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Abstract

There is substantial spatial heterogeneity in household carbon emissions across the US,
and a strong association between emissions and local amenities such as density, transporta-
tion infrastructure, and housing characteristics. I estimate what share of heterogeneity in
carbon emissions is attributable to places themselves, and what share reflects individual pref-
erences and taste-based sorting. To do this, I construct a longitudinal panel of residential
energy use and commute characteristics for over a million individuals from two decades of
administrative Decennial Census and American Community Survey data. I use movers in my
data to estimate place effects – the amount by which carbon emissions change for the same
individual living in different places – for almost 1,000 cities and roughly 65,000 neighbor-
hoods across the US. I find that place effects explain more than half of differences between
places, and about 15-25% of overall variation in carbon emissions. My estimates suggest that
decreasing neighborhood-level place effects from one standard deviation above the mean to
one standard deviation below the mean would decrease household carbon emissions from
residential energy use and commuting by about 40%.
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1 Introduction

Climate change, caused by carbon emissions and other greenhouse gases, is an urgent threat to
society. Global average temperatures have increased by over 1C (1.8F) relative to pre-industrial
levels (NASA 2020), and the International Panel on Climate Change has cautioned that even
warming of 1.5C could lead to catastrophic increases in extreme weather events, population dis-
placement, and degradation of ecosystems. There is substantial spatial heterogeneity in house-
hold carbon emissions across regions and neighborhoods in the US, and researchers and policy
makers have highlighted this variation as an opportunity for decarbonization, pointing to fea-
tures of low carbon places, such as density and differences in transportation infrastructure, that
other places could adopt in order to lower household carbon emissions.

However, differences in mean carbon emissions across cities and neighborhoods reflect a
combination of place-based amenities, individual characteristics, and taste-based sorting. The
relative contributions of these pieces is a central determinant of whether “place-based” interven-
tions that change urban form would lead to meaningful and rapid reductions in carbon emissions.
For instance, if places with large single-family homes and car-oriented transportation infrastruc-
ture are high emissions because the people who live there dislike multi-family homes and public
transit, then deregulating zoning or building new subway lines would have little impact on house-
hold emissions and could end up being an expensive decarbonization strategy. Conversely, if the
lack of denser housing and transit options is a constraint on household choices, rather than
a reflection of their preferences, then such interventions could have the potential to decrease
emissions for many households at once.

In this paper, I decompose variation in household carbon emissions into a component
driven by household characteristics and a component driven by place effects – i.e., the amount
by which the same household’s carbon emissions would differ from place to place due to differences
in the underlying features of those places. To do so, I construct a longitudinal panel of residential
and transportation energy use for over a million individuals from 20 years of restricted-access
Decennial Census and American Community Survey (ACS) micro-data. The longitudinal nature
of my data makes it possible to link individual survey respondents over time and across places
and use two related “mover design” decompositions – an event study and a two-way fixed effects
model. I use changes to household carbon emissions for over 250,000 movers across roughly 1,000
cities and 65,000 neighborhoods to estimate place effects and their contribution to heterogeneity
in carbon emissions.

I begin my analysis by documenting observational patterns of city and neighborhood
level variation in household carbon emissions in my sample. Detailed geographic identifiers in
the administrative Census data make it possible to directly estimate these values. I estimate that
households in cities with high average emissions emit 50% more than households in low emissions
cities, and households in neighborhoods with high average emissions emit over two times more
than households in low emissions neighborhoods. Accounting for variation driven by observed
household characteristics such as household size and income decreases the dispersion across place
estimates, but by less than 10%.
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The heterogeneity that remains after accounting for observable household characteristics
reflects some combination of unobserved household characteristics or preferences and place effects.
Place effects could arise from a variety of local amenities that act as complements or substitutes
to energy consumption. For instance, place effects could reflect climate, public transportation,
bike or pedestrian infrastructure, highway networks, density, and/or zoning regulations. They
could also reflect supply-side factors that determine fuel shares and electricity emissions factors.
In the conceptual framework of this paper, I show how place effects relate to the parameters of
a consumer energy demand model in which the intercept and slope of the demand curve vary
across place.

I estimate the contributions of place effects and unobserved household characteristics to
heterogeneity in carbon emissions using two versions of a mover design. The first decomposition is
based on an event study, as in Finkelstein, Gentzkow, and Williams (2016), Chetty and Hendren
(2018), and Finkelstein, Gentzkow, and Williams (2020). I estimate changes in household carbon
emissions as a share of the change in mean emissions between a mover’s origin and destination. I
estimate that the majority of differences between places – about 90% across cities and 60% across
neighborhoods – is attributable to place effects. These estimates don’t account for variation in
carbon emissions across households within the same place, and they also impose a restriction that
there is no systematic selection of certain types of households to certain types of neighborhoods.

To allow for unrestricted patterns of sorting, the second decomposition is based on es-
timates from a two-way fixed effects model. This approach was first introduced by Abowd,
Kramarz, and Margolis (1999), and has been used extensively in the labor literature to study
the role of firms in wage inequality (e.g. Card, Heining, and Kline 2013; Card, Cardoso, and
Kline 2016; Lachowska et al. 2020). It yields a variance decomposition of overall heterogeneity,
including household variation within places as well as variation not explained by the model.
I account for “limited mobility bias” – the upward bias in naive estimates of variance compo-
nents that arises because some place effects are estimated from only a few movers (Andrews et
al. 2008) – using the heteroskedasticity-robust “leave-out” estimator proposed by Kline, Saggio,
and Sølvsten (2020). I find that place effects explain 16-19% of overall heterogeneity at the city
level, and 24-26% of overall heterogeneity at the neighborhood level. Controlling for variation
driven by climate and energy prices decreases the place shares to 10% at the city level and 15%
at the neighborhood level. I find low correlations between unobserved household and neigh-
borhood characteristics, even at the neighborhood level. This suggests that household sorting
contributes to differences between places through “segregation” of households, but not in a way
that is systematically correlated with unobserved neighborhood attributes. It also implies that
differences between the event study and the two-way fixed effect decompositions result primarily
from household variation within places and variation unexplained by the model.

While a large share of variation in overall household carbon emissions cannot be explained
by places, my estimates nevertheless highlight that interventions that decrease place effects could
result in considerable reductions to household carbon emissions. I estimate that if a household
goes from living in a neighborhood with place effects one standard deviation above the national
mean to a neighborhood with place effects one standard deviation below the national mean, their
emissions from residential energy use and commuting would decrease by about 40%. Correlates
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of low emissions places for the most part mirror relationships in the observational data: low
emissions places have higher density, more transportation alternatives to cars, and lower shares
of single family homes.

I do not identify the causal effect of each of these amenities individually. Instead, I
consider the impact on carbon emissions of urbanization, generally defined. To minimize mean
squared prediction error, I first adjust my estimates of place effects using a linear empirical Bayes
(shrinkage) estimator to down-weight parameters that are noisily estimated. I examine three
scenarios. The first two scenarios are variants on the question: what would happen to household
carbon emissions if places were more like New York City? The third scenario evaluates how
carbon emissions would change if every place across the US were more like the largest city in its
metropolitan or micropolitan area. This exercise doesn’t take into account general equilibrium
effects, but I see it as a useful first order approximation of the effect on household carbon
emissions of policies that “expand” cities – e.g. either through policies that make it possible for
more people to live in the city (without changing its fundamentals), or through investment and
regional development that limits suburban sprawl and increases the number of neighborhoods
that have amenities similar to those of the largest nearby cities. I estimate that this type of
“place-based climate policy” would result in 13% reductions in average household emissions from
residential energy use and commuting.

Taken together, the results in this paper provide new evidence on the role of places
in household carbon emissions. I provide direct estimates of nation-wide, neighborhood level
variation in household carbon emissions, building on evidence that this variation is substantial
(Jones and Kammen 2014; Ummel 2014; Green and Knittel 2020), but finding less heterogeneity
than predicted from national data projected onto local place and household characteristics.1

While related work has highlighted the consequences of spatial heterogeneity in household carbon
emissions for allocative efficiency (Glaeser and Kahn 2010; Colas and Morehouse 2021) and
distributional impacts and political economy of hypothetical climate policies (Cronin, Fullerton,
and Sexton 2019; Sallee 2019; Green and Knittel 2020), the focus of my paper is on examining
its causes. I show that place effects can be interpreted as summarizing the parameters of a
model of heterogeneous energy demand, where average demand and price elasticities of demand
vary across places as a result of different amenities and supply-side factors. Several papers have
generated estimates of heterogeneous energy demand parameters, but have necessarily done so
in spatially limited contexts (Auffhammer and Rubin 2018; Gillingham 2014; Nowak and Savage
2013; Spiller et al. 2014). Finally, my work builds a bridge to a set of papers that has used
observational data paired with modeling techniques to estimate strong relationships between
urban form and carbon emissions (e.g. Shammin et al. 2010; Timmons, Zirogiannis, and Lutz
2016; Ribeiro, Rybski, and Kropp 2019; Pomponi et al. 2021; Ko 2013).

My empirical approach builds on a recent body of work using mover designs to estimate
place effects in other settings, e.g. intergenerational mobility (Chetty and Hendren 2018), health
care utilization and mortality (Finkelstein, Gentzkow, and Williams 2016; 2020), home prices
(Schönholzer 2021), and wages (Card, Rothstein, and Yi 2021). I believe this is the first paper to

1. Differences in estimates could also be driven in part by the fact that these papers estimate household carbon
footprints from all consumption, including indirect emissions from food and durable goods.
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apply these methods to estimate the role of place in household carbon emissions. Even though
a large share of variation in carbon emissions is driven by factors other than places, my results
highlight considerable potential reductions in household carbon emissions from changes in the
distribution of place effects, adding evidence to a broader literature on the key role that places
play in individual outcomes. For example, many papers in the urban and spatial literature have
examined the role of density (e.g. see Duranton and Puga 2020, for a review), transportation
infrastructure (Tsivanidis 2019; Allen and Arkolakis 2021), and other amenities (e.g. Diamond
2016) in determining productivity, wages, and wage inequality. A more recent set of papers has
explored the costs and benefits of using place-based policy to improve aggregate welfare (e.g.
Kline and Moretti 2014; Gaubert, Kline, and Yagan 2019). And several papers have studied the
effect of transportation infrastructure on urban form and energy use specifically (e.g. Baum-Snow
2007; Duranton and Turner 2018).

The remainder of this paper proceeds as follows. In Section 2, I discuss my empirical
setting and data, and show several stylized facts about carbon emissions in the US. In Section 3,
I present my model, and discuss the interpretation of place effects. In Section 4, I describe
my empirical strategy and identifying assumptions. I present my main findings on the role of
unobserved place vs. person heterogeneity in carbon emissions in Section 5. I then describe
correlates of unobserved heterogeneity in Section 6, and predict how aggregate carbon emissions
would change under counterfactual distributions of place effects in Section 7. Section 8 concludes.

2 Data and Stylized Facts about Carbon Emissions in the US

I build a 20-year panel of individual and household-level data using the 2000 restricted access
Decennial Census long form and the 2001-2019 American Community Survey (ACS). The Census
long form is a stratified random sample covering one in six households in the US, and the ACS
is a stratified random sample covering 1% of households in the US each year except for 2001-
2005 when it covered roughly 0.4% of households (U.S. Department of Commerce 2014). I
link individuals across surveys using Protected Identification Keys, which are unique person
identifiers assigned by the Census Bureau based on names, addresses, dates of birth, other
household members, and social security numbers (when available).2

For every individual in my panel, I observe measures of residential and transportation
energy use and a rich set of demographic, household, workplace, and home characteristics, in-
cluding detailed geographic identifiers. I supplement the Census and ACS with several external
data sets in order to convert energy expenditures to energy services and emissions, and to char-
acterize places. In the remainder of this section, I define my geographic units of analysis and
outcome variables, provide a high-level overview of the key control and explanatory variables
I use, and discuss the construction of my analysis sample. Additional details can be found in
Appendix B.

2. Neither the Decennial Census nor the ACS ask respondents for their social security number. Layne, Wagner,
and Rothhaas (2014) use data with social security numbers to show that the error rate in assigning Protected
Identification Keys without social security numbers is below 1%. See Wagner and Layne (2014) for detailed
discussion of the assignment algorithm used by the Census, and Bond et al. (2014) for discussion of the variation
in assignment rates across population subgroups.
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2.1 Geographic units of analysis

Throughout the study, I analyze spatial heterogeneity at two levels of geographic granularity
which are meant to represent roughly a labor market and a neighborhood.

My primary measure of labor markets are Core Based Statistical Areas (CBSAs). CBSAs
are areas designated by the Office of Management and Budget and cover the population of
metropolitan and “micropolitan” areas in the US: Each CBSA is a set of contiguous counties that
contain at least one core area, of at least 10,00 people, and are highly economically integrated, as
measured by commuting ties. In addition to formally designated CBSAs, I define residual CBSAs
by state from unassigned rural areas. My primary measure of neighborhoods are census tracts.
Census tracts are county subdivisions that typically cover contiguous areas, have populations of
1,200-8,000 people (4,000 on average), and are delineated with boundaries that follow identifiable
physical features. They are designed to be relatively stable, but are split or merged every ten
years if populations exceed or fall below the 1,200-8,000 window.3

2.2 Carbon Emissions

My primary outcome is metric tons of carbon emissions from residential energy and passenger
vehicle use, which account for roughly one third of US greenhouse gas emissions.4

I estimate carbon emissions from residential energy use using household-reported expen-
ditures on electricity, natural gas, and other home heating fuels in the last year, combined with
external data on local annual retail prices and fuel emissions factors. For electricity, I calculate
county-level average prices using data on utility from the Energy Information Administration
(2020a) Annual Electric Power Industry Report, which reports, for every major utility in the
US, sales, revenues, and total customers, by sector and state, as well as counties contained in
the utility’s service territory. I calculate county-level retail electricity prices using customer-
weighted average price (revenue divided by sales) across utilities with service territories in the
county, and I compute household electricity consumption by dividing expenditures by my price
estimates. I then assign households to one of 12 National Electric Reliability Council subregions
using a tract-level crosswalk from the Homeland Security (2021) Infrastructure Foundation-Level
Database, and use the average annual emissions rates assigned to each subregion by the U.S. En-
vironmental Protection Agency (2021) Emissions & Generation Resource Integrated Database.
For natural gas and other home heating fuels, I obtain average retail prices at the state level
from the Energy Information Administration (2020b) State Energy Data System. If a household
reports non-zero expenditures on “other home heating fuels”, I impute the fuel used from their
answer to the question “What was the primary fuel used for home heating?” Finally, I obtain
fuel emissions factors from the Environmental Protection Agency (2018) Emission Factors for
Greenhouse Gas Inventories.

3. Census geographic definitions vary over time to account for changes in administrative boundaries and pop-
ulations. To ensure that I don’t erroneously identify people who live in places where the designation changed as
movers, I use the 2000-2010 census block concordance to assign 2010 geographic definitions to all years in the
data.

4. 75% of US greenhouse gas emissions are from burning fossil fuels. Of these, 20% are from residential energy
use (including electricity), and another 20% are from light duty (i.e. passenger) vehicles (Administration 2020).
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I estimate carbon emissions from transportation energy from individually-reported com-
mute characteristics. My outcome captures variation in carbon emissions driven by commute
lengths, number of commutes, and mode of transit.5 I estimate commute distance using the
geodesic distance between home and place of work census blocks, and I estimated commute
speed from estimated mileage and reported time-length of commute. I estimate gasoline usage
using annual national average fuel economy from the U.S. Environmental Protection Agency
and Energy (2020), accounting for the fact that in general fuel economy is roughly 30% higher
on highways than in cities. Finally, I estimate the number of annual commutes using reported
weeks worked last year and hours worked last week, and convert annual gallons of gasoline to
carbon emissions using the motor gasoline emissions factor from Energy Information Adminis-
tration (2020b) State Energy Data System. Individuals who commute by rail, subway, streetcar,
bus, bike, or walk, and individuals who work from home are assigned zero CO2.6 I examine the
sensitivity of my results to using the Federal Highway Administration (2019) National House-
hold Travel Survey (NHTS) to predict fuel economy and non-commute miles from household
and geographic characteristics available in both the Census and NHTS. This is not my baseline
approach, as it infers how much of variation in vehicle fleets and fuel economy observed in the
NHTS is driven by individual preferences vs. place-based factors from cross-sectional variation.7

2.3 Individual and Household Characteristics

Throughout the analysis, I use demographic and household characteristics to control for variation
driven by observable characteristics. My primary demographic and household controls are age,
education (completion of a bachelor’s degree), sex, race and ethnicity, household income (from
salaries and wages, interest, social security, supplemental security, public assistance, retirement,
and self employment), household size, and number of kids. I control for age using bins: 18-24,
25-30, 30-34, 35-39, 40-49, 50-64, and 65+. I control flexibly for number of kids using categorical
variables for 0, 1, 2, or 3+ kids. Household level characteristics are taken as averages over person
characteristics.

As highlighted in Card, Cardoso, and Kline (2016), the normalization choice for cat-
egorical variables does not affect the estimated size of the place variance component or the
variance component of the sum of fixed and observable household effects, but it does affect the
relative sizes of the place and unobserved household effects, as well as the estimated covari-
ances. Throughout my analysis, I choose the age bin 40-49, no college degree, male, white &
non-Hispanic as the omitted categories. Other than “white”, these are the categories with the
highest within-group variance in outcomes, thus this normalization will err towards finding a
larger unobservable preference component relative to place component.

5. Commuting accounts for about 28% of all vehicle-miles travelled, and 39% of person-miles travelled on transit
systems (US Department of Transportation 2015), which means I underestimate CO2 emissions from personal
vehicle use for most people in my sample.

6. This is a generous assumption that favors public transit. It is roughly correct on the intensive margin, but
not on the extensive margin unless new investment is required to be zero-emissions.

7. Place-based factors that contribute to variation in vehicle fleets could include social norms, perceptions of
safety (e.g. if everyone around you is driving a big car it is safer for you to drive a big car; certain types of cars
may be able to handle adverse weather better), road widths, ease of parking, etc.
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I also observe home-owner status, whether a household lives in a detached single family
home, building age, and the number of vehicles in a household. Because these characteristics are
intermediate outcomes, which affect CO2 and likely reflect some combination of household pref-
erences and place characteristics, I do not use these variables as controls throughout my analysis.
I do, however, use them in the second half of the paper to explore correlates of unobserved place
and household heterogeneity.

2.4 Place characteristics and amenities

In addition to individual-level data on home characteristics from the full sample in my micro-
data, I use several external sources of data to characterize amenities at the block, tract, city and
regional level. My focus is on amenities that are directly relevant to energy consumption and
carbon emissions in the residential and transportation sectors.

To account for variation in climate, I use data on annual heating degree days (HDDs)
and cooling degree days (CDDs) at the state-climate division level from National Oceanic and
Atmospheric Administration (2020). Degree days are computed as the annual sum of the daily
difference between that day’s temperature and 65F, and are meant to be a measure of the heating
and cooling requirements of a place.

My main measures of local neighborhood amenities are downloaded from Walk Score,
a private company that generates estimates of the walk-ability, transit-ability, and bike-ability
of every address in the US.8 Walk Score® rankings capture proximity to different commercial
amenities such as grocery stores as well as street characteristics such as block lengths and in-
tersection widths. Bike ScoreTM indices capture characteristics that make biking more or less
accessible, such as the existence of bike lanes, road connectivity, and hilliness. Transit Score®

ratings capture proximity to different types of transit, and the frequency and connectivity of
nearby options. For transit, I also observe the number of bus routes and rail routes within a half
mile, as well as a set of amenity scores that measure proximity to parks and leisure and commer-
cial amenities (e.g. grocery stores, restaurants, retail). Other than route counts, each score is
an index from 0-100. I assign over 6 million unique Walk Score points reflecting data from early
2020, one to every populated census block in the US, by matching census block centroids to the
nearest Walk Score latitude-longitude coordinate.

2.4.1 Analysis Samples

I restrict my analysis to individuals who are at least 18 years of age, who are not identified as the
householder’s child or grandchild, and who are not missing any of the outcome variables or key
explanatory or control variables described above. I also impose several additional restrictions
related to energy variables. I exclude from the sample individuals belonging to households whose
residential energy costs are included in rent, or whose gas costs are included in their electricity
bill, because I don’t observe expenditures in those cases. I also exclude individuals in households
where residential energy use is top coded or whose commute time is top coded, as the top-coding

8. Data provided by Redfin Real Estate.
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will obfuscate changes in individual consumption for the highest demand individuals. Lastly, I
exclude individuals if the sum of their household residential energy expenditures is zero, if they
are in the bottom 1% of non-zero residential energy cost observations, or if they are in the top
1% of commute distance observations as these outliers more likely reflect survey misreporting.
My full sample consists of all individuals who meet these restrictions across the 48 continental
states and the District of Columbia. This is over 16 million people across 12 million households
(Table 1, column (1)). I use the full sample to estimate observational geographic and household
heterogeneity.

I construct a panel sample by restricting the full sample to individuals for whom I have
at least two observations, and who did not indicate in the ACS that they had moved within
the last year.9 This restriction ensures that I am assigning residential energy expenditures to
the correct location. The panel sample consists of 1,062,000 people across 889,000 households
(Table 1, column (2)).

Finally, I impose two additional geographic restrictions which are necessary for the im-
plementation of my empirical strategy. First, because residential energy is determined at the
household level, and place effects are identified from the variation in outcomes of movers be-
tween places, I restrict the sample to only individuals who live with the same set of other full
sample individuals across observations.10 Second, I restrict CBSAs and tracts to the “leave-out
connected set” – the network of CBSAs or tracts that remain connected to each other by at least
one mover when I drop all the observations in any given household. I do this after dropping
tracts with fewer than 10 full sample household observations. The networks are constructed sep-
arately at the CBSA and tract level. This means it is possible for a household to be in the CBSA
panel but not the tract panel if the tracts they live in are not in the leave-out connected set of
tracts. The leave-out restriction drops a negligible share of (residual) CBSAs and roughly 13%
of (disproportionately rural) tracts, yielding approximately a 5% sample size reduction (Table 1,
Columns (4) and (6)). CBSA movers are households in the CBSA panel that live in different
CBSAs across observations (99,500 people in 87,500 households, Column (5)), and similarly, tract
movers are households in the tract panel that live in different tracts (within or across CBSAs)
across observations (275,000 people in 236,000 households, Column(6)). The CBSA panel, tract
panel, CBSA movers, and tract movers make up my four primary analysis samples. All estimates
are weighted using DEC/ACS sample weights.

9. In DEC, the question asked whether respondents had moved within the last five years. Since this is signifi-
cantly more restrictive, I don’t drop these individuals.
10. This restriction is weaker than requiring individuals live in a consistent household across observations. In

particular, if someone lives with different roommates across observations, but their roommates aren’t in the full
sample because of e.g. missing variables, I do not drop them from the data. Moreover, because people under the
age of 18 are dropped from the full sample, this does not drop households that have new children or households
in which children move out as they become adults.
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2.5 Sample Statistics

Table 1 shows sample statistics for the full sample, unrestricted panel sample, the two geograph-
ically restricted panel samples, and the two mover samples.

A comparison across the samples yields three main take-aways. First, individuals in the
panel are on average more likely to be white and have higher income than the full sample (columns
(1) and (2)). This reflects known heterogeneity in Protected Identification Key assignment
rates within the Census Bureau (Bond et al. 2014). The panel sample is 6 percentage points
likely to live in a tract designated as urban by the Census, 8 percentage points more likely
to live in a detached home, and 1 percentage point more likely to commute by car. Second,
further restricting the baseline panel to the CBSA and tract panels (columns (3) and (4)) does
not meaningfully change the distribution of demographics, (intermediate) outcomes, or place
characteristics. Finally, movers (columns (5) and (6)) tend to be younger, more credentialed, and
have higher income (conditional on age) than both stayers and the full sample. Movers also are
more likely than stayers to live in urban tracts, less likely than stayers to live in detached homes,
and they have higher rates of using electric heating and have lower emissions from residential
energy, making them more comparable to the full sample on all of these dimensions.

Overall, about 80% of household carbon emissions in my sample are from residential
energy, and about 20% are from commuting. Close to three quarters of the sample live in a
detached, single family home, a vast majority of the sample commutes by car, and on average
households live within half a mile of only one bus route and only 0.1 rail routes.

Table 2 shows additional statistics for the panel sample. I observe the vast majority of
my sample exactly twice, with on average 8-10 years in between observations. Movers tend to
be younger than stayers the first time I observe them, and are much more likely to have had a
child or greater than 50% increase in household income. Households tend to move to places with
higher shares of detached single family homes and worse non-car transportation amenities. The
majority of moves in my household are from urban to urban tracts, urban to suburban tracts,
or suburban to suburban tracts. Finally, consistent with secular trends of mobility in the US,
households are generally moving to places that are warmer (16-21% reductions in cooling degree
days, and 6-11% reductions in heating degree days). Additional statistics on mover selection and
patterns of mobility can be found in Appendix Table A.1, Table A.2, and Table A.3a.
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Table 1: Sample Statistics

Panel Sample Mover Sample

(1) (2) (3) (4) (5) (6)
Full All CBSA Tract CBSA Tract

A: Demographics

College 0.25 0.25 0.25 0.25 0.35 0.31
Age 44 46 46 46 43 43
White 0.82 0.89 0.89 0.90 0.89 0.88
Female 0.48 0.47 0.47 0.47 0.45 0.46
Household income 103,700 114,700 114,800 115,500 116,700 116,200
Household kids 1.0 1.0 1.0 1.0 1.0 1.0
Household size 2.8 2.9 2.9 2.9 2.8 2.9

B: Outcomes

Tons CO2 18.7 19.9 19.8 19.9 18.8 18.7
Tons CO2 −Residential 15.2 16.3 16.3 16.4 15.2 15.4
Tons CO2 − Commute 3.5 3.5 3.5 3.5 3.5 3.4

C: Intermediate Outcomes

% Detached home 72.4 80.9 80.9 81.5 73.3 72.9
% Use electricity only 28.8 23.5 23.6 23.5 29.8 27.5
% Commute by car 94.9 96.3 96.3 96.6 95.8 96.2
Commute minutes 25.3 24.9 24.9 24.8 26.2 25.7

D: Place Characteristics

% Urban 32.2 26.3 26.4 25.6 30.6 32.0
% Suburban 46.3 43.9 44.0 44.4 44.1 47.7
% Rural 21.5 29.8 29.6 30.0 25.3 20.4
Walk Score 26.25 22.64 22.69 21.98 22.08 24.39
Bike Score 35.38 33.10 33.13 32.77 33.58 34.92
Transit Score 9.07 6.92 6.95 6.51 6.83 7.96
N Bus routes 1.58 1.16 1.16 1.07 1.24 1.35
N Rail routes 0.16 0.09 0.09 0.08 0.10 0.10
Annual CDD 1,364 1,224 1,226 1,214 1,361 1,339
Annual HDD 4,369 4,796 4,786 4,828 4,483 4,510

N People 16,200,000 1,062,000 1,040,000 1,006,000 99,500 275,000
N Households 12,190,000 889,000 836,000 807,000 87,500 236,000
CBSAs 1,000 1,000 1,000 1,000 1,000 1,000
Tracts 71,500 69,500 69,500 60,500 53,500 60,500

Note: Column (1) shows statistics for the full sample. Column (2) shows statistics for the panel sample, with
no restrictions that individuals be in the same household or live in a connected geography. Columns (3) and (4)
show the panel samples restricted to individuals in a consistent household overtime and the CBSA and tract
leave-one-out connected sets, respectively. Columns (5) and (6) show statistics for the CBSA and tract mover
samples. All means are weighted using census sample weights. Counts and shares are unweighted and rounded
according to Census Bureau disclosure rules.
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Table 2: Panel Statistics

Panel Sample Mover Sample

CBSA Tract CBSA Tract

A: Sample Characteristics

% first observed in 2000 9.8 9.9 15.3 13.7
Years between obs 7.8 7.8 10.2 9.8

B: Demographic Characteristics

Age first observed 42.1 42.0 37.2 37.2
% |∆ HH income | > 50% 28.0 27.9 44.6 40.3
∆ num. kids -0.12 -0.12 0.07 0.08
% ∆ num. kids > 0 18.6 18.7 29.8 29.8

C: Mover Place Changes

∆ Walk Score -6.4 -6.5
∆ Bike Score -3.9 -3.9
∆ Transit Score -2.3 -2.7
∆ N Bus Routes -0.5 -0.5
∆ N Rail Routes -0.04 -0.04
∆ Tract % detached home 0.05 0.05

% Moves Urban-to-Urban 12.4 17.9
% Moves Urban-to-Suburban 15.3 13.5
% Moves Suburban-to-Suburban 20.6 28.4

%∆ CDD 21.4 16.4
%∆ HDD -10.7 -6.1

N People 1,040,000 1,006,000 99,500 275,000
N Households 836,000 807,000 87,500 236,000
CBSAs 1,000 1,000 1,000 1,000
Tracts 69,500 60,500 53,500 60,500

Note: Columns (1) and (2) shows panel statistics for the CBSA and tract panel samples. Columns (3) and (4)
show statistics panel statistics as well as summary measures of mobility patterns for the CBSA and tract mover
samples. All means are weighted using census sample weights. Counts and shares are unweighted and rounded
according to Census Bureau disclosure rules.
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2.6 Observational Heterogeneity

Carbon emissions from residential energy and passenger vehicle use vary immensely across in-
dividuals in the full sample. Individuals one standard deviation above the national mean emit
3.4 times as much as individuals one standard deviation below the national mean. Patterns of
energy use are strongly correlated with observable characteristics such as income, household size,
race & ethnicity, and education. Appendix Figure A.1 shows relationships between carbon emis-
sions and these characteristics. Accounting for observable characteristics decreases heterogeneity
across individuals, but significant variation remains: carbon emissions of individuals one stan-
dard deviation above the mean are still three times higher than those of individuals one standard
deviation below the mean, holding differences in individual observables fixed. A nonparametric
regression of household carbon emissions on a set of fixed effects for age, college education, race
and ethnicity, household income, household size, and number of children indicates that these
characteristics can explain 15% of overall variation in carbon emissions.

There is also substantial spatial variation in CO2 across the United States. I estimate
unconditional and conditional place means, µj , using an ordinary least squares regression of log
of individual CO2 onto place fixed effects, year fixed effects τt, and in the conditional regression,
individual and household observable characteristics Xit:

lnCO2it = µj(i,t) +Xit + τt + εit (1)

Per capita carbon emissions in CBSAs one standard deviation above the mean are about
54% higher than per capita carbon emissions in CBSAs one standard deviation below the mean,
with that difference decreasing only slightly to 50% when accounting for differences in population
compositions across areas. At the neighborhood level, individuals in high emissions neighbor-
hoods emit on average 2.2 times what individuals in low emissions neighborhoods do, or 2.1 times
more after accounting for differences in observables. Figure 1 shows normal distributions reflect-
ing the mean and standard deviation of per capita carbon emissions over individuals, CBSAs,
and tracts. The dotted gray line shows the raw distribution, and the solid lines show conditional
means. Even after accounting for observational characteristics, significant spatial heterogene-
ity remains, particularly at the neighborhood level. For the remainder of this analysis, I refer
to CBSA and neighborhood means conditional on observable characteristics as “obervational
means”, following the terminology used by Abaluck et al. (2021).

Figure 2 shows how carbon emissions differ across urban, suburban, and rural areas.
Suburban and especially rural places have higher emissions than urban places. Controlling for
heterogeneity driven by individual observable characteristics decreases the gap between urban
and suburban households by almost half, from 2.5 tons to 1.5 tons, and also decreases the gap
between urban and rural household by 1 ton, from 6.5 to 5.5.11

11. Relatively small differences between urban and suburban means potentially reflect a pretty broad definition
of urban by the Census.
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Figure 1: Heterogeneity in Individual Carbon Emissions

Note: This figure shows gaussian curves with means and normals reflecting the true distributions of per capita
emissions, across individuals, CBSAs, and tracts. Raw distributions are not shown in order to facilitate Census
disclosure review processes, but have higher kurtosis and are negatively skewed. The dotted gray line (labeled
“Individual”) corresponds to the distribution of individual CO2, conditioning only on year FEs. The solid gray
line (labelled “Individual, X”) corresponds to the distribution of CO2 over individuals conditional on year FEs
and observable characteristics. The dark blue solid line (“Mean CBSA, X”) and light blue solid line (“Mean
Tract, X”) correspond to the distributions of CBSA and tract (respectively) mean per capita CO2 conditional on
observable year FEs and characteristics. Observable characteristics include age, gender, race, education,
household size, and number of children.

Figure 2: Household Carbon Emissions in Urban, Suburban, and Rural Places

Note: This figure shows mean household CO2 for urban, suburban, and rural areas. Observable characteristics
include fixed effects for age, gender, race, education, household size, and number of children. Places are defined
as urban if they are designated as an urban tract by the census. Places are defined as suburban if they are not
designated as an urban tract by the census, but are contained within a CBSA. Rural areas are tracts outside of
CBSAs. The unconditional regression has an R2 of 0.08,and the conditional regression has an R2 of 0.21.
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Figure 1 and Figure 2 highlight substantial spatial heterogeneity in carbon emissions.
They also show that while observational heterogeneity in household carbon emissions is partially
driven by sorting of households with different characteristics to different types of places, the
majority remains unexplained. The fundamental goal of this paper is to understand how much
of is remaining unexplained heterogeneity is driven by unobservable individual preferences, and
how much is driven by causal place effects, i.e. the amount by which the same household’s carbon
emissions would differ from place to place, due to the underlying features of that place, holding
household characteristics (including unobserved preferences or endowments) fixed.

3 Model

Individual i living in place j consumes energy E in the form of four categories of fuels (f). In
the residential sector, they can consume electricity (e), natural gas (n), and other heating fuels
(o). In the transportation sector they can consume motor gasoline (m).12 Average demand
aj , price elasticities of demand ρfj , and prices P fj are allowed to vary by place. Demand also
depends on observable fixed and time varying characteristics (such as age, household size, and
income) Xit, individual fixed unobserved determinants of demand, αi, individual time-varying
unobserved determinants of demand εit, and national annual trends τt. Thus, individual demand
for residential and transportation energy is given by:

lnEit = aj +
∑
f∈F

ρfj · lnP
f
j +Xitβ + τt + αi + εit (2)

Place-based differences in average energy demand and in price elasticities of demand could
arise from a range of fixed and malleable characteristics of places. These include climate, built
environment or urban form – e.g. public transit, pedestrian and bike infrastructure, proximity
to highways and parking, density, and proximity to leisure and commercial amenities – and
regulatory characteristics – e.g. zoning restrictions or clean electricity standards. For example,
average demand for heating fuels is higher in cold places, and average demand for motor gasoline
is higher in places where households live farther from employers or commercial amenities. Price
elasticity of demand for gasoline may be higher in places with better alternative transportation
options, and price elasticity of demand for electricity may be higher in places with a larger variety
of home sizes and styles.

For each energy type Ef , carbon emissions, CO2, are a product of fuel consumed and
fuel-(and-place) specific carbon emissions factors φf , which reflect the physical carbon content
of fuel. Emissions factors are fixed across both time and place for natural gas, oil, and motor
gasoline. Electricity emissions factors vary both over time and place, reflecting differences in fuels
used for electricity generation. Thus, household consumption of residential and transportation

12. Electric vehicles are a negligible share of driving in my sample time frame. If someone has an electric vehicle,
I over-estimate their emissions, both because of the comparison between gasoline and electricity, and because the
electricity they use to charge their vehicle is included in residential energy (if they charge at home).
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energy results in carbon emissions:

CO2it = φejt · Eeit + φng · Engit + φo · Eoit + φmg · Emgit

Define φ̄j as the average emissions factor for energy consumption at place j. This will depend on
the emissions factor of electricity in place j, as well as average fuel shares. Define φij as person
i’s average emissions factor from aggregate energy consumption when they are living in place j.
For each person carbon emissions are given by the product of their average emissions factor and
their total energy consumption

CO2it = φij · Eit

=
φij

φ̄j
· φ̄j · Eit

Combining this expression with Equation 2 yields

lnCO2it = ln φ̄j + aj(i,t) +
∑
f∈F

ρfj(i,t) · lnP
f
j(i,t)︸ ︷︷ ︸

ψj

+Xitβ + τt + (lnφij − ln φ̄j) + αi︸ ︷︷ ︸
α̃i

+εit

= ψj +Xitβ + τt + α̃i + εit (3)

This derivation makes evident that place effects ψj capture place-based variation in average
energy demand, variation in price elasticities of energy demand, variation in prices, and average
fuel emissions factors (which reflect a combination of average electricity emissions factors and
average fuel shares). Individual effects αi capture relative energy demand, and relative fuel
emissions factors (i.e. relative fuel-specific demand, or individual deviations from place-based
average fuel shares). Equation 3 is the baseline estimating equation I take to the data. A
comparison with Equation 1 highlights the potential bias from inferring place-based heterogeneity
from observational means: µj = E[αi|i ∈ j] + ψj . In words – even after accounting for variation
driven by sorting on observable household characteristics, observational means µj reflect the
combination of place effects and the average unobserved characteristics of the people living in
those places.

3.1 Variance Decomposition

Using the two-way fixed effects model derived in Equation 3, heterogeneity in household carbon
emissions can be decomposed as below (lumping τt with Xit for brevity):

V ar(yij) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi)

+ V ar(Xitβ) + 2 · Cov(αi, Xitβ) + 2 · Cov(ψi, Xitβ) + V ar(εit)

The focus of my analysis is on the first three terms: the variance component of place
effects, the variance component of unobserved person effects, and their covariance, which captures
the spatial heterogeneity that results from systematic sorting on unobserved preferences. Abusing
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notation, I re-define yit as the residualized outcome, after having regressed household carbon
emissions on time effects and observed household characteristics. For the remainder of this
section, I discuss the variance decomposition for this residualized outcome.

V ar(yit) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi) + V ar(εit) (4)

I follow Song et al. (2019) and further decompose unobserved heterogeneity into a between-
place component V arj(ȳj), which captures the variation in mean household carbon emissions
across places, and a within-place component V ari(yit− ȳj |i ∈ j), which captures the heterogene-
ity in carbon emissions of households living in the same place:

V ar(yit) = V arj(ȳj) + V ari(yit − ȳj |i ∈ j)

= V ar(ψj) + 2 · Cov(ᾱj , ψj) + V ar(ᾱj)︸ ︷︷ ︸
Between

+V ar(αi − ᾱj) + V ar(εij)︸ ︷︷ ︸
Within

(5)

Equation 5 highlights that heterogeneity between places reflects variation in place effects,
sorting of certain types of households to certain types of places (the covariance term), and what
Song et al. (2019) refer to as segregation of households, i.e. the extent to which households of
different types segregate across places, whether or not this pattern reflects systematic sorting
on place types.13 In addition to the between-place heterogeneity, overall heterogeneity reflects
heterogeneity in household carbon emissions within places, as well as heterogeneity that cannot
be explained by the two-way fixed effects model.

4 Empirical Strategy

My empirical strategy uses moves across places to estimate place effects and their contribution to
spatial heterogeneity in carbon emissions. The intuition behind the mover design is the following:
Suppose high-emissions places are high emissions because of a causal place effect, for example
because there are no alternatives to commuting other than by car, or because zoning regulations
constrain the types of homes households can live in. Then when a household moves from an on
average high emissions place to an on average low emissions place, their carbon emissions should
decrease because of lower-emissions alternatives now available to them. Conversely, if spatial
heterogeneity is driven by strong preferences, then, households that currently live in detached
single family homes and commute by car would continue to do so even given alternate options,
and moving from on average high to low emissions places should have little effect on household
carbon emissions.

I decompose carbon emissions heterogeneity using two versions of the mover design. The
first is an event study that characterizes movers’ changes in emissions as a share of origin-
destination differences in mean carbon emissions. This approach gives a decomposition of het-
erogeneity between places, although it is not a decomposition of variance terms (and place shares
are not constrained to fall between zero and one). It is also unbiased only if there is no systematic

13. ᾱj ≡ E[αi|i ∈ j]
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sorting of household types to place types. While this assumption is somewhat restrictive, the
event study approach is much more efficient than estimating the full two-way fixed effects model.
It yields causal estimates under these stronger assumptions on sorting, but is useful for predic-
tion and as descriptive evidence under weaker assumptions. The second approach estimates a
non-parametric distribution of household and place effects using the two-way fixed effect model
derived in Section 3. This approach gives a decomposition of overall heterogeneity, and yields
unbiased estimates under weaker assumptions on selection. In the remainder of this section I
discuss the mover design identifying assumptions and then each of these variance decompositions
in turn.

4.1 Identifying Assumptions

Estimates from both versions of the mover design are unbiased under three assumptions, as
highlighted in Hull (2018): (1) additive separability of place effects, or constant effects (2) non-
persistence of outcomes, and (3) exogenous mobility, or conditional orthogonality.

Assumption 1: Additive Separability of place effects, or constant effects.

A core modeling assumption of the two-way fixed effect design is that the outcome –
log carbon emissions – is additively separable in person and place effects. This specification
implies that place effects increase and decrease CO2 proportionally by the same amount for
everyone. This is realistic for several potential mechanisms through which place effects could
arise. Most obviously, fuel emissions factors affect carbon emissions levels multiplicatively, and
similarly, it is natural to model climate as scaling residential heating or cooling needs up or
down by the same factor for everyone. To take a few other examples: if place effects are driven
by density, it may be reasonable to expect places with higher density to decrease the size of
homes (and therefore residential energy requirements) or the length of commutes (and therefore
transportation energy requirements) by the same factor for low and high baseline users. Similarly,
an increase in transportation alternatives to cars might decrease the share of trips taken by car
for all households proportionally.

While it is easy to imagine place-based factors that operate in these ways, the model
imposes a substantial restriction. It does not allow for heterogeneous treatment effects or match
effects. Heterogeneous place effects could arise if, for example, place effects are due to a public
transit option that only low-income households use but doesn’t change high-income household
behavior, or if all households use the public transit option but low-income households get rid
of their car and eliminate all car trips, while high-income households eliminate only a share.
Alternatively, heterogeneous place effects might arise if there is not a lot of variation across
places in e.g. number of car trips taken or home sizes for low baseline users, but high users
respond strongly to places with particularly good or bad amenities. If such heterogeneity exists
and there’s selection of certain types of households to certain types of places, then my estimates
will be biased towards the local average treatment effect for the subgroup I tend to observe
moving to a given place.
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To rule out selection on heterogeneous effects and validate the log additive model, I
follow Card, Heining, and Kline (2013) and test whether moving from a low CO2 place to
a high CO2 place and moving from high CO2 place to a low CO2 place are associated with
equal and opposite changes in household CO2. Unlike in their setting, in which higher wages
are unambiguously good, it is not ex-ante obvious whether we would expect selection to be
assortative or disassortative. Nevertheless, testing for symmetry of moves provides evidence on
the existence of either type of selection.

To see this, consider differences in potential outcomes across an origin o and destination
d, allowing now for there to be an interaction η(αi · ψj) between person and place types:

E[CO2it(d)]− E[CO2it(o)] = (ψd − ψo) + η(αi · ψd)− η(αi · ψo)

Because of the multiplicative nature of the interaction term, for a high-type household h and a
low type household l moving between the same origin and destination:

|η(αh · ψd)− η(αh · ψo)| > |η(αl · ψd)− η(αl · ψo)|

Thus, regardless of whether the interactive term is positive or negative, and regardless of whether
sorting is assortative or disassortative, this type of interaction, paired with selection, would lead
to asymmetries between changes in household carbon emissions from moves to higher on-average
places vs. lower on-average places.

I group places into four quartiles based on observational averages of CO2, and I esti-
mate individual CO2 for each origin-destination quartile pair, adjusting for annual trends and
controlling for demographic and household characteristics. Results are shown in Figure 3. For
parismony, the figure shows only moves from the lowest quartile CO2 places to all 4 quartiles and
vice versa, as well as moves within 1st quartile places and moves within fourth quartile places as
bounds in gray. Moves across quartiles lead to equal and opposite changes in household carbon
emissions, suggesting that the log-linear model of place effects is a good approximation. The
figures also provide evidence of selection, with households that move from the lowest quartile to
a different place in the lowest quartile having lower emissions on average than households that
move from the lowest quartile to higher quartiles (and vice versa).

Assumption 2: Non-persistent Outcomes.

As highlighted above, relative place effects are identified from pairwise comparisons of
household CO2 between their origin and destination,

E[CO2it(d)|αi, Xit, τt]− E[CO2it(o)|αi, Xit, τt] = ψd − ψo

This expression holds for any two households moving between o and d, regardless of the history of
places {j} they lived in prior. Note, however, that this doesn’t rule out that the place somebody
was born may have a persistent effect on their preferences and carbon emissions. Because I
include household effects in the model, and only include individuals over the age of 18 in the
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sample, any persistent effect of place of birth and upbringing on carbon emissions will be captured
by the household fixed effect.

Figure 3: Changes in household CO2 when moving across quartiles of Mean CO2

(a) CBSA (b) Tract

Note: This figure shows average household carbon emissions for movers across places classified into quartiles
based on their mean carbon emissions in the full sample. Only the subset of moves to and from the lowest
emissions places (quartile 1), as well as moves within the highest emissions places (quartile 4) are shown.
Estimates are conditional on year fixed effects and the standard set of household characteristics used throughout
this analysis.

Assumption 3: Exogenous Mobility, or conditional orthogonality.

Finally, estimates of place effects from the mover design are unbiased only if moves are
strictly exogenous; in other words if shocks to unobserved determinants of CO2 are conditionally
uncorrelated with destination choices.

E[εit|αi, ψj(i,t), Xit, τt] = 0 (6)

Note that the two-way fixed effects model allows for unrestricted selection on fixed or
time-varying observable characteristics and on fixed unobservable characteristics. For instance,
entering middle age and having children is associated with an increase in energy consumption
generally (Figure A.1), and also significantly increases the probability of moving to a suburb
(Table A.2); however this endogeneity does not bias my estimates, because I observe age, house-
hold size, and number of children. Similarly, estimates of place effects are robust to household
changes in energy demand and simultaneous moves to a new neighborhood that might arise from
an increase (or decrease) in income, because I observe household income. Finally, if people have
heterogeneous, but fixed, preferences for neighborhood amenities – e.g. if people have a particular
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distaste for public transit, a strong preference for large homes, or a particular love for walking or
biking – and their choice of what neighborhood to live in reflects those preferences, estimates of
place effects are unbiased because these unobserved but fixed determinants of CO2 are captured
by individual fixed effects. The ability to account for these time invariant unobserved preferences
is a crucial benefit of the mover estimation strategy.

Thus, the main threat to identification is the possibility that moves correspond to changes
in unobserved preferences – either single idiosyncratic shocks or evolving. A standard approach
for ruling out this source of endogeneity is to test for parallel trends between movers and stayers
prior to the move. A limitation of my data is that I observe the majority of my sample only
twice, which makes it impossible to test for parallel trends. In Section 5.1, I show that the effect
of moving appears to be stable across duration between observations, meaning estimates from
households observed less than 5 years apart are similar to estimates from households observed
more than 15 years apart. If moves were endogenous to preferences evolving, or “drifting” over
time, you would expect that my heterogeneous parameter estimates would evolve in a parallel
way. While somewhat comforting, this does not rule out the possibility of moves corresponding
to a single idiosyncratic shock to preferences. To rule this out, I use data from the Panel Study
of Income Dynamics (PSID), over the same sample period, and assess whether movers in the
PSID exhibit any changes to energy expenditures prior to their move. While I do not know
where households move from or to, I find that energy expenditures are flat leading up to a move
and increase afterward, consistent with life-cycle trends presented in Table 2 of people moving
to places with larger homes and fewer non-car transportation amenities, and with the secular
trend over my sample frame of people moving to places with higher cooling needs. This result is
shown Figure A.4.

4.2 Event Study Decomposition

The first decomposition I estimate is based on an event study, as in e.g. Finkelstein, Gentzkow,
and Williams (2016). Consider a household i that moves from origin o to destination d. House-
hold i’s expected change in carbon emissions is given by:

E[lnCO2it(d)− lnCO2it(o)|αi, Xit, τt] = ψd − ψo

I re-express the change in place effects in terms of the share of differences between observational
means, ȳd − ȳo, attributable to differences between place effects:

ψd − ψo =
ψd − ψo
ȳd − ȳo

· (ȳd − ȳo)

≡ θo,d · (ȳd − ȳo)
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Plugging this expression into the two-way fixed effect model yields an event study, which I use
to estimate the share of differences between places attributable to place effects, θ:

lnCO2it = αi + ψj(i,t) + τt +Xitβ + εit

= αi + ψo + 1[moved] · (ψd − ψo) + τt +Xitβ + εit

= α̃i + 1[moved] · θ · (ȳd − ȳo) + τt +Xitβ + εit (7)

Relative to the unrestricted two-way fixed effects model, the event study approach vastly
reduces the dimensionality of the estimation problem, as now the place share of heterogeneity
is characterized by a single parameter θ as opposed to the full distribution of J place effects.
However, this efficiency comes at the cost of an additional assumption, that heterogeneity in θ
cannot be correlated with other parameters in the model. In other words, because place types are
inferred from observational means, the event study limits selection of households to places so that
there is no systematic sorting of e.g. high type households to high type places. In Equation 5,
this amounts to requiring the covariance term to be equal to zero.14

4.3 Two-way Fixed Effects Decomposition

The second decomposition I estimate is the one described in Equation 4 (and shown again below),
which is based on estimation of the full two-way fixed effects model, allowing for unrestricted
correlations between place effects and household characteristics.

V ar(yit) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi) + V ar(εit)

In contrast to the event study decomposition, the two-way fixed effects decomposition
allows unrestricted sorting of households across places, and the variance share attributable to
household heterogeneity reflects not only the between component (i.e. how households differ
across places on average) but also the within component (i.e. how much variation in carbon
emissions there is across observably similar households within the same place).

A well-documented challenge to estimating variance components in two-way fixed effect
models is limited mobility bias (Andrews et al. 2008): estimates of place effects are noisy because
they are estimated from a small sample of movers to and from each place. This creates an upward
bias in the plug-in variance estimate relative to the true variance of place effects, even if estimates
of place effects themselves are unbiased. To address this, I estimate variance components using
the heteroskedasticity-unbiased leave-out estimator proposed by Kline, Saggio, and Sølvsten
(2020), henceforth KSS. The KSS estimator uses a leave-out estimate of standard errors to
correct estimates of the variance components for sampling variability.

I implement the leave-out estimator at the household level, leaving out all observations
corresponding to a household match, not just an individual match. In the mover sample, the KSS
estimator is robust to unrestricted heteroskedasticity and serial correlation within each match.

14. The household share term, which captures segregation of household types that is uncorrelated with unob-
served place-based heterogeneity, is given by Ed[αi+Xitβ|τ ]−Eo[αi+Xitβ|τ ]

ȳd−ȳo
.
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Because it is not possible to leave out matches for stayers without dropping all their observations,
if there is serial correlation in the error term, KSS estimates of the person variance component
in the panel sample are an upper bound on the true value. To reduce the computational burden
of the estimator, I use the Johnson-Lindenstrauss approximation (JLA) algorithm introduced
by KSS to estimate the statistical leverages of each match, i.e. the amount by which estimates
change when leaving out the match. KSS show that using JLA introduces an approximation
error of roughly 10−4 relative to estimating statistical leverages directly. See Appendix C for
some additional detail on the implementation of the empirical approach, and KSS for a complete
discussion of the leave-out estimator and JLA algorithm.

5 Results

This section presents the core results of my paper: estimates of the share of spatial heterogeneity
attributable to place effects. I begin this section by showing results from the event study speci-
fication, which – even if the stronger assumptions on selection are violated – serve as additional
useful descriptive evidence. I then present results from the unrestricted two-way fixed effect
model. I conclude the section with a discussion on interpreting the two versions of the analysis,
as well as several sensitivity analyses.

5.1 Event Study

This section presents estimates from the event study derived in Section 4.2

lnCO2it = α̃i + 1[moved] · θ · (ȳd−i − ȳo−i) + τt +Xitβ + εit (8)

ȳj−i are sample means calculated from the full sample, leaving out the household observation.
To the extent that there is sampling variability in the distribution of observational means, my
estimate of the relationship between origin-destination mean changes and individual changes in
logCO2 may be biased. In practice, using a linear empirical Bayes estimator to adjust observa-
tional means for sampling variability as in, e.g. Abaluck et al. (2021) or Finkelstein, Gentzkow,
and Williams (2020) does not materially change the results.

Table 3 presents estimates of the place share, θ̂, from the event study. Column (1) shows
estimates with no controls other than year fixed effects. Adding controls (column (2)) does
not change the CBSA estimate, but decreases the share of heterogeneity attributable by tract
effects by 12 percentage points. This is consistent with evidence that taste-based sorting across
neighborhoods plays an important role in neighborhood-level variation in CO2, while moves
across CBSAs are more likely to be driven by other factors such as new job opportunities or
proximity to friends or family.

One potential concern with the panel estimates presented in column (2) is that the effect
of changes to observable characteristics – e.g. having kids – on carbon emissions is estimated
from both stayers and movers. However, it may be the case that households who move after
having children do so in part because having children changed their preferences more than hav-
ing children changed the preferences of households who ended up staying where they were. If
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the decision of whether to move or not is driven (at least in part) by such heterogeneous prefer-
ence shocks, then any differential effect of the preference shock to movers would be incorrectly
attributed to place effects, biasing my estimates. To address this, I re-estimate the event study
with movers only (column (4)), which allows movers to differ systematically from stayers. Once
again, this does not change the estimates in the CBSA specification, but further decreases the
the share of spatial heterogeneity attributable to tract effects by 3 percentage points.

Table 3: Share of Spatial Variation in Mean CO2 Attributable to Place Effects

Panel Movers

(1) (2) (3) (4) (5)

CBSA
ȳd − ȳo 0.90*** 0.90*** 0.90*** 0.90*** 0.90***

(0.007) (0.007) (0.013) (0.008) (0.017)

N 1,715,000 1,715,000 664,000 179,000 44,000
R2 (adj.) 0.72 0.75 0.77 0.69 0.68

Tract
ȳd − ȳo 0.77*** 0.65*** 0.61*** 0.62*** 0.60***

(0.003) (0.003) (0.006) (0.004) (0.008)

N 1,656,000 1,656,000 640,000 483,000 127,000
R2 (adj.) 0.73 0.75 0.77 0.72 0.72

Controls X X X X
No big life events X X

Note: This table reports event study estimates of place shares of spatial heterogeneity in household CO2.
Columns (1) and (6) report estimates from the panel sample with no controls apart from year fixed effects.
Columns (2) and (7) add controls for the standard set of household characteristics. Columns (3) and (8) restrict
the estimation sample to movers only, to allow movers to differ systematically from stayers. Columns (4)-(5) and
(9)-(10) use the subset of the panel and mover samples that did not have a change to the number of kids in their
household or a larger than 50% increase or decrease to income. All estimates are weighted using Census sample
weights.

Even after accounting for the way in which movers differ from stayers on average, hetero-
geneity in preference shocks within movers could still lead to heterogeneity in mover destinations.
For example, the decision of one household to move from a city to a suburb after having children
could reflect a different shock to preferences than that of a household that moves from one neigh-
borhood within a city to another after having children. While I cannot rule this out entirely, I
explore the extent to which such selection patterns might bias my results by re-estimating the
event study on a sample restricted to only households who did not experience a large shock to
observable characteristics. Namely, I restrict the sample to only households who never had a
change in the number of kids living in their home, and never had more than a 50% increase or
decrease in household income between observations. The idea behind this is: if heterogeneity in
unobserved time-varying preferences leads households to choose different types of neighborhoods,
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then estimating the event study using different sets of households with observably different pref-
erence shocks should lead to different results. Reassuringly, estimates from this approach (in
columns (3) and (5)) are similar to estimates using the mover-only sample.

I further explore the potential role of unobserved, time-varying preference heterogeneity
by estimating the share of spatial heterogeneity attributable to place effects along two additional
dimensions: the type of move, measured as the size and magnitude of changes in mean household
carbon emissions across origin and destination locations, and duration between observations.
Figure 4 shows changes in mover households’ carbon emissions by decile of origin-destination
differences in observational means, with all demographic and household controls. The gray line
is 45-degrees, and would correspond to place effects accounting for 100% of variation in mean
differences across places. The slope of the solid line corresponds to the estimate of θ from the
full mover samples (column (4) of Table 3). I find that both for moves across CBSAs and
moves across neighborhoods, estimates of the share of heterogeneity attributable to place effects
are symmetric and linear across deciles of origin-destination mean changes. The fact that the
place share estimate is stable across deciles of move types is suggestive evidence that my results
aren’t being driven by only a subset of movers or mover destinations. It also provides additional
validation for the log-linear model specification, serving as kind of an extension of the symmetry
check presented in Figure 3.

Figure 5 shows tract-level estimates by duration between observations, with all demo-
graphic and household controls. This exercise allows me to evaluate two possible sources of bias
in the model. First, it provides evidence on the extent to which my place effect estimates may
be biased by life-cycle patterns of energy and CO2 demand. If my estimates are unintention-
ally capturing changes to preferences over different stages of life (ages) of household members, I
would expect estimates to be larger for households I observe 15 years apart than those I observe
5 years apart. Second, if households select where to move based on preferences that drift over
time in a way that isn’t captured by age or other life-cycle effects, my estimates of place effects
would capture a combination of true causal effects and selection, and the longer the gap between
observations, the larger I would expect the selection component to be. This would result in
estimates of place effects that are increasing or decreasing with the duration between moves,
depending on the direction of selection.

I show estimates for the full panel sample (light gray), and the restricted panel of only
households with no significant changes to income or household composition (dark blue). The
pooled estimate is contained in the 95% confidence interval of all but two-duration specific
estimates, and coefficients appear to be mostly stable – the estimate from households observed
one year apart is higher than the pooled estimate, and there is a slight but not statistically
significant upward trend for estimates from households observed 16 years apart or longer. Given
that these are also the duration bins with the fewest observations, I do not interpret this as
strong evidence of place effect estimates being biased by drifting preferences. Analogous CBSA
estimates are shown in Figure A.5, and exhibit a similar pattern.
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Figure 4: Place Share of Spatial Variation in Mean CO2 , by Move Type

(a) CBSA (b) Tract

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by size of origin-destination differences in mean household carbon emissions
for movers. Movers are split into ten deciles, according to the size of the gap in mean carbon emissions across
their origin and destination. All estimates are from models that control for observable household characteristics
and year fixed effects. The solid lines show the regression estimates from the pooled model,and the dotted gray
line denotes 45, i.e. the scenario in which moving to on average higher or lower emissions places leads to a
1-for-1 increase in own carbon emissions. All estimates are weighted using Census sample weights.

Figure 5: Place Share of Spatial Variation in Mean CO2, over Time

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by duration between mover observations. In other words, each coefficient is
the estimate for place effects generated from the sub-sample of households that I observe X years apart.
Coefficients plotted in light gray are estimated from the model using the full panel of stayers and movers.
Coefficients plotted in the dark blue are estimated from the model using the sub-sample of stayers and movers
with no changes in the number of children and less than 50% change in household income between observations.
All estimates are weighted using Census sample weights.
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One additional result that comes out of the analysis of the duration-specific event study
is that household carbon emissions appear to change instantaneously. This suggests that place
effects are driven by attributes that directly impact carbon emissions demand, rather than char-
acteristics such as peer effects or habit formation, which I would expect to lead to gradual changes
in behavior over time.15

5.2 Two-Way Fixed Effect Decomposition

Estimates from the KSS bias-corrected variance decomposition are shown in Table 4. The ta-
ble presents overall variance for the sample, the share of variance attributable to each of the
unobserved heterogeneity components, and the KSS-adjusted coefficient of determination (R2).
Panel A presents estimates from the entire panel of movers and stayers, while Panel B presents
estimates from the mover only sample. Estimates from a variance decomposition with no bias
correction can be found in Table A.5.

In the baseline analysis with year fixed effects and the standard vector of household
controls, I estimate that CBSA effects account for 16-19% of overall heterogeneity, and tract
effects account for 24-26% of overall heterogeneity. To estimate the share of CO2 heterogeneity
attributable to place characteristics more likely reflecting local built environment and public
amenities, as opposed to exogenous amenities and supply side factors, I re-estimate variance
components, partialing out measures of climate and electric grid intensity, and then additionally,
prices. Specifically, in columns (2) and (6) I control for heating degree days, cooling degree days,
and electricity emissions factors (all in logs), and in columns (3) and (7) I also add controls for
lagged fuel shares interacted with national retail prices.

I find that controlling for climate and electric grid intensity decreases the place share
of spatial heterogeneity by roughly 10 percentage points, to 10-16% of overall heterogeneity.
This decrease is consistent with a well-understood, robust relationship between climate and
energy use (e.g. Goldstein, Gounaridis, and Newell 2020) and the mechanical relationship between
electricity emissions factors and CO2. However, remaining neighborhood attributes explain a
larger share of variation than climate and grid intensity, underscoring the importance of residual
place characteristics such as urban form. Accounting for cross-sectional fuel price variation does
not further change the results, suggesting, as with climate and grid intensity, that neighborhood
attributes other than price drive a meaningful share of the heterogeneity in carbon emissions
attributable to places.16

Finally, it is possible that place effects evolve over time in ways that differ from national
average trends in carbon emissions. For instance, the governments in certain states or cities
may be particularly concerned about climate change and enact regulations or make place-based
investments aimed at reducing emissions for their residents. In addition to transit and zoning
examples I’ve highlighted throughout the paper, such policies could include regulatory efforts

15. I do not observe how long ago households moved, but the expected value of how long ago someone moved is
increasing in the duration between observations.
16. One explanation for this could if price variation in my data is roughly correlated with variation in climate

and electric grid factors. In Appendix D, I present an overview of recent estimates of energy price elasticities of
demand and discuss additional methods for bounding how much of the variation I find could be driven by prices.
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more directly targeting energy sources, such as renewable portfolio standards, state or regional
cap and trade programs, or laws banning gas stoves in new homes. More generally, changes to
place effects could arise from local or regional planning initiatives motivated by factors completely
unrelated to decision-makers’ climate objectives. For instance, the Phoenix metropolitan area –
one of the fastest growing metropolitan areas in the US – has grown by nearly 1.6 million residents
since 2000. This period of growth has been accompanied by a mix of suburban expansion, urban
development, the opening of a new light rail system, and several high way expansions.17

To account for time variation in place effects that differs from national trends, I also
estimate time-varying place effects ψjt at the CBSA level.18 I follow Lachowska et al. (2020) and
estimate time-varying fixed effects using stayers to identify variation across time within place.
To maintain connectivity in my set of places, and because for the most part places evolve slowly,
I allow these to vary at 5-year intervals. Thus, there’s a different time-varying place effect for
each period 2000-2004, 2005-2009, 2010-2014, and 2015-2019. Results are shown in column (9)
– allowing CBSA effects to evolve slightly increases their variance share to 21%.

The interpretation of my results is somewhat complicated by the fact that the contribution
of unobserved household characteristics to overall heterogeneity is highly sensitive to whether
the model is estimated on movers and stayers or movers only. In the panel sample, unobserved
household heterogeneity accounts for 51% of overall heterogeneity when measuring place at the
CBSA level, and 38% when measuring place at the neighborhood level. This share is stable
to partialing out exogenous amenities and prices, but the CBSA estimate decreases to 31%
when allowing CBSA effects to change over time. Using the mover-only sample substantially
decreases the unobserved household contribution across specifications, to 11% in the CBSA
specification and 10% in the mover specification. Similarly, estimates of the covariance between
unobserved place and household characteristics are also sensitive to the sample choice. In both
panel specifications, the covariance is slightly negative but effectively zero – the larger of the two
correlation coefficients is -0.02. In contrast, in the mover sample I find a positive (though still
small) correlation coefficient of .07 at the CBSA level and .06 at the tract level.

There are two reasons we might expect estimates from the panel and mover samples to
differ. The first is from fundamental differences across stayers and movers, and the second is
that KSS cannot correct bias induced by serial correlation in the error term among stayers. To
try to shed light on the relative importance of these pieces, it is useful to compare estimates
from the KSS decomposition to estimates from the naive, uncorrected (AKM) decomposition
in Table A.5. If results are driven by differences between the panel and mover sample, such
differences should also be evident in the AKM estimates, even though we expect estimates of
both variance components in AKM to be higher than in KSS because of limited mobility biased.
In contrast, if results are driven by serial correlation in stayers’ error term, then we would expect
the relative contributions of the unobserved heterogeneity components in the AKM estimation
to be fairly similar, with differences being introduced only in the KSS correction. The AKM
estimates suggest that the relative place and person shares are almost identical across the panel

17. See e.g. The Phoenix Metro Area (2020).
18. For parsimony in the census disclosure review process, I am not disclosing time-varying tract effects as these

involve a different leave-out sample, whereas the CBSA leave-out-connected set is the same in the time-varying
case as it was in the baseline.
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and mover samples in the CBSA analysis. In the tract analysis, the relative size of the household
variance component does drop several percentage points, but not nearly as dramatically as it
does in the KSS analysis, suggesting that the estimated household variance components in the
panel sample of KSS are an upper bound on the true value, with the upward bias driven by serial
correlation in the stayer error term.

Table 4: Unobserved Heterogeneity in CO2 – Variance Decomposition

CBSA Tract

(1) (2) (3) (4) (5) (6) (7)

A: Panel Sample
V ar(logCO2ij) 0.29 0.29 0.29 0.29 0.28 0.28 0.28

Share V ar(ψj) 0.188 0.095 0.099 0.205 0.257 0.152 0.154
Share V ar(αi) 0.505 0.502 0.503 0.306 0.377 0.374 0.373
Share 2 · Cov(αi, ψj) -0.001 0.004 0.004 -0.001 -0.006 0.009 0.010

R2 0.69 0.61 0.61 0.51 0.62 0.54 0.55

B: Mover Sample
V ar(logCO2ij) 0.32 0.32 0.32 0.31 0.31 0.31

Share V ar(ψj) 0.163 0.098 0.102 0.239 0.156 0.163
Share V ar(αi) 0.112 0.091 0.0966 0.102 0.103 0.104
Share 2 · Cov(αi, ψj) 0.010 0.013 0.013 0.010 0.016 0.016

R2 0.30 0.22 0.22 0.36 0.29 0.30

Amenities X X X X
Prices X X
TV-FE X

Note: This table reports results from the heteroskedasticity-robust KSS estimation of variance components. All
specifications include demographic and household controls as well as time fixed effects. Columns (1) and (5)
report the baseline variance decompositions at the CBSA and tract levels. Columns (2) and (5) add controls for
local mean heating degree days, cooling degree days, and electricity emissions factors (all in logs). Columns (3)
and (6) additional control for a price index, constructed from lagged fuel shares interacted with national retail
prices. Finally, column (4) computes time-varying CBSA place effects using 5-year windows (2000-2004,
2005-2009, 2010-2014, and 2015-2019), using stayer observations across time windows to identify time variation
in place effects, while movers, as before, identify cross-sectional variation.

Serial correlation in the error term could arise as a result of several sources of measure-
ment error in my outcome variable. While an advantage of using the Census for this analysis
is that it allows me to observe many household characteristics that are unobservable in stan-
dard administrative datasets on energy use, thereby making it possible to control for changes
to household characteristics that are correlated with both changes to energy demand and move
propensity and destinations and decrease potential bias from unobserved preference shocks, a
disadvantage is that the survey nature of the data means that my outcomes are constructed
from a combination of survey responses and local external data. In particular, I use local av-

29



erage prices and local average emissions factors to convert reported energy expenditures and
commute times into carbon emissions. Both of these could introduce serial correlation into my
estimates of stayer outcomes. Additional detailed discussion of measurement error within the
residential and transportation sectors, as well as implications for interpreting results, can be
found in Appendix B.1 and Appendix B.2, respectively.

How do these results inform the interpretation of the event study decomposition? Here,
there are also two things to note. First, recall that if there is either assortative or disassortative
matching of households to places, event study estimates are biased because they assume zero
covariance. My estimates from the KSS decomposition suggest that the covariance terms are
very close to zero – the largest correlation coefficient across the four baseline estimates (CBSA
vs. tract & panel vs. mover) is 0.06, so the bias from this assumption on selection should be
minimal.

Even with no bias from selection, the event study yields estimates of shares of mean
differences between places attributable to place effects, while the KSS estimates yield a variance
decomposition of overall variation, and this can lead to meaningful discrepancies in magnitudes.
To see this, imagine two places, one ψlow and one with ψhigh, and identical populations across
the two places. If there is high variation in carbon emissions across populations and a small
difference between ψlow and ψhigh, the event study would yield a share coefficient of 1 (since
populations are identical across places, all between differences are driven by place effects), but
the KSS decomposition would yield a place variance component of close to zero (because of a
very large within component to the variance). In practice, this is very close to what happens
at the CBSA level – the vast majority (90%) of differences between CBSAs can be attributable
to variation in place effects and not household attributes, but there is much more variation in
household carbon emissions within CBSAs than there is across, leading to a variance component
of 16-19%, about half of which is attributable to climate and electric grid intensity, in the KSS
estimation. At the neighborhood level, household sorting contributes more to variation between
places, dropping event study estimates of the place share to 62%; accounting for variation within
places (using the panel sample with KSS) further decreases the place variance share to 26% of
overall heterogeneity (or 42% of heterogeneity explained by the model, calculated from re-scaling
by the R2).

5.3 Specification Tests and Robustness

As an additional specification test, in Appendix Figure A.6, I show binned scatter plots similar to
the one presented for event study results (Figure 4), but now with deciles of changes in estimated
place effects, rather than observational means, on the x axis. I plot these against two sets of
changes in household mean outcomes: changes for the full mover sample, and changes in the
sample restricted to only houseolds with no big life changes. In a correctly specified model,
changes in place effects should lead 1-to-1 to changes in household carbon emissions, though
attenuation bias from noisily estimated place effects should decrease the slope. Crucially, I find
no difference across the two samples, suggesting (as in the event study analysis) that selection
on heterogeneous preference shocks isn’t a first order threat to identification in my analysis.

30



To evaluate the sensitivity of my results to my outcome definitions, Appendix Table A.4
shows estimates from a KSS decomposition using residential energy only, and using total energy
but imputing carbon emissions from transportation energy using the National Highway Trans-
portation Survey (NHTS). One version of the NHTS imputation uses a LASSO regression to
predict heterogeneous fuel economy from household, geographic, and commute characteristics
that are common to both the Census and NHTS surveys, and then uses predicted relationships
to estimate carbon emissions from commuting accounting for variation in fuel economy. The
second version additionally predicts total miles travelled, and uses both heterogeneous fuel econ-
omy and heterogeneous relationships between commuting and total miles travelled to estimate
carbon emissions from car travel generally. I find that restricting the analysis to residential en-
ergy increases the overall variance by 6 points (∼ 25%), and increases the share of heterogeneity
attributable to place effects by 6 percentage points at the CBSA level, and by one percent-
age point at the tract level. Estimated place shares do not appear to be highly sensitive to
re-defining the transportation outcome variable. Additional discussion of these results can be
found accompanying Table A.4.

6 The Characteristics of Low and High Emissions Places

With estimates of place effects in hand, I move on to characterizing the local amenities that are
associated with high and low emissions places. As highlighted in the conceptual model, place
effects reflect a mix of differences in demand for energy, energy prices, energy demand elasticities,
fuel mixes, and emissions factors.

The urban and planning literature has identified many place-based characteristics that
could contribute to differences in energy demand and energy demand elasticities. For example,
on the residential energy side house size is positively correlated with energy use, there’s a strong
relationship with density but potentially not a monotonic one because of the effect of density on
micro-climate (heat island effects), and planting and surface coverage are negatively correlated
with energy use (See Ko 2013, for a review). In transportation, car use is lower in places with
more alternative transportation options, fewer parking minimums, and more directly connected
roads (e.g. Transportation Research Board 2009; Barrington-Leigh and Millard-Ball 2017).

In Figure 6, I show the result from projecting place and person effects estimated in
the KSS mover sample onto a set of some of energy-relevant amenities, as well as onto a set
of demographic characteristics. I categorize place amenities into three groups. Amenities in
the urban form category are ones that households effectively take as given. I include in these
indicators for whether a tract is classified as urban, suburban or rural by the Census, geodesic
distances between tract centroids and the centroid of the closest city and the largest city, walk
scores, bike scores, transit scores, and the average number of bus routes and rail routes within
half a mile of the census block centroids contained within the tract. Amenities in the capital
stock category are ones that reflect a combination of the options available in a neighborhood
and household preferences – these include the share of homeowners, the share of detached single
family homes, the average number of rooms per house, and average number of cars per household.
Climate is (for the purposes of this paper) exogenous, and captured using annual heating degree
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days and cooling degree days in NOAA subdivisions. Bars show coefficient estimates from a
multivariate regression of fixed effects onto all three groups of amenities, as well as electric
grid intensity and density which I don’t report in the figure because I estimate effects larger (in
absolute value) than one, so their inclusion makes the other values more difficult to see.19 For the
tract effect estimation, capital stock variables reflect tract-level means; for the household effect
they reflect the household’s own choice. Finally, all amenities except for suburban and rural
indicators (and homeowner and detached home indicators for the household regression only) are
measured in logs, so correlates should be interpreted as the percent increase or decrease in place
effects associated with a one percent increase or decrease in the amenity.

The results show that tracts with a large share of detached single family homes, bigger
homes, and a larger share of homeowners tend to have significantly higher carbon emissions place
effects. Unintuitively, tracts with more cars per household have lower place effects. Tracts with
more bus and rail routes within a half mile, and those with better walk and bike scores have lower
place effects, as do tracts that are closer to the closest city within the CBSA. Tracts closest to the
largest city are higher emissions, and conditional on all these regressors, suburbs are no longer
higher emissions than urban areas. One possible explanation for these last two correlations is
longer commutes due to congestion. The regression of person effects onto place amenities shows
much weaker (or zero) correlations for many of the amenities, consistent with minimal sorting
on unobserved characteristics that I estimate in KSS, but intuitively high type households are
more likely to live in larger, detached single family homes, and have more cars. They also live
in places near more rail routes, potentially reflecting some combination of suburban commuter
rail networks, and the high cost of living in central cities.

In the regression of unobserved characteristics on demographics, I find that non-white
and Hispanic households are more likely to live in low carbon emissions places, as are college
educated and above median households. Households with children live in higher carbon emis-
sions places, as do older households (though the effect here is small). On the household side,
college educated households tend to have lower unobserved preferences for carbon emissions, as
do younger households (but again with a small effect), and above median income households
and households with kids have higher unobserved preferences. Additional results on the corre-
lates between observable person and observable place characteristics are presented in Appendix
Table A.6.

19. I estimate a coefficient of 4 on log electric grid intensity. This suggests that places that have clean energy
grids are also making other investments or decisions that make them lower carbon emissions. I estimate a
coefficient of close to -10 on density, suggesting a very strong association between density and place effects.
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Figure 6: Correlates of Unobserved Heterogeneity

(a) Tract Effects (b) Person Effects

Note: This figure presents estimates from the multivariate ordinary least squares regressions of place effects
onto a set of local amenities (urban form, capital stock, climate, electric grid intensity, and density), place
effects onto a set of local average demographics, person effects onto a set of local amenities, and local effects
onto a set of local average demographics. All amenity variables are measured in logs (+1 for variables where
zero is possible), except rural and suburban indicators, and – for the person effect regression only – the
homeowner and detached single family home indicators.

7 Implications for Aggregate Carbon Emissions

I use estimates of place effects to consider some back of the envelope calculations of how aggregate
carbon emissions would change under counterfactual scenarios where the distribution of place
effects differs from its current realization. Because place effects are noisily estimated, I use
linear Empirical Bayes, i.e. a shrinkage estimator, to forecast place effects that reflect the best
(minimum mean squared error) linear prediction of the true values, given my estimates from
the KSS analysis. Many papers in the public and labor literatures have used this approach to
predict e.g. teacher value add or neighborhood effects in other contexts (Chetty, Friedman, and
Rockoff 2014a; 2014b; Angrist et al. 2017; Chetty and Hendren 2018; Finkelstein, Gentzkow, and
Williams 2020; Abaluck et al. 2021). Although the linear approximation only corresponds to
the true Empirical Bayes posterior when errors are normal and homoskedastic, Kline, Rose, and
Walters (2021) show that even when errors are heteroskedastic, the linear shrinkage estimator
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doesn’t do much worse than non-parametric Empirical Bayes. The shrinkage estimates are given
by:

ψ̂EBj = λjψ̂j + (1− λj)
1

J

∑
j

ψ̂j (9)

where the weights λj =
σ̂2
j

s2j+σ̂
2
j
capture the signal-to-noise ratio of each estimate and down-weight

noisy estimates to the grand mean.

I use this approach to estimate counterfactual carbon emissions under three different
scenarios: What if the top 10 most populous CBSAs in the US all had the place effects of the
New York City CBSA? What if the principal cities of the top 10 most populous CBSas all had
the place effects of Manhattan? And what if cities and towns all had the place effects of the
principal cities in their (nearest) CBSA? The goal of this exercise is to get a sense for how
carbon emissions would evolve under interventions to the built environment of places, without
attributing a causal effect to any single amenity, since my correlational analysis doesn’t parse
those causal effects out.

A naive comparison of household carbon emissions in the New York metropolitan area
and the nine other largest metropolitan areas in the US (see Table A.8 for the full list) suggests
that household emissions from residential energy and commuting are about 8% lower in the
New York metropolitan (17.9 tons, annually, per household as compared to 19.2). However,
I find that assigning the average New York Metropolitan area place effect to each of these
other metropolitan areas actually increases average household emissions slightly, to 19.3 tons
per household, highlighting the high place effects of the suburbs around NY. In contrast, if
each principal city of the other top nine metropolitan areas had the place effect of Manhattan,
household emissions from residential energy and commuting for current residents of those cities
would decrease by over 50%, from 15.6 tons per household to 7.0. This is not as large as the
naive decrease to 3.9 tons per household – some of Manhattan’s low emissions can be explained
by household sorting – but still the Manhattan place effect is significantly lower than the effect
of the other 9 largest cities in the US, on average.

Manhattan is unique in its density and transit infrastructure within the US, so the last
scenario I consider is intended to capture more closely the spirit of what might happen under some
of the regional zoning and transit-oriented development proposals that are emerging across the
US.20 If each place had the place effect of the principal city in its CBSA, annual household carbon
emissions would go down from residential energy use and commuting would go down by on average
13%, from 20.6 to 17.9 tons. Again, a naive comparison (20.6 vs. 15.04) overstates the difference
between central city and surrounding areas, but my estimates suggest that changing places
could yield meaningful reductions in household carbon emissions. For comparison, the Waxman-
Markey bill, which failed to pass in 2009 but was, until 2021, the largest federal legislative effort

20. For example, in 2018, Minneapolis was the first city in the US to ban exclusionary zoning (which restricts
land to be used for single-family homes only) city-wide. In 2021, California passed State Assembly Bills 9 and 10,
which reduce administrative hurdles to “up-zoning” residential land zoned for single family homes only to allow
up to four units, as well as land near transit corridors. There have also been attempts to create incentives for
up-zoning at the federal level. For example, President Biden’s original infrastructure bill proposal in March 2021
included grants to cities who got rid of exclusionary zoning.
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to decrease carbon emissions in the US, was projected to decrease economy-wide emissions 17%
in 2020 relative to 2005 (Center for Climate and Energy Solutions 2009).

This exercise lends insight into how development that shifts population shares across place
types by “expanding” places with lower place effects (either by making their neighbors look more
like them, or by allowing more people to live in the place without changing its fundamentals),
could affect emissions in the future. My estimates yield only a first-order, partial equilibrium
approximation to the effect of such interventions, as in practice there would be some re-sorting
of populations, changing the distribution of household types living in each place and therefore
changing aggregate carbon emissions.

8 Discussion

Overall, my results suggest that roughly 15-25% of heterogeneity in household carbon emissions
from residential and transportation energy use across the US can be explained by place effects,
or about 10-20% can be explained by place effects after partialing out variation driven by cli-
mate and electric grid intensity. While this leaves the majority of variation either to unobserved
household characteristics or unexplained factors in my model, I find that over half of mean dif-
ferences between places can be explained by place effects, and my estimates suggest the potential
for meaningful reductions in carbon emissions from “place-based” interventions that make the
distribution of place effects across the US more urban.

Whether such place-based interventions would be welfare maximizing would depend on
the costs of implementing them relative to the cost of business as usual or other climate miti-
gating policies (e.g. a carbon tax).21 Infrastructure in the US is notoriously expensive to build,
making it unlikely that big expansions of new rail (e.g. building a NYC style subway system
in Houston) would pass the cost-benefit test in current circumstances. However, correlates of
place effects include many amenities that could re-purpose existing built environment without
expensive new additional investments – bus lines, bike lanes, pedestrian infrastructure, and dense
housing (which, through compactness could decrease related infrastructure and service costs) are
all more likely potential contenders. Incorporating cost estimates for a marginal value of public
funds analysis (Hendren and Sprung-Keyser 2020) is an important avenue for future research.

The welfare benefits of such interventions would also of course depend on the causal rela-
tionships between local amenities and place effects, and household preferences for local amenities.
The correlations I presented between amenities and place effects don’t identify causal relation-
ships, but they highlight a strong association between many local public goods and carbon
emissions, suggesting an important potential role played by local public goods. While Tiebout
(1956) posits that residential sorting allows for efficient provision of local public goods, his frame-
work only applies to amenities without scale economies. Moreover, there is reason to believe that
residential sorting is not efficient due to frictions or exclusionary policies (e.g. Rothstein 2017;

21. The welfare impacts would also depend on other externalities or agglomeration benefits of such interventions,
which have been studied extensively in the environmental and urban economics literatures. For example, the types
of interventions considered in my paper could also impact local air pollution, congestion, traffic fatalities, and
labor market productivity.

35



Hausman and Stolper 2020; Christensen and Timmins 2021; Avenancio-León and Howard 2020).
Estimating causal relationships between local public amenities and household carbon emissions
and quantifying whether emissions-relevant local public amenities are at an efficient level are
additional important directions for future work.

Finally, there are several limitations of my empirical analysis that should be taken into
consideration while interpreting my results. The first is that due to the survey nature of my data,
carbon emissions are noisily measured. This leads to lower explanatory power of the model than is
standard in papers in the labor literature using these methods to estimate firm wage premia. The
relatively low explanatory power of the model could also reflect model mis-specification, but with
only two observations per household for the majority of estimates, the number of specification
tests I can do is limited. Second, there is relatively little variation in urban form across the US –
95% of commuters in my sample commute by car, and 75% of residential land in the US is zoned
for single family homes only (Badger and Bui 2019). Moreover, place effects are identified from
movers, who differ from the general US population in meaningful ways. The external validity
of my results is contingent on estimates being stable to widening the distributions of place and
person types that they are estimated on.
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A Additional Figures and Tables

A.1 Additional Figures

Figure A.1: CO2 Profiles by Demographic Characteristics (1/3)

(a) Gender (b) Education

(c) Race (d) Ethnicity

Note: This figure shows variation in household carbon emissions by household member demographics. Panel
(a) shows that households with more women (age 18+) have slightly lower emissions (consistent with women
having fewer and shorter commutes). Panel (b) shows that college educated households have slightly lower
emissions. Panel (c) and (d) show large differences by race and ethnicity – white households and non-Hispanic
households have higher emissions on average than non-white and Hispanic households. All estimates reflect the
full sample, pooled 2000-2019, weighted by Census sample weights.
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Figure A.2: CO2 Profiles by Demographic Characteristics (2/3)

(a) Age

(b) Income Decile

Note: This figure shows variation in household carbon emissions by household member age and household
income deciles. Panel (a) shows a non-linear relationship between the adult age of household members and mean
carbon emissions which increases through people’s 40s and then decreases again (likely reflecting a combination
of higher incomes and children still being in the home). Panel (b) shows an increasing relationship between
household income decile and carbon emissions. All estimates reflect the full sample, pooled 200-2019, weighted
by Census sample weights. Household income is CPI-adjusted.
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Figure A.3: CO2 Profiles by Demographic Characteristics (3/3)

(a) Household Size

(b) Number of Kids

Note: This figure shows variation in household carbon emissions by household size (a) and number of children
(b). Carbon emissions increase with household size and with the number of children, but less than
proportionally, and the increase is fairly small going from 4 to 5+ people, or 2 to 3+ kids. All estimates reflect
the full sample, pooled 200-2019, weighted by Census sample weights.

Go back to Section 2.6.
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Figure A.4: Energy Expenditures in Mover Households in the PSID

Note: I examine whether there are pre-trends in energy consumption for movers using data from the PSID,
given data limitations in my baseline data. In particular, I test whether there are significant changes to monthly
energy bills in the years prior to a move, after controlling for household characteristics such as income and
household size. If anything, I find a slightly countervailing pre-trend for movers, with energy bills decreasing in
the year before a move, and then increasing in the several years after (consistent with a secular trend of
households moving to higher emissions places).

Go back to Section 4.1
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Figure A.5: Event study by duration – CBSA

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by duration between mover observations. In other words, each coefficient is
the estimate for place effects generated from the sub-sample of households that I observe X years apart.
Coefficients plotted in light gray are estimated from the model using the full panel of stayers and movers.
Coefficients plotted in the dark blue are estimated from the model using the sub-sample of stayers and movers
with no changes in the number of children and less than 50% change in household income between observations.
All estimates are weighted using Census sample weights.
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Figure A.6: Place Effects vs. Household Carbon Emissions

(a) CBSA (b) Tract

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by size of origin-destination differences in mean household carbon emissions
for movers. To two sets of points compare the full sample of movers (solid diamond) to the sample of movers
with no significant changes to income or number of children (empty circle). The dotted black line shows the
45line. All estimates are weighted using Census sample weights.
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A.2 Additional Tables

Table A.1: Mean CO2 – Movers vs. Stayers

CBSA Panel Tract Panel

(1) (2) (3) (4) (5) (6) (7) (8)
Moved 0.05*** 0.00 0.08*** 0.02***

(0.002) (0.002) (0.001) (0.001)
From -0.11*** -0.04*** -0.07*** -0.03***

(0.002) (0.002) (0.001) (0.001)
To -0.03*** -0.04*** -0.02*** -0.03***

(0.001) (0.001) (0.001) (0.001)
Cons. 2.85*** 2.82*** 2.86*** 2.81*** 2.85*** 2.82*** 2.88*** 2.83***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

R2 (adj.) 0.719 0.741 0.191 0.345 0.717 0.738 0.342 0.449
Controls No Yes No Yes No Yes No Yes

Note: This table compares household carbon emissions for movers and stayers. Columns (1)-(2) and (5)-(6)
compare movers overall to stayers overall, with and without controls. Movers have higher carbon emissions than
stayers, but the differences is smaller after controlling for differences in income and other demographic
characteristics. Columns (3)-(4) and (7)-(8) present within-comparisons of stayers in a given place to movers
from that place and movers to that place. The results here highlight that generally, movers have lower emissions
than stayers, both at their origin and destination locations.

48



Table A.2: Probability of Moving

CBSA Tract

− N kids 0.007*** 0.017***
(0.0004) (0.0007)

+ N kids 0.050*** 0.150***
(0.0005) (0.0008)

∆ HH inc < -50% 0.035*** 0.078***
(0.0006) (0.0010)

∆ HH inc > 50% 0.070*** 0.154***
(0.0005) (0.0008)

Constant 0.044*** 0.142***
(0.0003) (0.0004)

R2 (adj.) 0.018 0.046
N 1,715,000 1,656,000

Note: This table shows that households with a change in the number of children or a larger than 50% (in
absolute value) change in income are much more likely to move than stay. This is especially true of positive
increases in both of these outcomes, and particularly for moves across neighborhoods.
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Table A.3: Mover Origin and Destination Types

(a) CBSA Movers

To Rural To Suburban To Urban Total Share

From Rural 0.11 0.09 0.05 0.25

From Suburban 0.10 0.21 0.11 0.42

From Urban 0.06 0.15 0.12 0.33

Total Share 0.27 0.45 0.28 1.00

(b) Tract Movers

To Rural To Suburban To Urban Total Share

From Rural 0.09 0.07 0.03 0.19

From Suburban 0.08 0.28 0.08 0.44

From Urban 0.04 0.14 0.18 0.36

Total Share 0.21 0.49 0.29 1.00
Note: This table shows shares of origin-destination tract types for CBSA movers (panel (a)) and tract movers
(panel (b)). Close to half of households move to suburban tracts. The most common type of move (among both
CBSA and tract movers) is from a suburban tract to a suburban tract. Tract movers are less likely to move
either from or to a rural neighborhood, in part because rural tracts are less likely to be in the leave-out
connected tract set.
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Table A.4: Place-Based Heterogeneity in CO2 – Sensitivity to Outcome Definition

CBSA Tract

(1) (2) (3) (4) (5) (6) (7) (8)

Share V ar(ψj) 0.188 0.242 0.195 0.197 0.257 0.270 0.262 0.238
Share V ar(αi) 0.505 0.462 0.498 0.473 0.377 0.355 0.371 0.378
Share 2 · Cov(αi, ψj) -0.001 -0.001 -0.001 0.006 -0.006 -0.000 -0.005 -0.002

R2 0.69 0.70 0.69 0.68 0.62 0.62 0.62 0.61

V ar(logCO2ij) 0.29 0.35 0.29 0.20 0.28 0.35 0.29 0.19

Baseline X X
Residential Only X X
NHTS Commute X X
NHTS Total mi. X X

Note: This table presents KSS decomposition estimates testing the sensitivity of my results to different
outcome definitions. Columns (1) and (5) present baseline estimates again, to ease comparisons. Columns (2)
and (6) present estimates using residential energy use only as the outcome. Results highlight that there is more
heterogeneity overall in residential energy use than in commuting, and a larger share is attributable to place
effects – 24% at the CBSA level and 27% at the tract level. Evidently, residential energy use drives more of the
spatial heterogeneity across CBSAs than commuting, while the two sectors contribute in approximately equal
parts at the tract level. In columns (3)-(4) and (7)-(8) I test the sensitivity of my results to changing my
estimate of emissions from the transportation sector, and using the combined residential+transportation energy
outcome. The “NHTS commute” approach uses a penalized Lasso regression to predict vehicle fuel economy
from individual and household demographic characteristics (age, race, household size, household income, gender,
number of vehicles, commute mode of transit, commute length) and geographic characteristics (CBSA, state,
urbanity) and adjust carbon emissions from commuting for estimated fuel economy. The “NHTS Total miles”
approach uses the same variables to predict total annual vehicle miles travelled. Taking these approaches
decreases the overall variance in my outcome, perhaps evidence that households with longer commutes drive
more fuel efficient vehicles and/or drive less for other purposes, but doesn’t substantially change the place share
of heterogeneity – the largest change is from using the total miles measure, which decreases the tract share of
variance from 26% to 24%.

Go back to Section 5.2 (Results).
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Table A.5: Place-Based Heterogeneity in CO2 – No Bias Correction

CBSA Tract

(1) (2) (3) (4) (5) (6) (7)

A: Panel Sample
V ar(logCO2ij) 0.29 0.29 0.29 0.29 0.28 0.28 0.28

Share V ar(ψj) 0.201 0.107 0.111 0.220 0.558 0.452 0.454
Share V ar(αi) 0.567 0.564 0.564 0.562 0.765 0.759 0.759
Share 2 · Cov(αi, ψj) -0.014 -0.008 -0.008 -0.015 -0.277 -0.262 -0.261

R2 0.74 0.66 0.66 0.75 0.77 0.69 0.69

B: Mover Sample
V ar(logCO2ij) 0.32 0.32 0.32 0.31 0.31 0.31

Share V ar(ψj) 0.177 0.112 0.115 0.491 0.406 0.413
Share V ar(αi) 0.505 0.503 0.503 0.588 0.584 0.584
Share 2 · Cov(αi, ψj) 0.001 0.004 0.004 -0.159 -0.152 -0.152

R2 0.69 0.62 0.63 0.76 0.69 0.69

Amenities X X X X
Prices X X
TV-FE X

Note: This table reports results from the biased AKM estimation of variance components. All specifications
include demographic and household controls as well as time fixed effects. Columns (1) and (5) report the
baseline variance decompositions at the CBSA and tract levels. Columns (2) and (5) add controls for local mean
heating degree days, cooling degree days, and electricity emissions factors (all in logs). Columns (3) and (6)
additional control for a price index, constructed from lagged fuel shares interacted with national retail prices.
Finally, column (4) computes time-varying CBSA place effects using 5-year windows (2000-2004, 2005-2009,
2010-2014, and 2015-2019), using stayer observations across time windows to identify time variation in place
effects, while movers, as before, identify cross-sectional variation.

Go back to Section 5.2 (Results).
Go back to Appendix B.1 (Data Appendix).
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Table A.6: Place Correlates w/ Observable Characteristics 1/2

Above
Median Inc. White College Has Kids

(1) (2) (3) (4)

Suburban 0.02*** 0.01*** -0.01*** 0.02***
(0.001) (0.001) (0.001) (0.001)

Rural -0.06*** 0.10*** -0.06*** -0.02***
(0.002) (0.001) (0.002) (0.002)

Dist. to Closest City -0.05*** 0.02*** -0.02*** -0.01***
(0.001) (0.001) (0.001) (0.001)

Dist. to Largest City 0.07*** -0.04*** 0.02*** 0.02***
(0.001) (0.001) (0.001) (0.001)

Walk Score -0.01*** 0.01*** -0.01*** -0.00
(0.001) (0.000) (0.000) (0.001)

Bike Score 0.01*** -0.00*** 0.00*** 0.01***
(0.001) (0.001) (0.001) (0.001)

Transit Score 0.00*** -0.03*** 0.00 0.01***
(0.001) (0.001) (0.001) (0.001)

Bus Routes 0.05*** 0.03*** 0.04*** -0.05***
(0.005) (0.003) (0.004) (0.005)

Rail Routes 0.20*** 0.05*** 0.10*** 0.04***
(0.004) (0.003) (0.003) (0.004)

Tract Share Detached Homes -0.38*** -0.17*** -0.26*** 0.13***
(0.005) (0.004) (0.005) (0.005)

Tract Share Homeowners 0.16*** 0.42*** -0.19*** -0.07***
(0.008) (0.006) (0.007) (0.008)

Tract Mean Cars/HH 0.38*** -0.13*** -0.34*** 0.50***
(0.008) (0.006) (0.008) (0.009)

Tract Mean Rooms/House 1.15*** 0.36*** 1.00*** 0.21***
(0.006) (0.004) (0.005) (0.006)

Block Density 6.69*** -6.47*** 1.01*** 4.17***
(0.149) (0.111) (0.136) (0.158)

Constant -2.09*** 0.18*** -1.09*** -0.51***
(0.011) (0.008) (0.010) (0.012)

R2 (adj.) 0.09 0.06 0.04 0.02
Note: This table reports correlation coefficients between several demographic categories and a detailed vector
of place characteristics.
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Table A.7: Place Correlates w/ Observable Characteristics 2/2

Above
Median Inc. White College Has Kids

(1) (2) (3) (4)

Cooling Degree Days -0.00*** -0.00*** 0.04*** 0.00
(0.001) (0.000) (0.001) (0.001)

Heating Degree Days 0.03*** 0.10*** 0.08*** -0.01***
(0.001) (0.001) (0.001) (0.001)

Electric Grid Intensity -1.29*** 0.82*** -2.55*** 0.28***
(0.011) (0.008) (0.010) (0.012)

Constant 0.61*** -0.10*** -0.21*** 0.53***
(0.011) (0.008) (0.010) (0.012)

R2 (adj.) 0.01 0.06 0.04 0.001
Note: This table reports correlation coefficients between several demographic categories and a vector of
exogenous place characteristics.
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Table A.8: 10 most populous CBSAs (2020)

Rank CBSA

1 New York-Newark, NY-NJ-CT-PA
2 Los Angeles-Long Beach, CA
3 Chicago-Naperville, IL-IN-WI
4 Dallas-Fort Worth, TX-OK
5 Houston-The Woodlands, TX
6 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA
7 Philadelphia-Reading-Camden, PA-NJ-DE-MD
8 Miami-Port St. Lucie-Fort Lauderdale, FL
9 Atlanta-Athens Clarke County-Sandy Springs, GA-AL
10 Boston-Worcester-Providence, MA-RI-NH-CT

55



B Data Appendix

B.1 Construction of Residential CO2

CO2 from residential energy use is constructed from household reported expenditures and pri-
mary heating fuels, paired with local average prices and local average emissions factors. Each of
these elements introduces noise into my outcome measure, which I discuss in turn below.

Household reported values:

Households may not accurately remember or report their energy expenditures. Inaccu-
rate reporting could arise for example due to inattention to bills, or due to bias driven by the
seasonality of energy expenditures – e.g. if household use their last monthly bill to proxy for
annual expenditures.

As long as household inattention is fixed, variation driven by this source of error will
be absorbed by individual effects. This will result in overestimates of the individual share of
spatial heterogeneity if high users tend to overstate their energy use and low users tend to
understate their energy use, and it will result in underestimates of the individual share of spatial
heterogeneity if the opposite is true. In either case however, with fixed inattention, estimates
of place effects themselves will be unbiased. Relative place effects will be biased if moves are
associated with changes to knowledge of energy bills, for example due to changes in income
constraints.

Given random sampling of the surveys, I do not expect variation in the season households
were surveyed to be correlated with other components of the model. Thus, this source of error
might reduce the explanatory power of my model, but likely not introduce error into either the
estimates of variance components or the estimates of place effects themselves.

Assignment of heating fuel:

Households report the primary fuel they used for heating their home. I use this variable
to assign expenditures on other fuels. There are two possible sources of error here.

The first is that if households use more than one home heating fuel, I assign all of their
expenditure to the one they listed as primary. The second is that if household list expenditures
on home heating fuels, but don’t specify which fuel they used, I assign their home heating fuel
based on the most commonly used heating fuel among other survey respondents in their state
and year (out of residual oil, propane, wood) In both cases, I will overstate fuel quantity used if
prices for the reported or imputed fuel are cheaper than the unobserved fuel, and understate fuel
quantity used if prices for the reported or imputed fuel are more expensive than the unobserved
fuel. Similarly, this will overstate CO2 per estimated quantity if the reported or imputed fuel is
more carbon intense than the unobserved fuel, and vice versa.

As in the previous section, if there is a positive correlation between household type and
unobserved CO2 from heating fuels, my estimates will understate the component of variation
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driven by households, and vice versa, but not impact the variance component driven by place
effects. If moves coincide with shocks to unobserved fuel components (for example, if moving to
places that are on average lower emissions because most people use cleaner heating fuels results
in my underestimating the use of dirtier fuels by some movers), this will bias my estimates of
place effects (in this case, making individual CO2 appear to have decreased from moving more
than it actually did, overstating the role of place effects).

In practice, the share of households reporting non-zero energy expenditures on a heating
fuel other than electricity or natural gas is small, and my estimates are not meaningfully affected
by looking at the entire residential sectors vs. the electricity sector only.

Measurement of electricity prices:

There are three sources of measurement error for electricity prices.

First, in counties served by more than one utility, I cannot match customers to the actual
utility they are served by. This is mainly a concern in territories where customers can select
their residential energy provider; if higher use customers are selecting into lower average price
utilities, I will under-estimate person-level variation in energy use. The bias in my estimates of
person-level variation of CO2 will depend on the correlation between price and CO2 content of the
utilities in their choice set. On the other hand, if utilities are segregated across neighborhoods
within a county, and people use less energy at higher-price utilities, I will underestimate the
variation in use across neighborhoods. If higher price utilities have cleaner energy, this effect is
attenuated with the CO2 outcome.

Second, residential customers generally face a two part tariff consisting of a fixed charge
and a marginal volumetric charge, where the marginal price can either be increasing or decreasing
in consumption depending on the utility. Because I am using average prices, calculated from
utility residential revenues and quantities sold, I overestimate the average volumetric price and
in turn underestimate consumption for everyone. Moreover, for some utilities, marginal prices
are either increasing or decreasing in consumption. When prices are increasing in consumption,
I under-estimate prices faced by high-demand customers and over-estimate prices faced by low-
use customers. This means I over-estimate quantities consumed by high-demand customers
and under-estimate quantities consumed by low-demand customers, leading to an upward bias
in my estimates of the quantity spread between between high and low expenditure customers.
Conversely, if prices are decreasing in consumption, I underestimate the spread in demand.
Borenstein and Bushnell (2019) estimate that in the US, roughly 37% of customers face increasing
block pricing, and roughly 21% face decreasing block pricing, though in all cases the rate structure
is fairly narrow. They also estimate that across territories, utilities that utilize increasing-block
pricing generally serve lower demand customers on average. Thus, my estimates likely somewhat
over-estimate variation across households within utility territories, and underestimate variation
across territories. Overall, unobserved rate structures should lead me to estimate a lower bound
on place-based heterogeneity and estimate an upper bound on preference-based heterogeneity.

Finally, residential rates can vary within utilities, and I don’t observe which rate a house-
hold has selected. This leads to the same biases as not being able to observe which utility a
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customer chooses, discussed above. Relatedly, I do not observe if a household has solar. In
many states, solar customers face different price schedules with significant subsidies for selling
generated power back to the grid. This lowers their average price per kwh, causing me to under-
estimate mmbtu and in turn CO2 from electricity purchased from the grid by these customers. I
further under-estimate mmbtu for customers with rooftop solar because I don’t observe mmbtu
consumed from their solar panels, but this consumption is zero emissions so does not affect CO2

estimates.

Measurement of electricity carbon emissions factors:

In addition to price measurement error, there is measurement in CO2 intensity of elec-
tricity. My measure of average emissions intensity does not capture the fact that electricity is
generated from different fuels throughout the course of the day (e.g. solar peaks in the afternoon)
and across seasons (e.g. there is less solar in the winter). If consumption profiles are correlated
with these patterns, my estimates will be biased.

Measurement of natural gas and other residential heating fuel prices and CO2:

Many of the same price measurement errors arise with natural gas as with electricity, but
generally individuals have less choice over their utility, fixed charges are larger, and there is less
prevalence of block pricing.

In addition to the price measurement error, in the case of natural gas a significant source
of emissions is upstream methane from leaks.

Go back to Section 2.2 (Outcome Variable Construction).
Go back to Section 5 (Results).

B.2 Construction of Transportation CO2

There are several sources of error in the construction of CO2 from transportation. First, I esti-
mate commute distance from geodesic distances between work and home, and reported commute
travel time. Second, I impute annual number of commutes using weeks worked last year and
hours worked last week. Third, I impute energy used for commuting using national average fuel
economy for car commuters and assigning zero emissions to households who commute by public
transit. Finally, I only observe commuting and not total transportation. I discuss each of these
in turn.

I estimate commute mileage using the GPS distance between reported home and place
of work census blocks. To account for the fact that geodesic distances don’t capture the indirect
nature of roads, I rescale my mileage estimates to match the national average commuting distance
reported in the NHTS (12 miles). For individuals who only report their county of work but not
their census block of work, I impute miles travelled using reported commute time and average
commute speeds for people with similar residence-job geographic pairs. I use a similar imputation
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for individuals for whom the travel speeds implied by dividing estimated miles by commute time
are infeasible – over 80 mph on average in a car or motorcycle, and over 150 mph in a train.22

Because I estimate commute miles from geodesic distances between coordinates, I will
underestimate speed and miles travelled for individuals who have less direct commutes than
average. This will understate overall heterogeneity. Additionally, I impute miles for the people
for whom I don’t observe census block of work using average mph for home-place of work county
pairs. This bias acts in the same direction, causing me to understate overall heterogeneity. In
both cases, I’m unable to say in which direction this biases my estimates of the relative shares
of place and person components of heterogeneity. I find similar results when using a simpler
esimate of commute distance, based on dividing reported commute time by the average national
commute speed, 32 mph (NHTS).

I convert hours worked last week to commuting days per week by assuming people work
8 hours a day up to 5 days a week, assuming people worked 5 days if they worked 40-50 hours
a week, 6 days if they worked 50-60 hours in a week, and 7 days if they worked more than that.
I convert commuting days per week into commutes per week by assuming everyone commutes
twice a day on the days they commute. I convert commutes per week to annual commutes using
weeks worked last year. This assumes hours worked are stable, that people work at the same
place all year, and that information about commutes reported for last week is representative
of commutes generally. Any deviations along these dimensions introduces measurement error
into my outcome, which becomes a bigger problem if error is correlated to household types (for
example if higher income households are more likely to have stable commutes).

I convert miles to gallons of gasoline assuming that everyone drives a vehicle with the
annual national average fuel economy, using data from the NHTS.23 This is a significant oversim-
plification, as it ignores patterns of heterogeneity in fuel economy both across commute lengths
and across regions. I do account for the fact that in general fuel economy is roughly 30% higher
when driving on highways than in cities by adjusting mpg up by 19% relative to the national
average for drivers whose average commuting speed is greater than 55 mph, and down by 9%
relative to the national average for drivers whose average commuting speed is lower than 40 mph
(EPA, 2021).

If people with longer commmutes drive more fuel efficient vehicles, I will overstate hetero-
geneity. On the other hand, if people who want to conserve on gas both buy more fuel efficient
vehicles and choose to have shorter commutes, I will understate heterogeneity. The bias in my
estimates of relative shares is more ambiguous. If these patterns are driven soley by individual
preferences, I will over/understate the relative importance of the person component in spatial
variation. On the other hand, if they are driven by local norms or place characteristics such as
e.g. the availability of parking, I will over/understate the relative importance of the place effect.

Another source of error arises in the assignment of emissions to other modes of transit.
In practice, most public transit in the US is not zero-emissions right now. Assigning 0 emissions
to public transit exacerbates heterogeneity across places with and without transit options. In

22. This is the fastest speed a train ever goes in the US, along a small segment of the Northeast Corridor (CITE).
23. For motorcycles, I scale mpg by 2 (FHWA, 2019). This is a minor point as motorcycles account for only

roughly 0.6% of vehicle miles driven (EPA).
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practice, only 5% of individuals commute using public transit. Also, if household alternate their
mode of commute, I don’t capture this variation.

Lastly, I don’t observe transportation other than commuting. If commutes are a rank-
preserving share of transportation emissions, I will underestimate carbon emissions magnitudes
(and likely the magnitude of overall variation), but my variance component estimates will not
be biased. However, if in certain places the majority of travel is driven by commutes while in
other places the majority of travel is for leisure, then my estimates will not properly reflect the
place effects of travel overall.

Go back to Section 2.2.

B.3 Construction of Other Variables

• Missing and imputed variables: I follow Chetty & Hendren (2018) and Bailey, Hoynes,
Rossin-Slater andWalker (2019) and treat all imputed variables as missing, unless otherwise
described. Dollar values are inflated to 2019 values using the CPI. Throughout the analysis
I use demographic and household characteristics to control for selection on time-varying
observables, I use work characteristics to construct commuting variables, and I use home
characteristics in the second half of the paper to characterize places and study associations
between built environment and place effects.

• Flags: In 2014 the ACS flags a lot of variables as “allocated” (to 0) if they checked a
box indicating that they did not use natural gas or fuel use and then left the expenditure
question blank. Because of this, I make an exception to the allocation flag and allow for
residential energy to be allocated to 0 based on the checkbox question.

• Identifying kids: I designate a household member a child and drop them from the analysis
sample if they are under the age of 18, or if they are identified as a child via the Census’
relationship to householder code.

• Work characteristics: For each individual I have employment status, industry and occu-
pation, place of work, weeks worked last year, and hours worked last week. I allow place of
work tracts or more detailed geographies to be missing, but I drop observations if county
of work is missing (unless the individual works from home, in which case I impute their
place of work from their home, or if they are unemployed). I also allow current employment
status to be missing if weeks worked last year and hours worked last week are not missing
and not imputed. In 2008-2018, the weeks worked variable is binned; I follow Chetty and
Hendren (2018) and assign the midpoint to all individuals in the bin. Since these variables
are an input into my measure of commuting energy use, I use the midpoint from the bin
for all years to keep the variable definition consistent.

• Carpooling: I divide CO2 by the number of car-poolers for individuals who report car-
pooling.

• Household characteristics: I allow building age to be unknown in my analysis sample
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C Computational Appendix

For parsimony, I proceed in two steps, regressing logCO2 on observable characteristics and year
fixed effects, and residualizing so that I am left with

ỹij = αi + ψj + εit

The share of overall variance attributable to place effects can then be captured by the
variance component of place effects,

V ar(ψj) ≡ σ2ψ =
1

NT

N∑
i=1

T∑
t=1

(ψj(i,t) − ψ̄)2

and the covariance component between place effects and person effects

Cov(αi, ψj) ≡ σ2α,ψ =
1

NT

N∑
i=1

T∑
t=1

(ψj(i,t) − ψ̄) · αi

KSS provides an estimate for the standard error ψ2
i = V ar(εi) based on a leave out

estimate of σ2i :

σ̂2i = yi(yi − x′iβ̂−i) = yi
(yi − x′iβ̂)

1− Pii
where Pii = x′i(xix

′
i)
−1xi is the observation leverage.
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D Price elasticity estimates in the literature

Table D.9: Electricity Price Elasticities

Estimate Paper Notes
[-0.054, -0.088] Ito (2015) California, 1999-2017

elasticities wrt average price
larger for lagged prices than contemporaneous
and more so wrt the average of several lags
medium run

-0.064 Labandeira et. al. (2017) meta-analysis
average residential short run

-0.042 Labandeira et. al. (2017) meta-analysis
average residential medium run

Table D.10: Residential Fuel Price Elasticities

Estimate Paper Notes
[-0.23, -0.17] Auffhammer & Rubin

(2018)
California, 2010-2014

-0.23 is average p, -0.17 is marginal p
CARE customers more elastic than non-CARE
Elasticity significantly higher in winter (-.38)
and 0 in summer
medium run

-0.065 Labandeira et. al. (2017) meta-analysis
average residential nat gas short run

-0.116 Labandeira et. al. (2017) meta-analysis
average residential nat gas medium run

-0.110 Labandeira et. al. (2017) meta-analysis
average residential heating oil short run

-0.481 Labandeira et. al. (2017) meta-analysis
average residential heating oil medium run

Table D.11: VMT Price Elasticities

Estimate Paper Notes
-0.09 Wenzel & Fujita (2018) Texas, 2005-2010
[-0.14, -0.40] Knittel & Sandler (2012) CA inspection and registration data

long run
-0.15 Knittel & Sandler (2013) CA inspection and registration data

medium run
[-0.33, -0.17] Gillingham (2014) CA inspection and registration
-0.22 range is lowest and highest quantile

-.22 is mean
medium run

-0.10 Gillingham et. al. (2015) PA inspection
short run
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