � �j ] +

JX

k 6=j

@hk

@pj
[⌧k � �k] +

MX

l=J+1

@hl

@pj
[�l] (28)

⌧j = �j +
1

@hj

@pj

(
JX

k 6=j

@hk

@pj
[�k � ⌧k] +

MX

l=J+1

@hl

@pj
�l) (29)

This intermediate results is intuitive. Holding fixed all taxes other than ⌧j , the optimal value for

this final tax is its externality, �m, minus a term that captures the extent to which consumers

switch to other goods, and the level of unpriced externality of those goods.

Identifying the optimal tax level for all taxable goods requires solving J equations simultaneously:

⌧j +
1

@hj

@pj

(
JX

k 6=j

@hk

@pj
⌧k) = �j +

1
@hj

@pj

MX

l=1

@hl

@pj
�l (30)

This gives us J equations, each linear in the J tax levels:

aj1⌧1 + ...+ ajk⌧k + ...+ ajJ⌧J = bj 8j 2 {1, ..., J} (31)

Where ajk and bm are defined as:

ajk =

@hk
@pj

@hj

@pj

(32) �j = �j +
MX

l=1

@hl
@pj

@hj

@pj

�l (33)

The a and � terms have an intuitive interpretation. ajk is the share of the reduction in overall

consumption of good j that shifts to good m as a results of an increase in the price of good j.

�j is the overall reduction in externalities that results from the increase in the price of good j;

this consists of a direct component, �j plus a (negative) leakage term,
PM

l=1
@hl
@pj

/@hj

@pj
�l.

This system can be written as:

2

6664

a11 ... a1J

...

aj1 ... aJJ

3

7775

2

6664

⌧1

...

⌧J

3

7775
=

2

6664

b1

...

bJ

3

7775
(34)

A⌧ = b (35)
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⌧ = A�1b (36)

A.2. Heterogeneity and Leakage

Setup: N Heterogeneous consumers choose between M externality-generating goods and a nu-

meraire, z. I denote individual i’s consumption of good m as hm
i . Each individual has an

exogenous income µi. I assume that each consumer’s utility is a function of their consumption of

these M goods and a quasilinear numeraire, as well as other’s consumption of these goods (which

generate externalities and decrease i’s utility): Ui(h1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h1

N , ...hM
N ) + zi.

As in section 2.3, a policymaker can choose tax levels for goods j 2 {1, ..., J} where J < M . I

assume goods k /2 {1, ..., J} are un- or under-taxed. I denote ⌧ j as the tax on good j.

The consumer’s problem: Agent i maximizes utility over M goods (h1
i , ..., h

M
i ) and their

consumption of the numeraire good zi.

max{Ui(h
1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h1

N , ...hM
N ) + zi} st.

(p1 + ⌧1)h1
i + (pJ + ⌧J)hJ + pJ+1hJ+1

i + ...+ pMhM
i + zi  µi

(37)

The first-order conditions for this problem are:

@Ui

@hj
i

= �(pj + ⌧ j) 8 j 2 {1, ..., J}

@Ui

@hk
i

= �(pk) 8 k /2 {1, ..., J}

� = 1

(38)

The planner’s problem: I assume that the planner seeks to maximize aggregate welfare,
PN

1 (Ui + zi). The planner’s choice variables are tax levels ⌧1...⌧J , which are applied to the

taxable goods j 2 [1, J ].

max{
NX

i

(Ui(h
1
1, ...h

M
1 , ..., h1

i , ...h
M
i , ...h1

N , ...hM
N ) + zi)

st. (p1)
NX

i

h1
i + ...+ (pJ)

NX

i

hJ
i + (pJ+1)

NX

i

hJ+1
i + ...+ (pM )

NX

i

hM
i +

NX

i

zi 
NX

i

µi

(39)

Assuming an internal solution, first-order condition wrt pj (where j 2 [1, J ]) is:
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0 =
NX

i=1

@Ui

@hl
i

@hl
i

@pj
+

NX

i=1

NX

g 6=i

@U i

@h1
g

@hg
1

@pj
+ ...+

@U i

@hM
g

@hM
g

@pj
� p1

X

i

@h1
i

@pj
� ...� pM

X

i

@hM
1

@pj
(40)

Plugging in the consumer’s first order conditions and solving for ⌧j ...

⌧j =

PN
i=1

PN
g (@U

i

@h1
g

@h1
g

@pj
+ ...+ @Ui

@hM
g

@hM
g

@pj
)

PN
i=1

@hj
i

@pj

+

PJ
k 6=j

@hk
i

@pj
⌧k

PN
i=1

@hj
i

@pj

(41)

This expression for the optimal level of a given tax is equivalent to the equation for substitutes

with homogeneous damages where each of the marginal damages have been replaced by a “Dia-

mond” term which accounts for heterogeneity.
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B. Additional Figures and Tables

Figure A1 — Peak Pricing on Bay Area Bridges

Figure A1: This figure displays peak-hour pricing schemes for passenger vehicles (vehicles with two axles) on
California’s Bay Bridge, which connects San Francisco and Oakland. Beginning on July 1, 2010, passenger
vehicles crossing westbound on weekdays during peak hours (between 5 a.m. and 10 a.m., or between 3 p.m. and
7 p.m.) faced higher prices than vehicles crossing during o↵-peak hours. Peak-hour prices are displayed on large
variable-message sign about the Bay Bridge toll plaza. Weekend trips on the Bay Bridge and trips on the other
major Bay Area bridges are not subject to peak pricing, instead charging the base rate for passenger vehicles ($4
for pre-2010 and $5 for July 2010 - December 2018).
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Figure A2 — Variation in Passenger Vehicle Bridge Tolls

Figure A2: This figure shows Bay Area bridge tolls between 2009 and 2012 for passenger vehicles. Prices
are uniform across bridges, with the exception of the Bay Bridge, which connects San Francisco and Oakland.
Beginning in 2010, passenger vehicles crossing the Bay Bridge faced a two-dollar di↵erence between peak and
o↵-peak prices. The peak ($6) and o↵-peak ($4) prices are plotted above as dotted and dashed lines, respectively.
EV and carpool trips were free on all bridges prior to 2010. Beginning in July of 2010, EV/carpool trips were
charged the base rate ($5 on the San Mateo, Dumbarton, and Richmond Bridges; $4 on the Bay Bridge), except
during peak hours, where they receive a discount ($2.5) on all bridges.
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Figure A3 — Congestion Costs, Reproduced from Yang et al. (2020)

Figure A3: Congestion costs reproduced from Yang, Purevjav, and Li (2020), who exploit variation in tra�c
density generated by Beijing’s driving restriction to estimate the relationship between tra�c density and speed.
The original results are presented in Yuan/Vehicle/km. I convert these values to dollars by a) converting curren-
cies, and b) replacing the Beijing-specific value of time from (50% of the average wage rate in Beijing) with a $20
value of travel time, which reflects San Francisco-specific estimates from Goldszmidt et al. (2020).
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Figure A4 — Pollution Externalities at Various Speeds

Figure A4: This figure plots per-mile pollution externalities at various speeds for an average passenger vehicle in
the Bay Area. These costs reflect VMT-weighted average emissions factors (in grams/mile) of di↵erent pollutants
at di↵erent speeds reported by California’s Emissions Factor Model (EMFAC). The EMFAC emissions factor
estimates reflect state DMV and smog check data. To convert these emissions factors to per-mile costs, I multiply
the emission factor for each pollutant by the corresponding social cost of each pollutant. For local pollutants,
the social cost is calculated using the Estimating Air pollution Social Impact Using Regression (EASIUR) Online
Tool, calibrated with coordinates from San Francisco. For global pollutants, I use the EPA’s 2021 social costs of
$51 per ton of CO2 and $1,500 per ton of CH4, respectively. All values are in 2020 dollars.
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Figure A5 — Traffic Sensors in the Bay Area

Figure A5: This figure plots tra�c sensors from the Caltrans Performance Measurement System (PeMS). Each
sensor reports hourly vehicle count and speed data that are converted to tra�c density (vehicles/lane/mile)
using the fundamental equation of tra�c flow. These tra�c density readings are then used to assign congestion
externalities to vehicle trips based on route and time of day, as described in sections 5 and 8.
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Figure A6 — The Relationship Between Scheduling Costs and Bunching

Driver who bunches Driver who does not bunch

Figure A6: This figure illustrates the relationship between scheduling costs and bunching behavior in peak-hour
toll schemes, as predicted by the discrete choice model outlined in Section 3. For expositional ease, this figure
plots the case where travel times are constant throughout the day. The triangular shape of the indi↵erence curves
reflects the fact that the further a trip is from a given driver’s ideal crossing time, the higher the compensation
(via a lower toll price) required to maintain any given level of driver utility. In the right two panes, I plot
indi↵erence curves (red) of a driver with high scheduling costs, who does not shift their trip in response to peak
pricing. In the left two panes, I plot indi↵erence curves of a diver with low scheduling costs, who does shift their
trip in response to peak pricing. All else equal, when scheduling costs are lower, drivers are more willing to adjust
their travel times in response to peak pricing, implying a larger mass of trips around price notches.
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Figure A7 — Cordon and Non-Cordon Routes for Bay-Area Trips

Cordon Routes Non-Cordon Routes

Figure A7: This figure plots cordon and non-cordon routes constructed from the 2017 National Household Trans-
portation Survey (NHTS) California Add-On. The left pane plots 1,891 trips that cross San Francisco’s proposed
congestion zone, according to suggested routes generated with the HERE Technology’s Routes API. The right
pane plots detour routes for the subset of these trips where it is possible to circumvent the congestion zone (i.e.,
trips with both start and end points that are outside of the cordon). Each driver’s choice set consists of a cordon
route (the left pane) for every 12-minute time of day interval, as well as a non-cordon route (the right pane), if
such a detour exists, for every 12-minute time of day interval. The choice sets of all drivers also include a generic
outside option.
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Figure A8 — Bunching at Price Notches

Figure A8: This figure plots the density (the share of total daily crossings) of passenger vehicle trips crossing
San Francisco’s Bay Bridge in the 6 months before (blue) and 6 months after (red) the imposition of peak hour
pricing on July 1, 2010. This plot excludes trips that use the carpool lane, as well as eligible electric vehicles,
each of which faced a di↵erent pricing scheme. The red shaded regions demarcate times of day that were subject
to peak-hour pricing after July 1, 2010.
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Figure A9 — Detail of Bunching at Price Notches

Figure A9: San Francisco’s Bay Bridge imposed peak hour pricing on July 1, 2010 (see Section 4). This figure
plots the density of passenger vehicle trips crossing the Bay Bridge in the 6 months before (blue) and 6 months
after (red) the imposition of peak hour pricing for the 10 a.m., 3 p.m., and 7 p.m. price notches. This plot
excludes trips that use the carpool lane, as well as eligible electric vehicles, each of which faced a di↵erent pricing
scheme. The red shaded regions demarcate times of day that were subject to peak-hour pricing after July 1, 2010.
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Figure A10 — Bunching in the Short and Long Run

Figure A10: San Francisco’s Bay Bridge imposed peak hour pricing on July 1, 2010 (see Section 4). This figure
plots the density of passenger vehicle trips crossing the Bay Bridge in the hours surrounding each of the price
notches in January-July of 2010 (blue) against three other time periods: July-December of 2010 (brown), July-
December of 2011 (red), and July-December of 2014 (orange). This plot excludes trips that use the carpool
lane, as well as eligible electric vehicles, each of which faced a di↵erent pricing scheme. The red shaded regions
demarcate times of day that were subject to peak-hour pricing after July 1, 2010.
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Figure A11 — Bunching in Electronic Tolls vs. Cash Tolls

Figure A11: San Francisco’s Bay Bridge imposed peak hour pricing on July 1, 2010 (see Section 4). This figure
plots the density of passenger vehicle trips crossing the Bay Bridge in the hours surrounding each of the price
notches in 2014 (records of cash payments are unreliable prior to 2014). The red line shows trips using an
electronic FasTrak device; the grey line shows cash payments. This plot excludes trips that use the carpool
lane, as well as eligible electric vehicles, each of which faced a di↵erent pricing scheme. The red shaded regions
demarcate times of day that were subject to peak-hour pricing after July 1, 2010.
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Figure A12 — Simulated Choices Under Peak-Hour Cordon Pricing in SF

Figure A12: In this figure I plot the number of trips that pass through or near the cordon under three simulations
using the multinomial logit model estimated in Table 1 of Section 7 together with the NHTS trip dataset described
in Section 8. In each scenario, I predict 600,000 choices — roughly daily total of vehicle trips that pass through
San Francisco’s proposed cordon (San Francisco County Tra�c Authority, 2021). The grey line plots predicted
trips by time of day without any pricing (the status quo). The blue line plots trips under the first-best scheme
where every trip a driver could choose (including non-cordon trips) would be priced according to it’s marginal
pollution and congestion externalities. The red line plots trips under the second-best optimal peak-hour cordon
price from Figure 5. Note that all lines include both trips that cross through the cordon, and “detour” trips that
circumvent the cordon.
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Figure A13 — Simulated Congestion Under Peak-Hour Cordon Pricing in SF

Figure A13: In this figure I plot the total congestion externalities under three simulations using the multinomial
logit model estimated in Table 1 of Section 7 together with the NHTS trip dataset described in Section 8. In
each scenario, I predict 600,000 choices — roughly daily total of vehicle trips that pass through San Francisco’s
proposed cordon (San Francisco County Tra�c Authority, 2021). The grey line plots the sum of congestion
externalities by time of day without any pricing (the status quo). The blue line plots congestion under the
first-best policy where every trip a driver could choose (including non-cordon trips) would be priced according
to it’s marginal pollution and congestion externalities. The red line plots sum of congestion externalities under
the second-best optimal peak-hour cordon price from Figure 5. Note that all lines include congestion from trips
that cross through the cordon, as well as “detour” trips that circumvent the cordon.
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Figure A14 — Simulated Pollution Under Peak-Hour Cordon Pricing in SF

Figure A14: In this figure I plot the total pollution externalities under simulations using the multinomial logit
model estimated in Table 1 of Section 7 together with the NHTS trip dataset described in Section 8. In each
scenario, I predict 600,000 choices — roughly daily total of vehicle trips that pass through San Francisco’s proposed
cordon (San Francisco County Tra�c Authority, 2021). The grey line plots the sum of pollution externalities
by time of day without any pricing (the status quo). The blue line plots pollution externalities under the first-
best policy where every trip a driver could choose (including non-cordon trips) would be priced according to
it’s marginal pollution and congestion externalities. The red line plots sum of pollution externalities under the
second-best optimal peak-hour cordon price from Figure 5. Note that all lines include pollution from trips that
cross through the cordon, as well as “detour” trips that circumvent the cordon.
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Table A2 — San Francisco’s Proposed Congestion Pricing Scheme

Income Group

Time Period High Middle Low Very Low

Peak Hours 6.50 4.33 2.17 Free

O↵-Peak Hours Free Free Free Free

Table A2: San Francisco’s proposed cordon pricing scheme as of September 1, 2021. Trips that enter the cordon
(see Figure 3) would be charged during peak hours according to the income of the registered vehicle. Tolls will be
levied using electronic tag readers mounted on gantries that span roadways on the border of the cordon region.
An individual’s income group depends both on income and family size. For single individuals, the annual income
thresholds for high, middle, low, and very low income are $150,000, $116,000, $66,000 and $46,000, respectively.
For a household of four, the thresholds are $65,000, $95,000, $142,000, $166,000.

Table A3 — Congestion, Pollution, and Welfare Effects

of San Francisco’s Cordon Zone

Outcome Performance Relative to First-Best (%)

Reduction in Total Externalities 34.315

Reduction in Congestion 34.790

Reduction in Pollution 30.529

Welfare Gain 33.053

Table A3: This table compares the second-best optimal cordon pricing scheme in San Francisco to a first-best
policy where all vehicle trips (all times of day; cordon and non-cordon) are charged according to marginal social
damages. The four outcomes of interest are total externalities (pollution and congestion), congestion alone,
pollution alone, and total welfare (the utility of all drivers, in dollars, less total externalities). The results in this
table reflect 600,000 simulated choices by drivers in the NHTS dataset constructed above — 600,000 is roughly
the number of weekday trips that pass through San Francisco’s proposed cordon, according to the San Francisco
County Transportation Authority. The choice probabilities for di↵erent alternatives (cordon vs. non-cordon trips
at di↵erent times of day, and a generic outside option) were generated by applying the discrete choice model
shown in Table 1 to the NHTS driver choice sets constructed in Section 8.
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Table A4 — Congestion, Pollution, and Welfare Effects

of Hourly Cordon Pricing

Performance Relative to the First-Best (%)

Outcome San Francisco Los Angeles New York

Reduction in Total Externalities 46.152 66.040 53.365

Reduction in Congestion 46.252 65.744 51.803

Reduction in Pollution 45.354 69.135 70.957

Welfare Gain 63.063 79.373 70.062

Table A4: This table summarizes the performance of second-best optimal cordon pricing schemes when policy-
makers are allowed to set a fixed schedule of tolls between 6 a.m. and 7 p.m., relative to a first-best policy where
every trip is charged according to its social damages. The four outcomes of interest are total externalities (pol-
lution and congestion), congestion alone, pollution alone, and total welfare (the utility of drivers, in dollars, less
total externalities). The results in this table reflect simulated choices using the multinomial logit model shown
in Table 1. The number of simulated trips reflects the number of daily trips in the cordon regions proposed in
each city (600,000 in San Francisco and Los Angeles, and 1,040,000 in New York), as estimated by the planning
authorities responsible for designing the cordon in each respective city. The “first-best” is a policy where all trips
(regardless of the time of day or whether they pass through the cordon) are charged according to the marginal
damages associated with that trip.

C. Calculating Emissions Externalities

This section details the process of estimating emissions externalities for each trip in the

FasTrak dataset.

The California Emissions Factor (EMFAC) fleet database reports average vehicle emissions

rates (measured in grams per mile) by county. These data are stratified by vehicle fuel type,

vehicle vintage, and vehicle travel speed. The EMFAC database reports the following pollutant

species: particulate matter (PM2.5, or PM), nitrogen oxides (NOx), nitrous oxide (N2O), reactive

organic compounds (ROC), ammonia (NH3), carbon dioxide (CO2), sulfur oxides (SO2), and

methane (CH4). The data underlying EMFAC aggregates reflect state vehicle registrations and

data from the California Bureau of Automotive Repair’s (BAR) Smog Check database. For each

FasTrak trip, I assign emission factors for each pollutant based on the average travel speed for

that trip (see Appendix E) and the county where the FasTrak device is registered. The total

emissions of any pollutant is the estimated emissions rate for that trip multiplied by the trip

length. To convert trip-level emissions to costs, I use social cost estimates from two sources. For

local pollutants, I use damages predicted by the EAISUR model (Heo, Adams, and Gao (2016)),

which combines a state-of-the-art chemical transport model together with estimates from the
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economics and epidemiology literatures to predict the cost of emitting pollution in di↵erent

areas of the United States. For global pollutants, I use social damages from the US EPA. These

pollutant values are listed in Table A5.

Table A5 — Social Costs of Vehicle Pollution in San Francisco

Damages ($/Ton Emitted)
Pollutant SF LA NY

PM2.5 772, 000 1, 270, 000 1, 146, 000
SO2 65, 800 44, 750 44, 125
NOx 24, 200 52, 750 62, 875
NH3 1, 24, 000 825, 750 561500
CO2 51 51 51
CH4 1, 500 1, 500 1, 500
N2O 18, 000 18, 000 18, 000
ROC 2, 392 2, 392 2, 392

Table A5: This table display the social costs of emitting 1 ton of various pollutants in San Francisco, Los
Angeles, and New York, respectively. Estimates of local pollutants (PM2.5, nitrogen oxides (NOx), nitrous oxide
(N2O), reactive organic compounds (ROC), ammonia (NH3), sulfur oxides (SO2)) reflect annual averages from
the EAISUR model (Heo, Adams, and Gao (2016)). Global pollutants (carbon dioxide (CO2) and methane
(CH4)) are values used by the US EPA.
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D. Bunching Estimator

This appendix contains details of the bunching estimators used as a second empirical approach

to recovering scheduling elasticities (see Section 6). The following two equations are bunching

estimators that do, and do not account for changes in travel times for bunches, respectively:

�e =
��p+ ↵�T

B/((1 � a)f0(h
⇤))

�e =
��p

B/((1 � a)f0(h
⇤))

Table A6 shows estimates of each of the component parts of these estimators for the 5 a.m.

price notch. The change in price (�p) is the same ($2) for all notches. The excess mass (B) is

the integral of the di↵erence in densities in the period (half an hour) prior to the imposition of

peak hour pricing. Following Kleven and Waseem (2013), I use the comparison of the pre and

post July 2010 density within the 5 minutes after the beginning of peak-hour pricing to identify

the fraction of unresponsive individuals (a, 76%). As an approximation for the change in travel

time (�T ), I use TomTom’s Historic Tra�c Stats to compute the di↵erence in average travel

travel times between 5:00 a.m. and 6:00 a.m. (see Figure A15 below) for FasTrak drivers using

the Bay Bridge. The components of bunching estimators for the other three notches (10 a.m., 3

p.m., and 7 p.m.) follow this same procedure.

Table A6 — Bunching Estimator for Scheduling Costs (Shifting Earlier, 5 a.m.)

Parameter Estimate

Fraction Unresponsive (a) 0.76058

Excess Mass at Notch (B) 0.00208

Baseline Density at Notch 0.00019

Mean Schedule Cost without Friction ($/hour) 18.65659

Mean Schedule Cost accounting for Frictions ($/hour) 4.46673

Mean Schedule Cost accounting for Frictions and Travel Time ($/hour) 6.19461

Table A6: Rows 1-3 of this table show estimates of parameters used to infer scheduling costs from the additional
density of trips just after the end of peak-hour pricing on San Francisco’s Bay Bridge (Equation 18). Rows 4-6
show estimates of scheduling costs. In Row 4, I calculate the naive average scheduling cost under the assumption
that there are no optimization frictions. In row 5, I use the estimated fraction of non-responsive individuals from
row 1 to account for optimization frictions. In row 6, I also account for the di↵erence in travel times for drivers
who reschedule their trips to avoid peak-hour pricing.
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Figure A15 — Travel Times in the Vicinity Price Notches

Figure A15: This figure plots average travel times for trips traversing the Bay Bridge during the morning hours.
The average travel times in this figure were calculated by 1) identifying all drivers that primarily use the Bay
Bridge and b) using TomTom Historic Tra�c Stats to calculate travel times for each individual, for each hour
of day as described in Section 5. The red shaded area represent the approximate range where individuals adjust
in response to the imposition of peak-hour pricing, according to FasTrak toll data. The relatively flat profile of
travel times in the price notch neighborhood suggests that the first-order decision facing drivers who travel at
this time of day is between price and scheduling costs, as opposed to changes in total travel time. As shown in
Table A6, estimates that account for di↵erences in travel times in the bunching estimators are roughly 30% larger
that estimates that ignore di↵erences in travel times.

E. Imputing Travel Times

Travel times, T i, are not directly observed for FasTrak trips, and therefore must be imputed.

In this appendix, I describe the process for inferring travel times, T i(h, r), for each trip in each

individual’s choice set.

The choice set of any individual consists of all bridges 2 {Dumbarton Bridge, San Mateo

Bridge, Bay Bridge, Richmond Bridge} at all times of day 2 {4.0, 4.2, ..., 22}. A trip in this

choice set constitutes a bridge-time pair, (h, r). I estimate travel times for each trip in each

individual’s choice set in three steps:

Step 1 : Infer the distribution of endpoints. The FasTrak tolling data include information

about the bridges used, as well as the home zip code associated with each FasTrak device.

Before calculating travel times using historic tra�c data, I must make inferences about the

missing endpoints for each driver. To do so, I use survey data from the 2010-2012 California

Household Travel Survey (CHTS). This survey constitutes a representative sample of Bay Area
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commuters, an contains detailed information on the driving habits of respondents. To generate

a probability distribution of “work” endpoints for each individual, I subset the CHTS survey

data to trips that match based on home city and bridge used. The Bay Area is relatively unique

in that it is a large metropolitan area that consists of many small cities. The 29 “cities” that

serve as termini for travel time estimation are plotted in Figure A16.

Step 2 : Calculate travel times. I use TomTom’s Historic Tra�c Stats to calculate the

travel times. This tra�c database contains detailed historic tra�c data collected from TomTom

devices, as well as data that TomTom purchases from other GPS providers. For each FasTrak

device in the sample, I calculate the travel time between the device’s home city and each of the

end cities assigned positive probability for that device in Step 1. Importantly, I estimate travel

times for both trips that were taken, as well as counterfactual trips that used a di↵erent bridge

or were taken at a di↵erent hour of day.

Step 3 : Aggregate travel times by bridge and time of day. Lastly, I collapse the

distribution of possible travel times within each bridge-time pair by the probability weights from

Step 1. That is, the result of Step 2 contain travel times for each choice (a bridge-time pair), for

each device based on possible “work” locations associated with that device. Step 3 then assigns

a single travel time to each bridge-time choice for each device by taking the probability-weighted

sum of the travel times associated these possible work locations, where those probability weights

are based on the CHTS survey data (Step 1 ).

The result of Steps 1-3 is a data set that contains estimated travel times for each trip taken by

each device, as well as the travel times that a driver would have faced for each trip had they

taken it at a di↵erent hour of day or using a di↵erent bridge.
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Figure A16 — TomTom Traffic Segments

Figure A16: This figure plots the coverage of the historic travel time data purchased from TomTom (in red)
together with the 29 most populous cities in the Bay Area. These road segments were selected using Google
Maps suggested driving points between the origin and destination cities. These tra�c data report the average
weekday travel times for passenger vehicles traveling along each segment of road, by hour of day, for the year
prior (July 1, 2009 - July 1, 2010) and the year following (July 1, 2010 - July 1, 2011) the 2010 adjustment to
Bay-Area bridge tolls.

F. Equilibrium Considerations

The second-best cordon price results presented in Section 8 reflect social damages calculated

using tra�c conditions in untaxed equilibrium. Consistent with the literature on externality

taxation, the second-best tax formula in Section 2 phrases optimal taxes as a function of exter-

nalities at the optimum. As shown in figures A3 and A20, the marginal damages associated with

driving are not constant in tra�c density/speed, meaning that in general, damages at the taxed

equilibrium will be di↵erent (lower) than those observed in the untaxed equilibrium. Whether
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the di↵erence between marginal damages calculated at versus away from the optimum is a first-

order concern depends on the slope of the marginal damages function and the responsiveness of

drivers to taxation.

In this appendix, I simulate changes in tra�c density under taxation to estimate a lower

bound for the second-best optimal cordon prices in San Francisco. Specifically, I iteratively

calculate tra�c density, driver choices, and taxes until I reach a fixed point where driver’s

decisions under a given tax vector, ⌧⇤, imply tra�c densities (and associated externalities) such

that applying Equation 7 to these conditions again yields ⌧⇤.

This algorithm is as follows:

Let ⌧0 be the cordon taxes calculated using Equation 7 (the second-best tax formula from

the theory section) under current tra�c conditions, and let �0 be the externalities under

current conditions, as described in Section 8.

Repeat the following steps until the optimal cordon taxes calculated in any two subsequent

iterations (⌧n and ⌧n+1) meet some arbitrary element-wise threshold for convergence:

|⌧hn � ⌧hn+1| < ✏, where ⌧hn is element h of the tax vector calculated in step n.

In any iteration, n:

Step 1. Use the NHTS dataset described in Section 8 to simulate 600,0007 driver

choices under ⌧n�1.

In the first iteration, use ⌧0, defined above.

Step 2. Re-scale the hourly sensor-level road densities by comparing the simulated

number of trips that would pass over a given sensor in a given hour under the status

quo to the number of trips that would pass over a given sensor in a given hour under

the simulation from Step 1.

Step 3. Re-estimate the social damages associated with each trip according to the

updated hourly tra�c densities from Step 2. Call these updated damages �n. This

7As per the San Francisco County Tra�c Authority, roughly 600,000 vehicle trips cross San Francisco’s
proposed cordon daily.
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details of assigning congestion externalities to routes are covered in Section 8.3.

Step 4. Apply Equation 7 (the second-best tax formula from the theory section), using

the updated damages, �n. Define this tax vector as ⌧n.

Figure A17 plots the results of applying this algorithm to cordon pricing in San Francisco using

a convergence threshold of $0.01. The initial points (iteration one) are the taxes calculated

with trip-level damages that reflect current tra�c conditions, and are therefore equivalent to

the results shown in Section 8 (see row 1 of Table 3). After 9 iterations of recalculating tra�c

density and taxes, the morning and evening converge to $2.17 and $2.51, respectively.

The fixed point from this exercise constitutes a lower bound because it ignores “induced

demand,” or “rebound,” that is, marginal drivers who would have chosen not to take a trip in

the absence of road pricing, but choose to take the trip under road pricing due to lower travel

times. For any step n > 1 in the above algorithm, induced demand would imply tra�c densities

higher than those estimated by the discrete choice model (Duranton and Turner (2011)). Induced

demand would therefore attenuate the di↵erence in tra�c conditions between taxed and untaxed

equilibria. Optimal taxes that take into account endogenous externalities therefore lie between

the results presented in Section 8 and the fixed point calculated in this appendix.
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Figure A17 — Bounding Equilibrium Effects

Figure A17: Per-mile driving externalities are larger under denser tra�c conditions (Yang, Purevjav, and Li,
2020). As a result, trip-level tra�c externalities calculated using untaxed tra�c conditions may overestimate
optimal taxes. This figure displays the results of the simulation exercise where I iteratively calculate tra�c
density, driver choices, and taxes until reaching a fixed point where driver’s decisions under a given tax vector,
⌧⇤, imply tra�c densities (and associated externalities) such that applying Equation 7 yields ⌧⇤. This optimal
tax contains two elements: morning (blue) and evening (red) peak hour prices. The fixed point in this exercise
is a lower bound for the second-best peak-hour cordon prices in San Francisco because it ignores “rebound,” or
“induced demand” ––– drivers adding other trips or shifting from other modes in response to the improved tra�c
conditions under taxation.

G. Congestion Pricing and Accidents

In a manner similar to congestion and pollution externalities, the decision to drive imposes

external accident risk on other drivers. Anderson and Au↵hammer (2014) show that this exter-

nality relies crucially on vehicle weight, and exceeds congestion and pollution externalities for

the average US driver.

Large accident externalities for the average US driver, however, may not translate to higher

optimal cordon prices because of di↵erences in the risks of accidents in urban vs. rural areas.

Empirical studies of the impact of congestion charges on accidents suggest that the value of

accident reductions are several orders or magnitude smaller than pollution and congestion exter-

nalities. Green, Heywood, and Navarro (2016), for example, find that the London cordon zone

reduced overall accidents by 35%, and fatal accidents by 25 to 35%. Because of the relatively

low number of fatal auto-related deaths in London, however, the authors value these safety im-

provements at just £28 million annually. For comparison, Leape (2006) estimates the congestion
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benefits from London’s cordon zone were estimated at £230 million annually. Similarly, Percoco

(2016) finds that while Milan’s Cordon Zone reduced overall tra�c accidents by 16 to 18%, there

was no detectable impact on fatal accidents. Valuations of associated benefits are therefore dom-

inated by the roughly $3 billion in reduced pollution and congestion externalities (Gibson and

Carnovale, 2015).

The relatively small impact of congestion pricing on severe accidents may reflect the fact

that many of the main risk factors severe tra�c accidents — high tra�c speeds, drinking and

driving, and nighttime driving — are not well targeted by cordon zones. Relatedly, driving in

cities in the US and Europe tends to be relatively safe overall, making it straightforward to put

bounds on the accident-related benefits that may accrue from congestion pricing.

Together, these pieces of evidence suggests that it is unlikely that accounting for accident

externalities would substantively change the conclusions in this paper.

H. Interactions with Existing Taxes and Revenue Requirements

In this appendix, I cover the interaction between road pricing and existing environmental

policies, as well as the literature on whether governmental revenue requirements impact the

optimal Pigouvian tax.

H.1. Accounting for Existing Environmental Taxes

Broadly speaking, in the presence of existing Pigouvian taxes the optimal level for an additional

tax covers the di↵erence between the marginal damages associated with consumption and the

existing corrective tax. It is therefore important to account for existing environmental policies

that act as a tax on driving when calculating optimal Pigouvian road prices.

There are a number of State and Federal policies that regulate vehicle-related local pollution

emissions in California. These policies largely fall into two categories: tailpipe regulations (e.g.,

catalytic converter requirements) and fuel content regulations (e.g., volatile organic compound

regulations). Below, I use a simple model to demonstrate that these two types of policies

have di↵erent implications for designing an additional tax to internalize remaining externalities

associated with driving. Regulations that impact vehicle costs should not be taken into account

when calculating optimal road prices. The costs of fuel content regulations, however, should be

subtracted from road prices to the extent that these regulations lead to higher per-mile prices.

Existing policies that impact vehicle cost:

Consider a representative household with exogenous income I that consumes two goods, driving

x and a quasilinear numeraire good z. Driving is associated with an externality, �(a). The
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per-mile magnitude of this externality can be abated (a) on the assembly line at cost c(a). I

assume that �a and ca are each di↵erentiable, with c0(a) > 0 and �‘(a) < 0. The planner’s

problem is to choose an abatement level, a and a diving level x to maximize total welfare:

W = u(x) + z � �(a) · x� c(a) s.t. I � z � p · x

The Lagrangian associated with this maximization problem is:

L = u(x) + z � �(a) · x� c(a) + �(I � z � p · x)

The first-order conditions for an interior solution to this problem are:

� = 1

u0(x) = �(a) + p

�0(a)x = c0(a)

These conditions imply that the planner equates marginal abatement costs and marginal abate-

ment benefits, and (separately) equates marginal driving costs and marginal driving benefits.

The fact that abatement costs do not enter directly into the first order condition for x implies

that if a is set at some exogenous level, the policymaker would ignore the abatement cost when

choosing the optimal level of driving, only weighing the utility of driving against the external-

ities that remain after abatement. I therefore ignore the costs of environmental policies that

impact vehicle prices (e.g., requirements for catalytic converters) when calculating the level of

“unpriced” externalities for drivers.

Existing policies that impact fuel cost:

Now consider the same consumer model, but the per-mile magnitude of this externality can be

abated by altering fuel content at cost c(a) · x. That is, the total abatement cost now depends

on the amount of driving, x.

Again consider a policymaker who maximizes total social welfare, W :

W = u(x) + z � (�(a)� c(a)) · x; s.t. I � z � p · x

The Lagrangian associated with this maximization problem is:

L = u(x) + z � (�(a)� c(a)) · x+ �(I � z � p · x)

69



The first-order conditions with respect to x and a are:

� = 1

u0(x) = �(a) + c(a) + p

�0(a) = c0(a)

As above, these first-order conditions imply that the planner equates marginal abatement costs

and marginal abatement benefits, and equates marginal driving costs and marginal driving bene-

fits. The crucial di↵erence in this case is that the marginal cost of driving now includes abatement

costs. As a result, the social planner will still weight these costs when setting optimal road prices.

The results in the body of this paper are not adjusted for existing environmental policies that

impact the variable cost of driving, namely fuel content regulation. Au↵hammer and Kellogg

(2011) estimate that fuel content regulations in California cost roughly 12 cents (in 2020 dollars)

per gallon. If an average trip crossing San Francisco’s cordon boundary travels roughly 10 miles

per hour and has a fuel e�ciency of 20 miles per gallon, the second-best optimal prices in this

paper adjusted for pre-existing fuel regulation would be roughly $0.06 lower than the results

shown in Section 8.

H.2. Accounting for Government Revenue Requirements

The stylized models above raise the question of whether any policy that increases the per-

mile cost of driving about the competitive equilibrium should be accounted for when calculating

optimal road prices. Work by Kopczuk (2003) and Jacobs and De Mooij (2015) suggests that

optimal taxation and Pigouvian taxation are separable problems: The calculation of optimal

road prices should not take into account taxes that exist as a result of governments balancing

the distortions of various revenue sources.

As noted by Jacobs and De Mooij (2015), however, this argument relies on the fact that the

marginal cost of public funds is one in an optimal tax system. If the marginal cost of public

funds is not one, then the optimal second-best Pigouvian tax could be higher or lower than a tax

set equal to marginal social damages. Absent strong evidence that the marginal cost of public

funds is above or below one, I assume that the marginal cost of public funds is one in the San

Francisco Bay Area, and therefore do not adjust optimal road prices to reflect their interactions

with the tax system. As anecdotal evidence of this assumption, note that California state and

local ballot initiatives frequently feature direct votes on taxation, bond issuance, and spending

decisions. It is plausible that this low barrier to public finance reform allows California’s tax

code to reflect citizen’s preferences for public goods and redistribution more accurately than do

tax codes regions without ballot initiatives.
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I. Assessing External Validity with the NHTS

The appropriateness of using of the driving demand model estimated using data from the San

Francisco Bay Area (see Section 7) to cordon pricing in other cities depends on whether trips

taken in other cities are similarly substitutable, and whether similar correlations between trip-

level externalities and price responsiveness are present. In this appendix, is use data from the

2017 National Household Transportation Survey (NHTS) to investigate these relationships for

two other US cities — New York and Los Angeles — that are currently considering implementing

congestion pricing. I further investigate external validity in Appendix J, where I use public

transit data from the Bay Area to examine whether the price-responsiveness of driving trips

di↵ers based on the availability of public transit.

Broadly, NHTS data suggest that the relevant relationships in each of these cities are similar

to those in San Francisco. Drivers appear similarly able to shift trips temporally. Figure A18,

for example, shows that similar fractions of drivers report flexible work schedules in each of

these cities. Figure A19 shows that likelihood of a given trip being flexible varies in New York

and Los Angeles in a manner similar to the within-day variation in San Francisco. Figures A20

through A22 provide suggestive evidence that the way that externalities generated by driving

— congestion and pollution — vary with price responsiveness in New York and Los Angeles is

similar to the way that these externalities vary with price responsiveness in San Francisco. In

each city, drivers who “agreed” or “strongly agreed” that gasoline prices impacted their decision

to drive were modestly more likely to drive an older, more polluting vehicle. Similarly, drivers

that report being more responsive to gas prices report driving along more congested routes,

measured as the di↵erence in reported commute time with vs. without tra�c.

It is worth noting that these proxies for idiosyncratic externalities and price-responsiveness

suggest a weak positive correlation, which di↵ers from the results I estimate using FasTrak

data. This could result from di↵erences in sample, or di↵erences between groups in the mapping

between actual actions and responses on the likert scale.
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Figure A18 — Schedule Flexibility by Metro Area

Figure A18: This figure plots the share of drivers who report having a flexible work schedule by metro area,
according to the 2017 National Household Transportation Survey.

Figure A19 — Schedule Flexibility by Time of Day

Figure A19: This figure plots the share of drivers who report having a flexible work schedule by time of day and
metro area, according to the 2017 National Household Transportation Survey.
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Figure A20 — Emissions Factors vs. Gas Price Responsiveness

Figure A20: This figure plots estimates emissions factors of vehicles in the 2017 National Household Transporta-
tion Survey against vehicle owners’ self-reported responsiveness of driving demand with respect to gasoline prices.
Emissions factors reflect vehicle age and fuel type.

Figure A21 — Vehicle Age vs. Gas Price Responsiveness

Figure A21: This figure plots vehicle age against vehicle owners’ self-reported responsiveness of driving demand
with respect to gasoline prices using data from the 2017 National Household Transportation Survey.
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Figure A22 — Congestion vs. Gas Price Responsiveness

Figure A22: This figure plots self-reported gasoline price responsiveness against the amount of time a driver
reports loosing to tra�c during their commute for drivers in the 2017 National Household Transportation Survey.

J. Public Transit

As outlined in Section 2, optimal cordon prices are determined in part by the unpriced social

cost of substitutes to peak-hour cordon trips. Understanding how substitution to the outside

option (any non-driving activity, including not traveling, or public transit) di↵ers with access to

public transportation is therefore crucial for applying the discrete choice model estimated in the

Bay Area to other cities.

In this appendix, I first use data from the Bay Area Rapid Transit system to estimate the

magnitude of substitution to public transportation in response to the 2010 change in toll prices

on Bay Area Bridges. I then estimate an alternative specification of the logit model presented in

Section 7 to test whether drivers with FasTrak devices registered in zip codes with easy walking

access to public transit are more price responsive than are drivers who live in areas without

access to public transit.

J.1. Public Transit in the San Francisco Bay Area

The Bay Area Rapid Transit (BART) system is a light rail network that connects the eastern

Bay Area to the San Francisco Peninsula. BART is the most commonly-used public transporta-

tion system in the Bay Area, and the only rail system with trans-bay lines. The 46 stations that
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comprise the BART system are plotted in Figure A24. Riders are charged based on the length

of their trip; in 2010 the minimum price for a BART trip was $1.75, and most trans-bay trips

cost between $3 and $6. Prices for the BART system did not change between July 2009 and

July 2012.

BART publishes monthly ridership at the station level. Table A7 and Figure A23 show the

change in BART ridership estimated using a regression discontinuity design around the July

1, 2010 change in bridge prices. In my preferred specification (column 3), I estimate that the

increase in toll prices on the Bay Area bridges increased BART ridership by an average of

105 weekday rides per station per month. This point estimate corresponds to a 1.3% increase

relative to baseline ridership levels. Multiplying this estimate by the number of BART stations

(46) implies an estimate of 4,830 additional weekday BART trips per month, or 230 additional

BART trips per weekday following the increase in bridge toll prices.

These point estimates suggest that while some drivers switched to public transit, the drivers

who switched to public transit represent a small fraction of the total number of drivers who

substituted away from driving. For reference, Foreman (2016) finds that the average change

in hourly trips following the July 2010 price increases on the Bay, San Mateo, and Dumbarton

Bridges were -87, -14, and -48, respectively, implying a total decrease 3,576 driving trips per day

on these three bridges. Taking both of these estimates at face value implies that only 6.4% of

the decrease in trans-bay trips were replaced by BART trips.

J.2. Price Responsiveness and Public Transit Access

In Table A8, I re-estimate Equation 9, allowing price-responsiveness to vary with access to

public transportation. Specifically, I interact the price variable with an indicator variable for

whether there is a BART station within 20 minutes walking distance of a given driver’s zip

code.8 Point estimates suggest that drivers living in zip codes with transit stops nearby are

slightly more price responsive than are those without transit stops nearby, but this di↵erence is

not statistically significant.

In summary, although some Bay Area drivers responded to the increase in bridge tolls by

shifting to public transit, the overall share of drivers who switched modes is quite low, and price

sensitivity does not vary significantly based on public transit access. A possible explanation

for the similarity in price responsiveness across drivers with di↵erent access to transit is that

unobservable characteristics may determine selection into driving. Put di↵erently, the people

who live in transit-rich neighborhoods but nonetheless still choose to drive may have idiosyncratic

8According to the 2017 NHTS, roughly 90% of respondents who report taking public transit to work walk 20
minutes or fewer to the transit station.
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preferences or pressures that lead them to be reluctant to switch modes, even though they happen

to live near transit stations.

While these findings generally support the application of the discrete choice model estimated

in San Francisco to areas with di↵erent public transit systems, several caveats bear mentioning.

First, the BART system is a relatively expensive public transportation system. The magnitude

price-induced substitution away from roads and toward transit undoubtedly depends on the price

di↵erential between modes. Conditional on the other attributes of transit trips, cities that have

cheaper public transit (e.g., New York) may experience higher cross-price elasticities between

vehicle transportation and public transit. Second, the results in this appendix (and this paper

more generally) rely on short-term elasticity estimates, i.e., estimates of substitution elasticities

holding fixed housing and work locations, as well as vehicle purchases. As firms and individuals

sort in response to cordon prices, public transit access may lead to di↵erent long-run elasticities

across regions where short-run elasticities look similar. While a full hedonic sorting model is

beyond the scope of this paper; one would expect that cities with more connected and cheaper

public transit systems would experience more drivers shifting to these modes. All else equal,

this would (a) reduce leakage, and (b) increase second-best cordon prices relative to a city with

poor public transit options.

Table A7 — Changes Public Transit Ridership

Specification

Variable (1) (2) (3)

Post 512.756 148.333 105.675

(36.58) (74.211) (79.071)

Station FE Yes Yes Yes

Month of Year FE Yes Yes Yes

Bridge Closure Dummy Yes Yes Yes

Linear Trend in Months No Yes Yes

Second-Degree Trend in Months No No Yes

Table A7: This table displays the results of three regression discontinuity designs estimating the change in public
transit ridership in the Bay Area following the July 2010 increase in driving tolls on trans-bay bridges. The
Post variable is the reported change in monthly rides BART rides at the Station level; there are 46 Stations in
the BART system. Standard errors clustered at the month level are shown in parenthesis. The data run from
September of 2009 to June of 2012, and contain 1,462 station-month observations.
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Figure A23 — Public Transit Ridership Regression Discontinuity Plots

Figure A23: The first pane in this figure plots the monthly station-level turnstyle exits averaged across the 46
stations on the Bay Area Rapid Transit (BART) system. The data run from September of 2009 to June of
2012, and contain 1,462 station-month observations. Panes 2 through 4 plot average monthly residuals from a
regression of station-level exist on a set of station fixed e↵ects, month-of-year fixed e↵ects, and a dummy for
months where there was a closure on the Bay Area’s trans-bay bridges. Pane 2 fits a simple average to the pre vs.
post residuals; pane 3 plots the pre and post residuals with a linear fit; pane 4 fits a second-degree polynomial to
the pre and post residuals. The discontinuity between the fitted lines in these plots correspond to the treatment
e↵ects in specifications (1) through (3) in Table A7, respectively.
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Figure A24 — Access to Public Transit in the San Francisco Bay Area

Figure A24: The top panel shows Bay Area Rapid Transit (BART) light rail stations along with Bay Area
bridges. The bottom panel plots the estimated walking time (as per google maps) from the google-registered
address associated with a given Bay Area zip code (roughly the zip code centroid) to the nearest BART station.
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Table A8 — Discrete Choice Model with Price Responsiveness by Transit Access

Model

Coe�cient (1) (2)

Time Early -1.8391 -1.9289

(0.0151) (0.0153)

Time Late -1.4618 -1.5891

(0.0114) (0.0121)

Travel Time -3.493 -3.6851

(0.0266) (0.028)

Price -0.1386

(0.0145)

Transit Access -0.1195

(0.0212)

No transit Access -0.1161

(0.0212)

Table A8: Results from a variation of Equation 9, a discrete choice model where drivers choose over routes and
times of day, estimated in a two-stage process (multinomial logit and mean utility decomposition) described in
Section 6. This model is estimated using FasTrak tolling microdata from the San Francisco Bay Area, as described
in Section 5. The dependent variable is whether an individual i elects to take a trip on route r at time of day h.
Travel time is the travel time (in hours) that driver i would incur by traveling via route r at time h. T ime early
is the number of hours that driver i would arrive before their ideal arrival time if they were to travel via route r
at hour h. T ime late is analogously defined. Price is the toll that driver i would incur by traveling via router at
hour h. In Column (1) is identical to column (1) of Table 1. In Column (2), I interact price with transit access,
an indicator for whether a BART train station is within 20 minutes walking distance of a given driver’s zip code.

K. Low-Income Exemptions

While road pricing can increase economic e�ciency, concerns about regressivity have prompted

planners in many cities to consider road pricing schemes specifically designed to reduce the in-

cidence on low-income road users. In San Francisco, for example, a majority of the congestion

pricing proposals under consideration include some level of income-based exemption San Fran-

cisco County Tra�c Authority (2021). Similarly, as of 2021, New York plans to refund congestion

tolls for drivers who make under $60,000 per year (Regional Plan Association (2021)).

Table A9 compares predicted reductions in pollution, congestion, and deadweight loss in

San Francisco under (a) the second-best peak hour cordon prices estimated using Equation 7,

and (b) the same policy where drivers from low-income households (those with self-reported
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household income below $75,000 in the NHTS) are exempt from cordon fees. This exercise

suggests that the e�ciency costs of these exemptions are modest: exempting low-income drivers

from cordon pricing in San Francisco would generate reductions in pollution and congestion

externalities that are 2-3 percentage points smaller than under an optimal no-exemption policy.

These e�ciency costs are substantially smaller than my estimates of the e�ciency costs that

reflect other imperfections in cordon pricing, like charging peak-only vs. hour-specific cordon

prices.

The relatively small e�ciency cost of exemptions reflects the low proportion of low-income

drivers in trips that use the cordon. In the sample of 1,891 trips from the California NHTS

with fastest routes that pass through California’s cordon zone, just 9% are taken by drivers from

houses with a total annual income of less than $75,000.

Table A9 — Second-Best Cordon Pricing with Low-Income Exemptions

Performance Relative to First-Best (%)

Outcome Second-Best Peak Hour Low Income Exemption

Reduction in Total Externalities 34.315 31.759

Reduction in Congestion 34.790 32.151

Reduction in Pollution 30.529 28.636

Welfare Gain 33.053 31.108

Table A9: Column (1) of this table reproduces the results from Table A3, which compares outcomes under
second-best optimal peak hour cordon pricing to outcomes under Pigouvian pricing. The second column in this
table compares the first-best policy to cordon pricing scheme that is identical to the scheme column (1), except
that households making less than $75,000 per year are exempt from cordon fees. Income data reflect self-reported
household income from the 2017 National Household Transportation Survey.
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