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the importance of bill salience to low-income households. I explore some of the mechanisms driving
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1 Introduction

Long-run price elasticities of demand are among the most important parameters in the field of
economics. To conduct welfare analysis, forecast future demand, and evaluate policy impacts, long-
run elasticities are vital components. This importance notwithstanding, there are few experimental
or quasi-experimental empirical estimates of long-run price elasticities.

The dearth of experimental and quasi-experimental long-run elasticity estimates is a product
of challenging empirical conditions — to empirically estimate a long-run price elasticity, one must
leverage a long-lasting source of price variation that gives consumers time to adjust their behav-
iors and investments and reach a new equilibrium. Sources of persistent exogenous price variation
are rare, however, and many estimates therefore rely heavily on structural modeling and assump-
tions surrounding the underlying utility function. (Kamerschen and Porter, 2004; Dergiades and
Tsoulfidis, 2008; Alberini and Filippini, 2011).

In the field of energy, long-run price elasticities of demand are critical for several reasons. First,
long-run demand forecasts are used by grid planners and utilities to make long-term planning
and infrastructure investment decisions. Second, numerous energy policies impact retail electricity
prices either directly or indirectly. ! Evaluating the potential impacts of these policies depends
on understanding how consumers will respond to retail prices in the long run. Finally, the speed
and scale of clean energy transitions and the policies to accomplish such a transition will depend
in part on how consumers respond to prices in the long run.

In this paper, I leverage a novel source of persistent spatial price variation to estimate short-

and long-run price elasticities for residential electricity customers in California. This price vari-

'Policies that directly impact retail electricity prices include rate reductions for low-income households, special
rates for adopters of technology like rooftop solar or electric vehicles, and carbon taxes. Other energy policies and tech-
nologies have been shown to indirectly impact electricity prices, including electricity market deregulation(Borenstein
and Bushnell, 2015), plant closures(Davis and Hausman, 2016), and renewable energy generation(Kyritsis, Andersson
and Serletis, 2017).



ation is driven by a subtle feature of California’s pricing regime. In the increasing block pricing
rate structure used throughout California, marginal prices increase when electricity usage exceeds
a certain threshold. Because of differences in heating and cooling needs for households across the
different climates of California, utilities set these thresholds to different levels depending on where
a consumer lives. Within Pacific Gas & Electric’s (PGE’s) service territory, there are ten different
baseline territories?, with the boundaries for these territories often determined according to dis-
continuities in a household’s elevation. These boundaries have led to long-lasting persistent price
variation since they were established in 1982, with one side of the border consistently facing higher
prices than the other. I leverage these price discontinuities to estimate elasticities across different
time intervals.

Estimating a long-run elasticity that spans more than a few years is empirically challenging, as
the panel methods commonly used in the literature can miss important margins of response. Stan-
dard panel methods compare consumption before and after a price change, relying on counterfactual
data on a consumer both before and after the change in price. Notably, they miss cross-sectional
consumption differences created when homes are built or when new tenants move in (often a time
in which home renovations occur) under different price regimes across space.

The persistence in cross-sectional price variation in the setting of this paper provides excellent an
empirical setting to estimate long-run price responses. I leverage this cross-sectional price variation
driven by the levels of the baselines across baseline territory boundaries to estimate a long-run price
elasticity of demand. By leveraging this cross-sectional variation, I capture a more comprehensive
measure of demand response. I estimate a long-run elasticity of -2.4.

To anchor this result within the existing literature, I use standard methods to estimate a short-

run price elasticity of demand. In the short run, I follow the methods of Ito (2014), using a

2These baseline territories were finalized in 1982 and have largely stayed the same since 1982 (PG&E, 2020).



simulated instrument to isolate exogenous variation in the price schedule over time. I find that
electricity consumption is relatively inelastic, with an elasticity of -0.36 in my preferred specification,
indicating that consumers are much more responsive to permanent price changes in the long run
than to short-run price fluctuations.

To better understand the estimated difference between short-run and long-run elasticities, 1
explore possible mechanisms that would drive such large price responses in the long run. Notably,
I do not find that consumers are responsive to long-run prices in their adoption of rooftop solar
or utility energy efficiency programs®. However, consumers facing high prices are significantly
less responsive to changes in temperature than those facing low prices. This effect is magnified
the longer a customer has lived in a single location, particularly during summer months during
hot temperatures . While I don’t directly observe adoption of air conditioning, these results are
consistent with households responding to electricity prices in their air conditioning adoption choices.

Furthermore, substantial heterogeneity exists in price responsiveness according to a consumer’s
income level. There are several explanations that might explain this conflict — electricity bills
may be more salient to low-income households as they have less discretionary income than higher
income households. However, higher income households likely have more appliances, leading to more
margins for response to price changes. Furthermore, durable goods that reduce consumption often
have high capital costs, leading to potentially greater adoption among higher income households
(Borenstein, 2017). I estimate elasticities for households with different income levels, finding that
low-income consumers are less responsive to changes in prices in the short run, but that in the long-
run, this trend reverses and low income consumers are actually more responsive than higher-income

consumers.

The long-run elasticity and mechanisms estimated here are specific to the geography and climate

3In this paper, I observe the adoption of energy efficient appliances when a consumer enrolls in a utility energy
efficiency program. This is only a portion of energy efficient appliance sales, and the energy efficiency adoption
estimates presented here can be thought of as lower bounds.



in this northern and central California sample, and there are reasons to expect a relatively high
long-run elasticity in this setting. Electricity prices are particularly high in California, leading
consumers to be more aware of their electricity bills. Air conditioning adoption is lower in California
than in most states in the United States, leading to more opportunity for new AC adopters. And
rooftop solar adoption and potential are also higher in California than many other settings in the
United States, creating better conditions for that margin of response. However, one should expect
elasticities to be much larger in the long run than the short run across all geographies, as consumers
have more time to make adjustments to their behaviors, adopt durable goods, and choose housing
characteristics that impact electricity consumption in the long run.

This paper contributes to four distinct literatures. First, this paper contributes to the literature
estimating long-run responses to energy prices. Within the field of energy economics, most papers
estimating long-run elasticities use aggregated data and structured dynamic panel models. These
papers, including Alberini and Filippini (2011), Kamerschen and Porter (2004), and Dergiades
and Tsoulfidis (2008) rely on strong assumptions about the form of serial correlation and typically
estimate long-run elasticities in the range of -0.3 to -1.1. There are few papers that use quasi-
experimental methods to estimate long-run elasticities, most notably by Deryugina, MacKay and
Reif (2019) and Feehan (2018). Deryugina et al. estimates price elasticities spanning a time horizon
of up to three years?, finding a price elasticity of -0.09 in the first six months and -0.28 after 30
months. Feehan (2018) is perhaps more closely related to this work, where the author leverages a
natural experiment in Canada to estimate 20-year elasticities for residential electricity customers,
finding a long-run elasticity of -1.2. This paper builds on the conclusions of these studies by directly
estimating mechanisms of response and by exploring heterogeneity in both the short and long run.

Second, this paper contributes to the literature on durable goods investment, especially in re-

4The authors forecast a long-run elasticity spanning up to ten years, but are unable to test this estimate with
quasi-experimental data.



sponse to input prices. Here, I estimate how adoption of solar and energy efficiency measures varies
in response to electricity prices. Work by Chesser et al. (2018) and Crago and Chernyakhovskiy
(2017) explore the impact of electricity prices on investment in rooftop solar, using aggregated data
to show that electricity prices are an important drivers of residential solar adoption, with higher
electricity prices leading to greater solar adoption. Davis (2020) shows that electricity prices are
an important determinant of choice of heating type and electrification. Bushnell, Muehlegger and
Rapson (2021) finds that electric vehicle adoption is impacted by electricity prices, though gasoline
prices are more impactful. This paper builds on that work by using administrative customer-level
data to estimate how individual customers respond to within-utility price differences. Further-
more, this paper is the first to directly attribute long-run price responsiveness to durable goods
mechanisms.

Third, there is a large literature that estimates short- and medium-run elasticities for residential
electricity customers. This paper builds primarily on works by Ito (2014), Shaffer (2020), and
Brolinson (2019) that estimate short-run elasticities with respect to both marginal and average
prices in settings with increasing block pricing. I build on this literature in two ways: first, 1
leverage a novel source of within-utility cross-sectional price variation, which improves on the
current literature by reducing the potential for confounding non-price effects®. Additionally, I
expand on existing methods to estimate dynamics in the medium-run, showing that consumers
continue to respond to prices lagged up to four years but that responsiveness diminishes over
time. There are numerous other papers that estimate short-run elasticities for residential electricity
customers. A 2018 meta-analysis (Zhu et al., 2018) of papers estimating price elasticities of demand
for residential electricity customers estimates a mean short-run elasticity of -0.23. In this setting,

I estimate a short-run elasticity of -0.18 with respect to marginal price and -0.36 with respect to

5Brolinson (2019) leverages a similar source of source of cross-sectional variation, but is limited by data on a
much sparser set of households. Here, I use a rich set of households, allowing me to directly compare households on
either side of the the border in order to credibly estimate elasticities.



average price, grounding this analysis squarely within the existing literature.

Finally, this paper contributes to the literature exploring how household income impacts price
responsiveness among residential electricity customers. Evidence in this literature is somewhat
conflicting — Alberini, Gans and Velez-Lopez (2011) and Reiss and White (2005) find that price
elasticities of demand are highest among the poorest households and monotonically decrease as
income grows, while Brolinson (2019) and Schulte and Heindl (2017) find that wealthier households
are more responsive to prices. Recent work by Cong et al. (2022) finds that low-income households
wait until higher summers temperatures to turn on their air conditioning. This paper is the first to
separately quasi-experimentally estimate short- and long-run price elasticities by income. I show
that while higher income households are much more responsive to prices in the short- and medium-
run, this trend reverses in the long run. This suggests that bill salience is particularly relevant
among low-income households and that investment in durable goods may play a significant role,
even among a low-income population which may have capital constraints.

The paper proceeds as follows: Section 2 discusses background on the setting and measures of
heterogeneity used; Section 3 presents the data and empirical strategy; Section 4 presents estimates
of short-, medium-, and long-run price elasticities; Section 5 explores the mechanisms driving these

responses to price; and Section 6 concludes.

2 Background

2.1 Increasing block pricing and baseline territories

The setting for this paper is Pacific Gas & Electric (PG&E), a large investor owned utility company
in Northern California. PG&E uses a non-linear price schedule called increasing block pricing to

set prices for electricity. This pricing mechanism is similar to a graduated income tax, where higher



levels of usage face a higher marginal price. As an illustrative example, suppose Customer A uses
1000 kWh in a month. In one region of PG&E’s service territory (Baseline Territory Q), she would
pay 18 cents per kWh for the first 888 kWh (Tier 1) she uses and 24 cents per kWh for the next
112 kWh (Tier 2) she uses, leading to a total bill of $186.72. In this two-tier example, 888 kWh
is the monthly baseline allowance — after reaching the baseline, all further consumption is in the
second tier and faces the higher marginal price.

There is a great deal of variation in climate even within utility service territories. PG&FE’s
service territory includes both Fresno, with an average June high temperature of 92 degrees, and
San Francisco, with average June high temperatures of 60 degrees. Because of this wide gap,
electricity demand to meet basic heating and cooling needs across a utility’s service territory is
not equal. As such, customers are divided into climate territories that determine the baseline — in
other words, the level of electricity that can be used before the higher marginal price takes effect.
Furthermore, baselines are different in summer and winter, as well as for customers with electric
versus gas heat. Continuing with our illustrative example, suppose that Customer B has identical
usage, but lives in a territory (Baseline Territory T) where the baseline allowance is 447 kWh per
month. She pays the same price, 18 cents per kWh, for the first 447 kWh, but then pays 24 cents
for the next 553 kWh, leading to a total bill of $213.18 — about $26 higher than Customer A for
the exact same level usage.

6 as shown in Figure 1.

PG&E divides its service area into ten different baseline territories
These baseline territories were established in 19827 by the California legislature, and adopted by
by the California Public Utility Commission in 1983. Between 1983 and 1990, the CPUC continued

to make small changes to where the baseline territory boundaries lay. From 1990 to 2019, the

SNote that PG&E’s baseline territories are different boundaries than the California Electricity Commission’s
(CEC’s) “climate zones,” which are used to determine building codes. Baseline territory boundaries are nearly
universally separate from CEC climate zone boundaries, with a very small number of exceptions.

"A precursor to baseline territories was established in 1976, called “climate bands,” though there were only four
climate bands based purely on heating degree-days.



Figure 1: PGE baseline territories (PGE, 2020)

Map of Baseline Territories

Pacific Gas and Electric Company
December 1985

Decision 85-12-080

with 1990 revision

Note: This map shows PG&E’s baseline territories. These borders did not change from 1990 to 2019. Source: PG&E

baseline territory map stayed the same, with an adjustment to one community in 2019. This
community has been dropped from the sample, meaning that the baseline territory boundaries are
constant over the sample period of this study. More generally, baselines are determined based on
two potential factors: geopolitical demarcations (e.g. zip code/city/county boundaries, roads) and
elevation discontinuities. For example, Santa Barbara County is divided into Territories R, T, and
X according to geopolitical demarcations. However, Trinity Country is divided into Territories X,
Y, and Z, where residents of Trinity County below 2,000 feet of altitude are in Territory X, residents
between 2,001 feet and 4,500 feet are in Territory Y, and residents above 4,500 feet are in Territory

Z. A full list of baseline territory boundaries defined by elevation is provided in Appendix A.38.

8A full list of baseline territory definitions including those defined by non-elevation definitions can be found at
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_PRELIM_A.pdf.



Figure 2: Baselines over time
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Note: This figure shows the level of baselines over time for each baseline territory and for households with electric
heat in summer and winter. Data are shown from 1995 to 2020, as this is the period for which public data is available.

To determine the level of each baseline, PG&E set quantities so that 50 to 60 percent of
expected residential electricity consumption in each climate zone is set as “baseline” consumption
(equivalently, so that 50 to 60 percent of consumption is in Tier 1)°. Figure 2 shows the daily
baselines from 1995 to 2020 for each baseline territory within PG&E. There is a great deal of
variation both across baseline territories and even within territories from summer to winter and
between customers with electric versus gas heat. Over the course the sample for this study (2008
to 2020), baseline quantities change four times.

Because baseline territories are used to determine baselines and therefore marginal and average
prices, and customers who live very close to one another might be assigned to different baseline

territories, there is variation in the prices faced by customers close to the baseline territory borders.

90ne might be concerned that this could lead to endogeneity, where the actions of a household impact the
baseline allowance in future periods. I assume that individual households do not exhibit market power, an assumption
supported by the fact that each baseline territory contains at least 6,000 households.
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Figure 3: Price variation in Territory Q versus Territory T
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Note: This figure shows the marginal price path for baseline territory Q compared with baseline territory T in January
2017 for customers with electric heat. Territories Q and T are directly adjacent to one another.

Returning once more to the illustrative example, recall that Customer B (in Territory T) face a
monthly bill $26 higher than Customer A (in Territory Q) for the identical level of usage. Because
Territories T and Q are divided by an elevation discontinuity, these two customers might live in the
same neighborhood, face the same climatic conditions, and still face substantially different monthly
bills. Figure 3 exhibits the full price schedule faced by customers in Territory Q compared with T
during the winter months of 2017.

Note that the existing literature, including Ito (2014) and Shaffer (2020), often use utility ser-
vice territory boundaries as a source of exogenous spatial price variation. Utility service territory
boundaries, however, are vulnerable to confounding non-price factors along the utility border, such
as utility-specific programs and potential household selection effects. Because baseline territories

boundaries are within a single utility’s service territory, they are not subject to the same confound-
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Figure 4: PG&E price evolution over time
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Note: This figure shows the price schedule over time for PG&E’s standard default non-time varying tariff (Tariff E-1)
from 2008 to 2020. The darkest line shows marginal prices for the lowest level of usage over time (under 100% of the
baseline), while lighter shades show marginal prices for higher levels of usage.

ing effects to prices. Furthermore, utility service boundaries are often limited to only a narrow
geographic range. PG&FE’s baseline territories cover a much broader spatial area, allowing for a
more diverse set of households that may be more representative of the broader population.

Not only do marginal prices vary spatially across baseline territory borders, but there is a great
deal of price variation over time as well. Figure 4 shows the evolution of each price over time for
the standard residential tariff, E-1. Note that not only is there price variation within each tier, but
there is a compressing of tiers that occurs in December 2016, when rate E-1 moves from four tiers
to three. This provides useful identifying variation over time, that can be used in combination with
the spatial variation resulting from climate zone boundaries.

With variation in baselines across both space and time, it’s important to consider exactly what

variation in baselines comes from each source of variation. In Table 1, I decompose the variation in

12



baseline territories according to space and time, by using baseline territory and month of sample
fixed effects, along with controls for the other determinants of baselines — electric versus gas heating
and summer versus winter. Column 1 shows how much of the variation in baselines can be explained
by controls alone, while Columns 2 through 4 add spatial and time series fixed effects sequentially
to demonstrate the extent to which each type of fixed effect explains variation in the baseline.
The vast majority of variation in baselines not accounted for by the controls can be explained
by spatial fixed effects, with a small amount explained by temporal fixed effects, suggesting that
cross-sectional variation plays a major role in creating price differences. It is also worth noting
that, as expected, almost all variation in baselines (99%) can be explained by spatial and temporal

fixed effects in combination with controls for the other determinants of baselines.

2.2 Measures of heterogeneity

When estimating how consumers respond to prices, one critical component is to understand who
is responding. Many papers, including Shaffer (2020) and Alberini, Gans and Velez-Lopez (2011)
show there are significant heterogeneities in how customers respond to prices in their energy choices,
driven by factors including information, salience, access to capital, and more. Different responses
across customer groups induces heterogeneity in welfare changes. While in theory, transfers could be
used to equitably redistribute any gains (or losses) from a policy, work by Sallee (2019) emphasizes
the challenge that targeting presents, especially in the context of energy policy. In a context
with limited transfers, understanding these mechanisms and heterogeneities is highly important for
designing and evaluating policy, especially when equity is a policy objective.

In this setting, the primary demographic variable of interest is income. Because adoption of
durable goods requires access to capital, we might expect that higher income customers are more

likely to invest in durable goods that impact long-run price responsiveness. On the other hand, past

13



Table 1: Baseline variation decomposition

baseline; 1 2 3 @

R? 0.70 0.93 0.75 0.99
ElectricxSummer FE Yes No No No
ElectricxSummerxBT FE No Yes No No

ElectricxSummerxMofS FE No No Yes No
ElectricxSummerxBTxMofS FE  No No No Yes

Notes: This table shows the results of four regressions, all with the length of baseline as the dependent variable. The

level of observation is a customer account by month of sample.

work (Alberini, Gans and Velez-Lopez, 2011; Reiss and White, 2005) seems to indicate that low-
income consumers tend to be more aware of their bills and may therefore may be more responsive
to price fluctuations, especially in the short-run.

While I do not directly observe income at a customer level'?, there are two primary ways that
I explore demographic heterogeneity. First, I use CBG-level data on income from the 2017 5-year
American Communities Survey to compare high-income CBGs with lower-income CBGs. Census
data has numerous measures of income; my preferred measure in this work is average per-capita
income.

Second, I use a proxy for income that is observed at the account-level: participation in the
California Alternative Rates for Energy (CARE) program, following Auffhammer and Rubin (2018)
among others. CARE is a program that is available to all energy customers in the state of California
with incomes below 200% of the federal poverty level (FPL). Customers enroll directly through
PG&E, who conducts random income verification checks to ensure that customers are compliant
with the income requirements. PG&E estimates that 95% of eligible customers are enrolled in
CARE. While there is some endogeneity in which customers are enrolled in CARE that may be

correlated with information and bill attention, the high participation rate of CARE implies that it

10T here are two reasons that I don’t observe income: (1) high-quality income data at a consumer level are extremely
difficult to access; and (2) utility data is anonymized, so that I couldn’t match my data with an external income
dataset, even could access it.

14



Figure 5: CARE enrollment versus CBG-level per-capita income decile
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Note: In this figure, the horizontal axis is a measure of CBG-level per-capita income, while the vertical axis represents
the proportion of households enrolled in CARE within a CBG.

is a good proxy for income.

In Figure 5, I compare how CARE participation correlates with CBG-level income deciles.
While there is strong correlation between CARE enrollment and the CBG-level per-capita income,
there is substantial heterogeneity in income levels within each CBG. There are numerous CARE
enrollees across all CBGs, including those with the highest levels of per-capita income. Throughout
the paper, CARE will be used as the primary proxy for income, while heterogeneity across federal

poverty line deciles will be shown in the Appendix.
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3 Data

For this study, I use account-level billing data for a subset of PG&E electricity customers from
2008 to 2020'!. Included in the sample are all households living in Census Tracts with at least 15
premises present in multiple different baseline territories. This sampling restriction ensures that I
have good balance to facilitate comparisons across a pricing border. Under this sampling restriction,
I retain 463,000 premises, or about 9.6% of premises in PG&E’s service territory. I observe data at
the monthly level on electricity usage'?, billing, and adoption of durable goods (e.g. solar panels,
electric heat, energy efficiency), as well as address and some limited demographic information. I
merge PG&E’s data with census data from the 2017 5-Year American Community Survey (ACS)
to obtain demographic information. In my sample, there are an average of 588 households in each
CBG.

In addition, I use daily weather data from the National Oceanic and Atmospheric Administra-
tion. The dataset, called Global Historical Climatology Network, reports daily temperatures for
land surface stations across the globe. I use PG&E address data to determine the closest weather
station to each household in the sample. For each billing period from 2008 to 2020, I determine
the number of Heating and Cooling Degree Days'? at the nearest weather stations for a particular
household, then merging those figures directly into the billing data.

In my empirical analysis, I restrict my sample in several ways: first, I omit households with
non-standard baselines such as medical baselines. Second, for consistency across bills, I include

only bills ranging between 28 and 33 days. Third, because baselines change over the course of

HUPG&E has granted me access to this data under a confidentiality agreement

2The electricity usage data that I use throughout this paper is net monthly electricity consumption. For solar
customers who both generate and consume electricity, their net consumption is the difference between their gross
monthly consumption and their gross monthly generation.

3Heating degree days and cooling degree days are common measures of how hot or cold are region is across a period
of time. In particular they provide a measure of the distance from a standard neutral indoor temperature (65 degree
Fahrenheit). Cooling degree days are calculated according to the following formula: > M; (Daily Mean Temperature; —
65) where M; refers to the monthly billing period for each household ., while heating degree days as calculated as
>z, (65 — Daily Mean Temperature, ).

16



the sample, there are some geographic areas which have higher baselines than their neighbors at
some point in the sample and lower baselines than their neighbors at other points. I drop these
observations, ensuring that I only include households who are consistently in the “high” or “low”
price region throughout the sample. After making these sampling restrictions, I retain 219,000
premises and 524,000 accounts.'

In Table 2, I present summary statistics. I show the means and standard errors for my sample,
along with the number of utility accounts for each variable. For comparison, I show a select group
of variables that I observe for the full set of PG&E residential customers (4.8 million premises and
21 million accounts) from 2008 to 2020. The sample in this study seems to be fairly representative
of the broader PG&E population in the share of customers adopting electric heat and solar and
enrolling in CARE. However, the average customer in this sample faces baselines that are 19%

higher than in the broader PG&E population and consumes 26% more electricity.

4 Research Design and Results

While a vast number of papers have quasi-experimentally estimated short-run price elasticities of
demand for residential electricity customers, very few have done the same in the long run. In the
short and medium run, I follow the existing literature, relying on price variation over time and
across space using panel methods. In the long run, however, I employ a new approach, leveraging a
novel source of persistent and long-lasting cross-sectional price variation. In this section, I describe
my empirical approach and results in the long run. I then anchor my results within the existing
literature by using standard methods to estimate short-run price elasticities of demand. In the Ap-
pendix, I explore the dynamics of consumers’ price responses by extending the short-run approach

to the medium-run.

Note that many more accounts exist than premises. This is because most premises have multiple different
account-holders over the course of the 13-year sample, due to customers moving to new premises.
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Table 2: Summary statistics

In Sample
Mean  Std.Dev. Accounts
Marginal price (dollars per kWh) 0.20 0.08 523,927
Average price (dollar per kWh) 0.22 0.51 519,963
Monthly baseline (kWh) 415.45 494.87 523,927
Monthly consumption (kWh) 497.01 833.64 523,927
Percent electric heat 0.23 0.42 523,927
Percent solar 0.04 0.20 523,927
Percent CARE 0.22 0.41 523,927
Average Daily Heating Degree Days 7.69 5.27 523,219
Average Daily Cooling Degree Days 2.39 3.08 523,219
Per-capita Income 40097.17  20843.70 523,927
Account length (months) 31.66 42.00 523,927
All PG6SE
Mean  Std.Dev. Accounts
Monthly baseline (kWh) 349.19 427.85 21,390,754
Monthly consumption (kWh) 395.34 644.39 21,411,577
Percent electric heat 0.21 0.40 21,445,946
Percent solar 0.03 0.18 21,445,946
Percent CARE 0.25 0.43 21,445,946

4.1 Long run empirical strategy and results
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To estimate price elasticities of demand, economists typically leverage price variation over time
and estimate how consumers react to dynamic changes in the price schedule. However, this type
of analysis is limited in that it only captures certain margins of response among certain customers.
First, it only captures customers who are continuously present in the sample over a long period of
time. However, electricity usage and price responses may vary substantially across housing age and
tenure. Furthermore, as recent work by Davis (2020) suggests, important durable good decisions
such as whether a home is heated by gas or electricity may often be decided when a home is built,
with substantial switching costs that lead to low incidence of switching behavior. Alternatively,
investment decisions may be made when a utility account switches due to a new owner or tenant

moving in. The typical dynamic methods used in the literature to estimate elasticities often fails



to capture the variation in recently-built or recently-renovated homes — in fact, any approach that
relies on price changes over time will fail to capture this critical margin of response.

The challenge, then, is determining how to estimate differences in consumption without a “pre-
period”. Instead of leveraging price changes over time, I leverage cross-sectional differences in
prices due to baseline territory divisions to observe long-run differences in durable good adoption
and consumption.

The baseline territory boundaries divide PG&FE’s service territory into a series of high price and
low price regions. Because these boundaries are often drawn according to elevation discontinuities
that separate from any other administrative boundary, households are similar in expectation on
either side of the border except for the difference in baseline (and therefore price) that they face.
Importantly, I restrict my sample to borders where the ordering of baselines has remained consistent
across the boundary since the start of my sample in 2008. To estimate a long-run elasticity, I
leverage this cross-sectional price variation with a regression discontinuity approach.

Throughout the main body of the paper, I assume that households response to average variable
prices!® rather than marginal prices. Past studies from Ito (2014) and Shaffer (2020), have found
that households are unlikely to respond to marginal prices in increasing block pricing settings. In
particular, Tto (2014) finds that households are more responsive to average variable prices than
to marginal prices. In Section 4.2, I show that this finding holds in this setting as well and that
at least in the short run, consumers are more responsive to average variable prices than marginal
prices.

I begin by estimating how several important variables change across the baseline territory

15T use average variable prices rather than average prices due to nuances surrounding solar billing. Solar net
metering customers are billed for the balance of their energy consumption once per year, rather than on a monthly
basis, leading to negative bills in most months and potentially a large positive bill in a single month. Average prices
for these customers do not reflect their incentives and have the potential to create bias in the sample. Rather, I use
average variable prices, which are identical for the vast majority of customers but reflect the true incentives for solar
customers.
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Figure 6: First stage RD - baseline
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Note: In this figure, each dot represents all households within a 100-meter bin. The vertical axis shows residuals after
regressing monthly baselines on CBG-by-month-of-sample and electric-heat-by-season fixed effects and taking the
mean of the residual within each bin. The dotted lines are lines of best fit across all bins within a 1-mile bandwidth
on either side of the baseline discontinuity.
boundary. To implement this approach, I restrict my sample to households within one mile of the
baseline territory boundary. For each variable of interest, I regress on CBG-by-month-of-sample
and electric-heat-by-season fixed effects, taking the means of the residuals across 100-meter bins. I
then estimate local linear regressions across all bins on each side of the border, plotting the line of
best fit. The results are shown in Figures 6, 7, and 8.

First, to establish that baselines vary across the border as expected, Figure 6 plots the magnitude
of daily baselines against the distance to the border. There is a clear discontinuity at the border with
magnitude of approximately 90 kWh, demonstrating that baselines are significantly impacted by

the border discontinuity. This difference in baselines impacts prices, as shown in Figures 7. While

there is more noise in these regressions since marginal and average variable prices are endogenous
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Figure 7: First stage RD - average variable price
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Note: In this figure, each dot represents all households within a 100-meter bin. The vertical axis shows residuals after
regressing average variable price on CBG-by-month-of-sample and electric-heat-by-season fixed effects and taking the
mean of the residual within each bin. The dotted lines are lines of best fit across all bins within a 1-mile bandwidth
on either side of the baseline discontinuity.

to consumption, there is a clear impact at the border, where households with lower baselines
face higher marginal prices and average variable prices, by an average of 2.8 and 1.6 cents per
kWh respectively. At median levels of electricity usage, this difference in price would imply a bill
difference of about $10.80 per month.

Next, I show that this variation in prices causes changes in electricity consumption. Figure 8
shows a reduced form regression, where monthly electricity consumption on the “high price” side
of the border is about 200 kWh lower than electricity consumption on the “low price” side of the
border.

To confirm that these results are not driven by temperature-related factors, I run falsification

tests on heating degree days, and cooling degree days after conditioning out CBG-by-month-of-
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Figure 8: Reduced form RD
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Note: In this figure, each dot represents all households within a 100-meter bin. The vertical axis shows residuals after
regressing monthly electricity consumption on CBG-by-month-of-sample and electric-heat-by-season fixed effects and
taking the mean of the residual within each bin. The dotted lines are lines of best fit across all bins within a 1-mile
bandwidth on either side of the baseline discontinuity.

sample and electric heat fixed effects. Results of each of these falsification tests are shown in
Figures 9, and 10.

With variation in baselines leading to persistent differences in prices across a long period of
time, and those persistent price differences leading to differences in consumption, this is a natural
setting to estimate a long-run price elasticity of demand. However, an important consideration
when estimating elasticities in an increasing-block-pricing setting is that prices are endogenous to
consumption. As customers use more electricity, the marginal price of electricity increases, meaning
that the marginal price of electricity is correlated with consumption. To solve this issue, I use an

instrumental variables approach, instrumenting for price with the length of the baseline. Within

a narrow bandwidth of the baseline discontinuity of one mile, the only mechanism through which
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Figure 9: Falsification test - HDDs
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Note: In this figure, each dot represents all households within a 100-meter bin. The vertical axis shows residuals
after regressing average daily heating degree days on CBG and electric-heat fixed effects and taking the mean of the
residual within each bin. The dotted lines are lines of best fit across all bins within a 1-mile bandwidth on either side
of the baseline discontinuity.

the baseline impacts electricity consumption is through prices.

Leveraging this approach combining a regression discontinuity and two-stage-least-squares, I

run the following regressions:

First stage: In(pi) = ap + a1Hi; + aod; + asd;Hi; + ver + 1e. + €t (1)
Second stage: n(zi) = Bo + Biln(pit) + Bodi + BsdiHi; + ver + 1e, + €t (2)

where c identifies Census Block Groups, € is a dummy variable indicating if a customer has electric
heat, s denotes whether the bill is in the summer or winter, z;; represents electricity consumption
for household 4 in month ¢, p;; denotes the contemporaneous average variable price, d; denotes the

running variable in the regression discontinuity — the distance (in meters) between the household
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Figure 10: Falsification test - CDDs
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Note: In this figure, each dot represents all households within a 100-meter bin. The vertical axis shows residuals
after regressing average daily cooling degree days on CBG and electric-heat fixed effects and taking the mean of the
residual within each bin. The dotted lines are lines of best fit across all bins within a 1-mile bandwidth on either side
of the baseline discontinuity.

and the baseline territory boundary, and e denotes an idiosyncratic error term.. CBG-by-month-of-
sample fixed effects are included to control for variation in demographic traits that may change over
time. Electric-heat-by-summer fixed effects are included since baselines vary according to heating
type and season. Standard errors are clustered according to baseline territory, since prices are
assigned at the baseline territory level, and month-of-sample, to account for unobserved correlation
in variances across seasons and over time. The identifying assumption under this regression is that
customers living close the baseline territory border with the same type of heating systems would
consume similar amounts of electricity absent the differences in prices driven by baseline territories.

Because an indicator for electric heat is included in the fixed effects, this specification makes a

parametric correction for heating type, as the length of a baseline is partly determined by heating
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Table 3: Long-run first stage regression on average variable price

1 mile 1/2 mile 2 miles
hi 0.017%%* 0.016%** 0.019%**
(0.0018) (0.0017) (0.0020)

Distance to border ~ -0.0000022%  -0.0000010  0.000000012
(0.0000011)  (0.0000010)  (0.00000078)

Hi x Distance  0.0000076*** 0.000010¥**  -0.00000018
(0.0000015)  (0.0000011)  (0.0000016)

Observations 7395980 5646913 9020224

Note: Fixed effects include CBG-by-month and electric-heat-by-season. Stan-
dard errors are clustered by baseline territory and by month of sample. *** **,

* indicate significance at the 1% and 5% and 10% level, respectively.

type. This is a necessary fixed effect to prevent an endogenous heat type choice to bias the estimates.
However, the inclusion of this fixed effect eliminates heating choice as a potential mechanism to
impact consumption. Therefore, the long-run elasticity estimated here is a lower bound, as a
theoretical specification that allowed a heating type margin to impact consumption would only
increase the estimated elasticity.

The results of these regressions are shown in Tables 19, 4, and 5. In Table 19, I show the results
of the first stage regressions on average variable price, in Table 4, I show reduced form results on
monthly electricity consumption, and in Table 5, I show the IV long-run elasticity estimates. The
first stage results show that crossing the baseline territory boundary leads to an average increase
of 1.6 cents per kWh. At median levels of electricity usage, this difference in price would imply a
bill difference of about $8.64 per month. Meanwhile, the reduced form estimates show that for the
same change in monthly baseline, consumers respond by decreasing their consumption by about
200 kWh per month, or over 37% of the mean monthly usage.

As shown in Table 5, the IV regression results in an elasticity of -2.4, implying that customers
are highly responsive to price changes in the long run. While this estimate is substantially larger

than the existing literature, there are several reasons that one should expect a larger estimate in
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Table 4: Long-run reduced form regression on monthly electricity consumption

1 mile 1/2mile 2 miles

hi -228.5%*%  _207.6%*  -227.4%**

(82.2) (82.1) (80.3)

Distance to border  -0.025 -0.066 0.00061
(0.042) (0.067) (0.025)

Hi x Distance 0.031 0.074 -0.022
(0.052) (0.092) (0.025)

Observations 7463542 5694337 9107026

Note: Fixed effects include CBG-by-month and electric-heat-by-
season. Standard errors are clustered by baseline territory and
by month of sample. *** ** * indicate significance at the 1%

and 5% and 10% level, respectively.

this setting and under this methodology: first, the existing literature tends to use panel methods
that compares consumption for a customer before and after a price change. This type of estimation
misses important margins of response — specifically investment decisions at the time that a home
is built or when a utility account changes due to a new owner or tenant moving in. By leveraging
a persistent source of cross-sectional price variation, the specification here captures the investment
margin, including in new and recently transacted homes, both of which are often missed by studies
that rely primarily on price variation over time, as opposed to across space.

Second, there are very few existing quasi-experimental estimates of long-run elasticities in the
literature. Most estimates rely on strong structural assumptions made by researchers. One of the
only quasi-experimental long-run elasticity estimate to date, Deryugina, MacKay and Reif (2019),
looks only at a time horizon up to three years, and estimates elasticities using the panel methods
described above, which are likely to miss important margins of response. The estimates in that
paper should be compared to the medium-run results shown previously in this paper, not these
long-run estimates, because of the parallels in both time horizon and in the identifying variation.

The other quasi-experimental long-run elasticity estimate to date, Feehan (2018), finds a long-run
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Table 5: Long-run IV estimate of elasticity (average variable price)

1 mile 1/2 mile 2 miles
Log Average Price -2.25%%* -2.39%k* -1.95%%*
(0.56) (0.56) (0.57)

Distance to border -0.00012*** -0.00014***  -0.000030
(0.000035)  (0.000023)  (0.000023)

Hi x Distance 0.00026***  0.00036***  0.0000079
(0.000051)  (0.000073)  (0.000038)

Observations 7327914 5599033 8932262
F 62.3 57.3 68.6

Note: Fixed effects include CBG-by-month and electric-heat-by-season.
Standard errors are clustered by baseline territory and by month of sam-
ple. *** ** * indicate significance at the 1% and 5% and 10% level, re-

spectively.

elasticity of -1.2 in Newfoundland and Labrador, Canada. Critically, the setting for this paper is
in a different climate. Consumers in Newfoundland and Labrador face lower temperatures than
California year-round, leading to less flexibility in decisions around heating and cooling. Further-
more, solar irradiance and air conditioner adoption is substantially lower, diminishing the value of
some of the most important margins of long-run response observed in California. With additional
margins of response and more flexible heating and cooling loads, one would expect consumers to
be much more responsive to prices in this setting.

In Appendix A.2, I include several robustness checks. First, I show that varying the bandwidth
of the regression discontinuity does not meaningfully change the results. Next, I estimate similar
regressions under different parametric assumptions. While my main specification specifies linear
effects on either side of the discontinuity, I show that using a quadratic or flat function has little
impact on the results.

In addition, one might be concerned about endogeneity in this specification — when a customer
adopts a durable good such as solar, their net electricity usage decreases dramatically, often putting

them into a different pricing tier and decreasing both their marginal and average prices. Because
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Figure 11: Histogram of long-run elasticity distribution across Census Block Groups
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Note: This figure shows the results of estimating long-run elasticities within each Census Block Group. The histogram
shows the distribution of CBG-specific elasticity estimates. CBGs with elasticities below -20 or above 20 have been
omitted for scaling purposes.

I use the contemporaneous average variable price as the variable of interest, there is a concern
that endogenous adoption of durable goods may decrease the price difference on either side of the
border, thereby biasing upwards the estimated of elasticity. In Appendix A.2.3, I test alternative
definitions of price, where prices are determined by consumption levels in a baseline year, finding
similar long-run elasticity estimates.

One may also be concerned that this result is driven by the presence of outliers. To rule out
this possibility, I separately estimate coefficients for every Census Block Group in the sample. As
shown in Figure 11, I find that 52% of CBGs exhibit elasticities between 0 and -10, and that the
few outliers that do exist are not the primary factor driving the results. In Figure 12, I explore the

distribution of elasticity estimates across space, finding no demographic trends that are predictive

of the elasticity magnitude.

28



Figure 12: Map of long-run elasticities by Census Block Group
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Note: This map shows the results of estimating long-run elasticities within each Census Block Group. The color of
each CBG on the map indicates the long-run elasticity estimate for that CBG. CBGs with elasticities below -20 or
above 20 have been omitted for scaling purposes.

4.2 Short run estimation

In this section, I anchor these results within the existing literature by estimating short-run elas-
ticities, which are much more commonly estimated. in contrast with my long-run approach, in
the short run, I follow standard methods including Ito (2014). I rely on three primary sources of
identifying variation: (1) spatial discontinuities in the baseline and therefore price that a customer
faces; (2) temporal variation in prices; and (3) temporal variation in baselines'®. In combination,
these three sources of variation lead to prices that vary both in time and across space.

I follow the methodology presented by Ito (2014) in order to estimate short-run responses to

both average and marginal prices. In that 2014 paper, Ito leverages similar variation in prices over

16Because month-of-sample fixed effects are included in all specifications, temporal variation in baselines is limited
to policy changes and does not include seasonal variation.
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time and along a spatial discontinuity to estimate short-run elasticities.

Let ¢;; denote consumption for customer ¢ in month ¢ and AP;; denote the average variable price
that customer 4 faces in month ¢. For expositional purposes, I assume that all customers respond
to average variable price, though I will test this assumption later in this section. Typically, one

could consider the following first differences estimating equation:

Aln(cit) = S1AI(AP;) + yet + mit (3)

where Aln(c;;) = In(cir) — In(ci—12) is the difference between log consumption today and the
same month one year prior, Aln(AP;) = In(AP;) — In(AP;¢—12) is the difference between log
marginal price today and the same month one year prior, 7. denotes CBG-by-time fixed effects,
and 7;; = €;t — €;¢—12 is an idiosyncratic error term. Using this first differences estimator removes
household-by-month-of-year variation. However, the structure of electricity rates in California raises
issues for this estimation.

As described in the background section, electricity providers in California employ increasing-
block pricing. Hence, as customers use more electricity, the marginal price of electricity increases.
The marginal price of electricity is therefore correlated with consumption, meaning that in the
Equation (1), the marginal price is correlated with the unobserved error term 7;.

To solve this issue, I follow Ito (2014). Ito instruments for price using the policy-induced price

change. The instrument, called a simulated instrument in the tax literature, is

A]H(Apit)l = IH(APt(Ci’t,(g)) — ID(APt,12(6i7t,6)) (4)

This instrument isolates the change in price induced by exogenous policy change at a specific

consumption level. For it to be valid, ¢;;—¢ must be uncorrelated with the unobserved error n;.
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Some past studies have used the base year consumption, ¢;;—12, here. However, as Ito points out,
mean reversion presents a challenge in this setting, as transitory shocks to consumption in month
t — 12 will cause mean reversion in consumption that will be correlated €; ;12 and therefore 7.
Blomquist and Selin (2010) and Saez, Slemrod and Giertz (2012) suggest that in an income tax
setting, using consumption in a period midway between ¢ and ¢ — 12 can be used to address this
mean reversion problem.

This instrument might still be correlated with 7, if specific types of electricity users (e.g. high-
and low-usage customers) have different consumption paths over time. This is where I make use
of the border discontinuity that results from baseline territories. Ito uses the border discontinuity
between utility regions. Here, I build on his approach by leveraging within-utility price variation
driven by baseline territories. In different utility regions, there are often different incentives and
marketing strategies for energy durable goods, such as solar and energy efficiency, that go beyond
the price that customers face. Leveraging price variation across baseline territories allows me to
isolate the price variation, without concern for these confounding factors. Furthermore, baseline
territory borders are not limited to one concentrated geographic area as utility borders are, leading
to a more representative sample.

To ensure that households across the baseline territory boundary are comparable, I restrict my
sample to census block groups that have at least 50 service accounts in multiple different climate
zones. The resulting identifying assumption is that customers in the same census block groups on
either side of the climate zone boundary would consume the same amount of energy absent the
price variation that results from the climate zones.

With this instrument, I estimate a two-stage least squares regression of consumption on average

variable price, instrumenting for average variable price with the simulated instrument described
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above:

First stage: Aln(AP;) = o Aln(APit)I + fi(cit—6) + Vet + Mit (5)
Second stage: Aln(cy) = 1 Aln/(-A\Pit) + fi(cit—6) + Vet + Mit (6)

where fi(cit—6) is a set of dummy variables determined by the decile of consumption in period
t — 6. Formally, for percentile j, f;: = 1{cjt—6 < Cit—6 < ¢j+1+—6}. Standard errors are clustered
according to household by month-of-sample.

In this specification, 81 represents a short-run elasticity to average variable price — it estimates
how any exogenous price change over the previous year leads to a difference in consumption within
that period.

As Tto (2014) finds, customers might respond to average prices instead of marginal prices.
To test this result in this setting, I include two additional short-run specifications: one in which
marginal prices replace average variable prices as the primary covariates of interest, and one which
includes both average variable and marginal prices as covariates. This final specification is called
an encompassing test, and measures whether one pricing model “encompasses” the other. In his
work, Ito (2014) finds that the average variable price model encompasses the marginal price model,
implying that customers primarily respond to average variable prices rather than marginal prices.

As shown in Table 6, I find results that are consistent with the existing literature (Zhu et al.,
2018). Elasticities are approximately -0.18 and -0.36 for marginal and average variable prices re-
spectively. While I don’t find that the average variable price model encompasses the marginal price
model, customers seem to generally be more responsive to average variable prices than marginal

prices.!” As such, throughout the rest of the paper, my preferred specifications will use average

1"Note that Shaffer (2020) finds a similar result, where customers are heterogeneous in how they respond to prices.
I don’t take a stand here on whether customers respond to marginal or average prices.
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Table 6: Short-run price elasticity

MP AP Encompassing
(1) (2) (3)
Aln(MPy)  -0.18%** -0.052**
(0.019) (0.025)
Aln(APy) -0.36%** -0.28%**
(0.032) (0.045)
Observations 5692238 5663639 5663639
F 480.9 989.7 99.8

Note: Across all columns, the dependent variable is Aln(cy). Fized effects include CBG-by-month and 6-
month-lagged consumption deciles. Standard errors are clustered by CBG-baseline territory and by month of
sample. *** ** *indicate significance at the 1% and 5% and 10% level, respectively.

variable prices as the primary covariate of interest with specifications showing marginal prices in
the Appendix. These results primarily serve to anchor my results within the existing literature.
Much of the literature on price elasticities in the residential electricity sector have focused on the
short-run, and has typically found similar results to those that I present here — customers are more
responsive to average variable price than to marginal price, but short-run responses to prices are
relatively inelastic.

To understand how different types of consumers respond differently to prices, I use CARE as a
proxy for income, as shown in Table 9. I estimate the same specification separately for CARE and
non-CARE customers, finding that non-CARE (and therefore higher income) customers tend to be
more responsive to prices than CARE customers. While there are some papers that find similar
results (Brolinson, 2019; Schulte and Heindl, 2017), this result is in contrast with the majority of
the literature, which finds that price elasticities of demand are higher among the poorer households
(Alberini, Gans and Velez-Lopez, 2011; Reiss and White, 2005).

In Appendix A.7 I explore the dynamics of households’ responses to price changes by estimating
price elasticities in the medium run. While not the primary focus of this paper, these results provide

some insight into how household behavior changes over time in response to prices.
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Table 7: Short-run price elasticity by CARE

CARE nonCARE
(1) (2)
Aln(APy)  -0.20%F*  -(0.43%%*
(0.035) (0.037)

Observations 1002596 4660937
F 605.7 1162.3

Note: Across all columns, the dependent variable is Aln(c;t). Fized effects include CBG-by-month and 6-
month-lagged consumption deciles. Standard errors are clustered by CBG-baseline territory and by month of
sample. *** ** *indicate significance at the 1% and 5% and 10% level, respectively.

The comparison of short- and long-run elasticities suggests the likely channels through which
consumers might respond. Because long-run responses are much larger than short-run responses, it
is unlikely that these results are primarily driven by intensive margin changes, such as appliance use
behaviors. The pattern of response is more consistent with adjustment along an extensive margin:
the differential adoption of durable goods such as solar, energy efficiency, and air conditioning. In
the next subsection, I empirically estimate how customers respond in their adoption of durable

goods to better understand the specific mechanisms driving the observed long-run response.

5 Mechanisms

To this point, I have shown that residential electricity customers are highly responsive to electricity
prices in the long run. This contrasts with the short run, where electricity consumption is relatively
inelastic, as shown in Section 4.1 and in much of the literature. This begs the question of which
mechanisms are driving this response. Are customers making intensive margin changes to their
electricity consumption, by changing their behaviors surrounding heating or appliances? Or are
they making extensive margin changes, by adopting durable goods such as solar, energy efficiency,
or household appliances?

To better understand the primary drivers of these results, it’s crucial to understand the specific
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mechanisms through which customers respond to prices. The observed differences between short-
and long-run elasticities suggest that investment in durable goods might play a significant role. I
test for differences in durable good adoption in two ways: first, I directly test for differences in
adoption for the two durable goods that I directly observe, solar and energy efficient appliances
that are supported by PG&E incentive programs. Second, I test for differences in how electricity

consumption responds to temperature across the baseline territory border, and explore heterogene-

ity.

5.1 Solar and energy efficiency programs

To understand how customers respond to prices with durable good investment in the long run, I

estimate the following model, using a simple regression discontinuity approach:

Adoption; = By + B1Hi; + B2d; + B3d;Hi; + 7. + €;

where Adoption; is a binary variable indicating whether a customer ever adopts the durable good
over the course of the sample; Hi; is a binary variable indicating whether customer ¢ lives in the
“high price” baseline territory within a CBG, d; is a measure of distance from the baseline territory
boundary, ¢ denotes CBG, and ¢; denotes an idiosyncratic error term.

Similar to the long run price elasticities estimated in Section 4.1, the identifying variation in
this specification is cross-sectional variation in prices driven by the baseline territory discontinuity.
I show the graphs resulting from this regression specification.

In Figures 17 and 18, I show the results for the two durable goods of interest: residential
solar adoption and utility energy efficiency programs. There is very little evidence of statistically

significant changes in either solar adoption or energy efficiency adoption across the baseline territory
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Table 8: Solar adoption

Percent Solar

High Price -0.013
(0.0086)
Distance to border -0.000011

(0.0000064)
High Price x Distance 0.000018
(0.000012)

Observations 272358

Note: fized effects include CBG and electric heat. Standard errors are clustered by baseline territory. ***,

** *indicate significance at the 1% and 5% and 10% level, respectively.

Table 9: Energy efficiency adoption

Percent EE

High Price -0.0032
(0.0028)
Distance to border -0.0000011
(0.0000015)
High Price x Distance  0.0000014
(0.0000026)

Observations 272358

Note: fized effects include CBG and electric heat. Standard errors are clustered by baseline territory. ***,

** *indicate significance at the 1% and 5% and 10% level, respectively.

border,'®. In fact, the 95% confidence interval in the solar specification rules out a solar adoption
effect of anything greater than 0.2 percentage points. These results effectively rule out solar and

energy efficiency programs as mechanisms driving the observed long-run elasticities.

5.2 Temperature response

While there is little discernible impact of the price discontinuity on the adoption of solar and
enrollment in energy efficiency programs, there are a number of other margins that may be driving
the long-run consumption results. For instance, there may be other durable goods that are less easy

to observe, such as air conditioning!®, where households’ adoption patterns may vary with price.

¥Note that the only observed energy efficiency measures are PG&E programs (e.g. utility-run subsidies for energy
efficiency appliances and energy audits), which are only a portion of energy efficiency measures that households adopt
in practice.

9 Air conditioning is especially relevant in California, where air conditioning adoption rates are among the lowest
in the country at just 72%
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Furthermore, on the intensive margin, consumers in different price regimes may behave differently
in their appliance usage and where they choose to set their thermostats. While my data do not
allow for direct testing of these mechanisms, in this section, I explore how consumers respond to
temperature in an effort to learn more about the mechanisms contributing to the observed long-run
price elasticities.

Specifically, I estimate the relationship between outdoor heat and electricity consumption, fol-
lowing the “degree day method” used by Thorpe (2013) and Fowlie, Greenstone and Wolfram
(2018), among households in different price regimes. I obtain temperature data for all California
weather stations from NOAA. For each household bill in my sample, I determine the closest weather
station with complete temperature data at the time of the billing period to that household, and
merge that temperature data into the billing data. I then use that temperature data to calculate
the average daily heating degree days (HDDs) and average daily cooling degree days (CDDs) in
order to normalize across billing periods of different lengths. To ensure comparability across price
regimes, I restrict my sample to households within a 1-mile bandwidth of the baseline territory
border.

To compare households’ temperature responses, 1 estimate the following regression specifica-
tions. Limiting my sample to summer months (May to October), I estimate how electricity con-
sumption responds to cooling degree days across the electricity pricing border. Similarly, I estimate
how electricity consumption responds to heating degrees days across the electricity pricing border,

restricting my sample to winter months (November to April).

kWh;; = 5y + f(CDD;)Hi; + €;¢ for months May to October (7)

kWh;, = By + f(HDD;;)Hi; + €;; for months November to April (8)
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In both specifications, kWh;; denotes electricity consumption for household ¢ in month ¢, HDD;;
and HDD;; refer to average daily cooling and heating degree days respectively, and Hi; is an
indicator for whether the household is on the “high price” side of the pricing border. f(CDDit)
is a flexible nonparametric function of cooling degree day bins. Specifically, f(CDDy;) is set of
indicator variables determined by the number of cooling degree days for household ¢ in period ¢.
Each of these specifications uses Huber-White robust standard errors.

Results of these regressions are shown in Figures 13 and 14. First, I find that households facing
higher prices have significantly flatter responses to both hotter weather in the summer and colder
weather in the winter. In the summer, the differences in prices lead to consumption differences
that generally rise at higher levels of cooling degree days. In the winter, the difference is especially
prevalent for bills with between 15 and 25 heating degree days per day, before consumption decreases
massively in the low price region.?°

To understand this effect further, I break down these temperature differences by account
longevity. I observe how long a utility account has been open at a particular household, and
leverage this variable to estimate how a household’s temperature response varies over time?!. I
separate observations into three bins: observations where the account is 0-2 years old (41% of ob-
servations), observations where account is 2-5 years old (30%), and observations where the account
is over 5 years old (29%). Note that a single premise moves between bins when they reach each
age threshold. As such, this analysis captures two separate effects: (1) learning and investment
effects, where households change their behavior and/or investment decisions over time; and (2) com-

positional effects, where households that stay in the same premise for different tenures consume

electricity differently.

20This effect is likely driven by differences in electric heat adoption among those households in the coldest summer
regions of California.

21While there are several possible reasons that could cause account number and premise IDs to change (moving
addresses, enrolling in a CCA, changing the account holder), for an account number to stay the same over time, a
necessary condition is that the household is not moving to a new address.
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Figure 13: Temperature response (summer)
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Note: This figure shows the results of regressing monthly electricity use on indicator terms for six different cooling
degree day bins during summer, interacted with an indicator for whether a household is on the high or low price side
of the border. This specification uses Huber-White robust standard errors.

Figures 15 and 16 show the results of this approach. While the winter heating effects are
difficult to pick apart, there is a clear trend in summer cooling. Among low-price households in
summer, observations where the account is older tend to have steeper temperature response curves,
consuming more electricity on hotter days. However, among high-price households, there is little
discernible difference in the cooling degree day response curves across account vintage. Meanwhile,
in winter, the only clear pattern is that on very cold days, accounts with older vintages tend to
consume less electricity.

These trends suggests different consumption patterns over time across pricing regimes. Low-
price consumers make investments over time in goods that consumer a large amount of electricity
during summer, while high-price consumers are much less likely to make similar investments. Mean-

while, in winter, the pricing differences seem to induce similar consumption differences across all
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Figure 14: Temperature response (winter)
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Note: This figure shows the results of regressing monthly electricity use on indicator terms for six different heating
degree day bins during winter, interacted with an indicator for whether a household is on the high or low price side
of the border. This specification uses Huber-White robust standard errors.
account vintages. While I don’t observe appliance adoption directly, these trends seem to be most
consistent with adoption of air conditioning, though it’s also possible that these investments include
other energy-intensive goods, such as home expansions and swimming pools.

These results follow a long literature estimating the temperature response of electricity consump-
tion (Auffhammer and Mansur, 2014; Davis and Gertler, 2015; Kumar et al., 2020; Fazeli, Ruth
and Davidsdottir, 2016; Auffhammer and Aroonruengsawat, 2012). The results here are broadly
consistent with this literature — residential electricity consumption is U-shaped with respect to
temperature, where very low temperatures and very high temperatures both lead to increases in
electricity consumption. I build on this literature by showing compelling evidence that electricity
prices are particularly impactful in how households respond to temperature variation.

Without appliance-level data, the results in this subsection are only suggestive. However, there
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Figure 15: Temperature response by account length (summer)
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Note: This figure shows the results of regressing monthly electricity use on indicator terms for six different cooling
degree day bins during summer, interacted with an indicator for whether a household is on the high or low price
side of the border and an indicator for the account’s longevity. This specification uses Huber-White robust standard
€rTors.

are clear trends in the data that warrant further investigation, and strongly suggest that cross-

sectional differences in prices may lead to substantial differences in adoption of energy-intensive

durable goods.

6 Heterogeneity in price responses

While I have established that consumers are highly responsive to electricity prices in the long run,
it is important to understand what types of consumers are responsive and if heterogeneity exists.
In this section, I explore heterogeneity in price responses, both in electricity consumption and in
some of the mechanisms described in the previous section.

To begin, I estimate in Table 29 heterogeneity in elasticities according to per-capita income
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Figure 16: Temperature response by account length (winter)

1000
- -
z
=< 300
[ak}
;]
=
=
£ 600
o
@
L
=
£ 4004
=
[=]
=
200 -

T T T T

T T T
0 5 10 15 20 25 30 35 40
Average Daily Heating Degree Days

- (-2 years; High price - 2-5years; High price
+ 5+ vyears; High price -+ 0-2 years; Low price
-4- 2.5 years; Low price + 5+ years, Low price

Note: This figure shows the results of regressing monthly electricity use on indicator terms for six different heating
degree day bins during winter, interacted with an indicator for whether a household is on the high or low price side of
the border and an indicator for the account’s longevity. This specification uses Huber-White robust standard errors.
levels at the CBG level. To estimate this specification, I use an indicator variable to denote if a
household is in a CBG above the median per-capita income level in my sample. I then run separate
regressions for CARE and non-CARE customers, comparing price responsiveness across the two
groups. For robustness, I include a specification using CBG-level income in Appendix A.5.

While in the short-run specification, higher-income consumers were more responsive, in the
long run, lower-income consumers consumers are significantly more responsive. This is a somewhat
surprising result — higher income consumers have more access to capital with which they can invest
in durable goods that impact their consumption. High levels of price responsiveness among low-
income households in the long-run indicates that there may be less capital intensive margins of
response that low-income households are able to leverage. In Appendix A.6 I show that this result

holds using CBG-level per-capita income as a proxy for CARE.
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Table 10: Elasticity estimation by income

CARE non-CARE

Log Average Price -8.43%** -2.35%%*
(2.27) (0.90)
Distance to border  -0.000023  -0.00015***
(0.000082)  (0.000030)

Hi x Distance 0.000053 0.00029***

(0.000073) (0.000058)
Observations 1400825 5914069
F 64.7 131.6

Note: This table shows two separate instrumental
variable regressions by income of log consumption
on price, instrumenting for price with distance to
the baseline territory boundary. Income is proxied
by whether a customer has ever enrolled in CARE.
Fized effects include CBG-by-month and a binary
variable indicating electric heat. Standard errors
are clustered by baseline territory and by month of
sample. *** ** *indicate significance at the 1%
and 5% and 10% level, respectively.
In addition, while not the focus of this paper, in A.5 I show how consumption responds to price
across several other demographic variables of interest at the CBG level, including homeownership,

age of housing stock, race, and income inequality.

7 Conclusions

In this paper, I leverage a novel source of cross-sectional price variation estimate how residential
electricity consumers respond to electricity prices in the long run. To anchor these results in the
literature, I use standard methods to estimate elasticities in the short run. I find that consumers are
much more price-responsive in the long run than the short run. The magnitude of this estimated
long-run elasticity is considerably larger than the existing literature, potentially due to methodolog-
ical differences that allow me to capture additional margins of response. Typical quasi-experimental
methods rely on tracking the same consumers before and after a price change, missing investment
choices made at the time a home is built or before new tenants move in. In this paper, estimation

of long-run elasticities relies on cross-sectional price variation, allowing me to capture additional
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margins of response in the comparison of similar households facing different price regimes.

The difference in magnitudes between short- and long-run elasticities suggest that the adoption
of durable goods plays an important role in household electricity consumption. I directly observe
adoption behaviors of two durable goods that might be used in response to price changes — rooftop
solar and utility energy efficiency programs. Consumers are largely unresponsive to prices in their
adoption of solar or energy efficiency programs. To further explore the mechanisms driving the
high magnitude of long-run price responsiveness that I observe, I estimate how customers across
different price regimes respond to temperature. I find that households in the high price region are
significantly less responsive to high summer temperatures and low winter temperatures than those
in the low price region. Furthermore, the gap between high- and low-price customers becomes more
pronounced the longer customers have lived in their current households. While I do not directly
observe adoption of other durable goods, these results are consistent with electricity prices having
a substantial impact on investment decisions on space cooling.

In addition, I explore the impact that income has on price responsiveness. I find that low-income
consumers are less responsive to price changes in the short run, but that low-income consumers
are more responsive than higher-income consumers in the long run. These findings highlight that
higher income consumers may have more margins to adjust their usage in the short- and medium-
run (e.g. more appliances that they are able to turn off in response to price changes), but that
prices may play a larger role for low-income household in making investment choices surrounding
energy-intensive goods.

The results presented here have important policy implications. Not only are long-run elasticities
vital for forecasting electricity demand for a number of applications and stakeholders, but these
results have additional importance for climate change and price-based policies. In contrast to

past research, I find that electricity consumption is highly responsive to prices in the long run,
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demonstrating that electricity prices can provide strong incentives for consumers to undertake
emissions-saving behaviors. This highlights the role that price-based policies, such as carbon taxes,
can play in decarbonization efforts. When consumers respond to prices by adopting consumption-
reducing durable goods and thereby reducing their emissions, price-based policies are an appealing
option to internalize emissions externalities. It also, however, emphasizes the important of getting
prices right. Electricity prices above the social marginal cost may drive too much adoption in
technologies like air conditioning and too little adoption in technologies like electric heat or electric

vehicles, potentially leading to losses in social welfare.
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A Appendix

A.1 RD graphs and tables

In the main body text, I show a mix of graphs and tables for each regression discontinuity spec-
ification. In this section of the Appendix, tables are shown for specifications where graphs were
shown in the main body, and vice versa.

A.2 Robustness checks

A.2.1 Alternative specification with varying bandwidths

To ensure that these results are not driven by specific choices over bandwidth sizes, I test alternative
bandwidths of double and half of the size in the preferred specification. Results are shown below for
the first stage and reduced form specifications at bandwidths of 0.5 miles and 2 miles respectively.
For the IV elasticity estimation, results at 0.5 miles and 2 miles are showed in the main body text
in Table 5
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Table 11: Cooling Degree Days RD

CDD
Hi Price -0.052
(0.15)
Distance to border  -0.00016
(0.000093)
Hi x Distance 0.00011
(0.000097)
Observations 7419339

Note: Fized effects include CBG and
electric heat.  Standard errors are
clustered by baseline territory. ***
** ¥ indicate significance at the 1%

and 5% and 10% level, respectively.

Table 12: Heating Degree Days RD

HDD

Hi Price 0.13
(0.21)
Distance to border  0.00041
(0.00023)
Hi x Distance -0.00033
(0.00027)

Observations 7419339

Note: Fized effects include CBG and
electric heat. Standard errors are
clustered by baseline territory. ***
** *indicate significance at the 1%

and 5% and 10% level, respectively.
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Solar Adoption Rate

Energy Efficiency Adoption Rate

Figure 17: Solar adoption
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Figure 18: Energy efficiency adoption
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Usage (kK'Wh)

Figure 19: Consumption RD by Income
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Monthly Baseline (kWh)

Figure 20: First stage RD - baseline (Bandwidth = 0.5 miles)
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Figure 21: First stage RD - average variable price (Bandwidth = 0.5 miles)

014
[ ]
L]
005 4
= ——— ®
= | T =
s . « T,
8 o0 . .
o .
2 Y e e
@
§ T e—— y
< -005- T —
L
L
-01-4
.
-9 0 9
Distance to border (miles)
Figure 22: Reduced form RD (Bandwidth = 0.5 miles)
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Figure 23: First stage RD - baseline (Bandwidth = 2 miles)
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Figure 24: First stage RD - average variable price (Bandwidth = 2 miles)
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Usage (KWh)

Figure 25: Reduced form RD (Bandwidth = 2 miles)
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A.2.2 Alternative parametric assumptions

Here, I estimate regression discontinuity specifications under different parametric assumptions. In
particular, while the preferred specification uses local linear regressions on either side of the baseline
discontinuity, I show that alternative specifications that assume flat functional forms on either side
of the discontinuity do not meaningfully change the magnitude or direction of my main results. I
show alternative specifications for the first stage and reduced form regression discontinuities.

Figure 26: First stage RD - baseline (Flat parametric assumptions)
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Figure 27:

First stage RD - average variable price (Flat parametric assumptions)
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Figure 28: Reduced form RD (Flat parametric assumptions)
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A.2.3 Alternative price definitions

Here, I explore how long-run elasticity estimates vary under different definitions of price. There
are two concerns that I check here: first, the endogeneity of prices later in the sample given that
consumption may change as a result of durable goods investment; and second, first stage estimates
that are biased downward due to attenuation in the differences in the price schedule over time. I
use alternative price definitions to test both concerns.
Potential endogeneity of prices

In the main body specifications, one might be concerned about endogeneity, where the adoption
of an energy-saving technology might cause a dramatic change in usage and push a household into
a lower pricing tier. I test this concern with two alternative definitions of price: first, I calculate
what monthly average variable price would have been under monthly consumption levels from 2008
(the first year of data in my sample) and under the present-period price schedule??. Second, to
confirm that prices aren’t dependent on that single year of data, I repeat the same exercise with
2009 consumption levels. As shown in Tables 13 and 16, I find similar estimates, demonstrating
that this potential endogeneity is not driving the observed results.

Table 13: Price under 2008 consumption

1 mile
Log Average Price under 2008 Consumption -1.99%**
(0.48)
Distance to border -0.00012%**
(0.000035)
Hi x Distance 0.00025***
(0.000048)
Observations 7270569
F 68.8

Note: Fized effects include CBG-by-month and a binary vari-
able indicating electric heat. Standard errors are clustered by
CBG-baseline territory and by month of sample. *** ** *
indicate significance at the 1% and 5% and 10% level, respec-
tively.

228pecifically, I match according to the month. For instance, average variable price in February 2011 would be
determined from consumption levels in February 2008 and the price schedule in February 2011.
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Table 14: Price under 2009 consumption

1 mile
Log Average Price under 2009 Consumption -2.01%**
(0.47)
Distance to border -0.00012%**
(0.000035)
Hi x Distance 0.00025***
(0.000048)
Observations 7276524
F 61.8

Note: Fized effects include CBG-by-month and a binary vari-
able indicating electric heat. Standard errors are clustered by
CBG-baseline territory and by month of sample. *** ** *
indicate significance at the 1% and 5% and 10% level, respec-
tively.

Potential bias due to flattening of the rate schedule

In Figure 4, it’s clear that there is a flattening in rates over time. In fact, PG&E went from
five tiers to two over the course of the sample. This flattening could attenuate differences in prices
across the border, since cross-sectional price differences in this setting is driven by the jumps in the
price schedule. If households respond to large differences in price early in the sample by investing
in energy-saving durable goods, but those price differences attenuate over time, then the first stage
estimates in the IV elasticity specification (Equations 5 and 6) could be biased downwards, thereby
inflating the estimated long-run elasticity. To test for this, I re-run my first stage and IV estimation
under an alternative definition of price: I define price according to the 2008 price schedule??. Hence,
for a 2020 bill, I calculate what their average variable prices would have been at their 2020 level of
consumption and using their 2020 baseline, but under the 2008 price schedule.

Under this alternative price definition, if the flattening of the price schedule is biasing the
observed first stage results and elasticity, I would expect to see first stage estimates that are
substantially higher than in the main specification. This would result in an elasticity estimate that
is substantially lower. However, as shown in Tables 15 and 16, I find very few differences between
these specifications and those in the main body text in either the first stage or IV specification.
This suggests that the flattening of rates is not causing meaningful bias in the specifications in the
main text.

2For customers on the standard rate, the rate schedule is fixed to 2008. For customers later in the sample on
time-of-use rates hat were introduced after 2008, I fix those price schedules to their levels at the time that the rate
was introduced.

99



Table 15: First stage under 2008 price schedule

1 mile

hi 0.015%**
(0.0014)
Distance to border  -0.0000027**
(0.0000010)

Hi x Distance 0.0000077***
(0.0000017)
Observations 7051197

Note: Fized effects include CBG-
by-month and electric heat-by-season.
Standard errors are clustered by CBG-
baseline territory and by month of
sample. **¥*  ** ¥ indicate signifi-
cance at the 1% and 5% and 10% level,
respectively.

Table 16: IV under 2008 price schedule

1 mile
Log Average Price under 2008 Price Schedule -2.18%%*
(0.61)
Distance to border -0.00014***
(0.000033)
Hi x Distance 0.00029***
(0.000057)
Observations 7014818
F 92.7

Note: Fized effects include CBG-by-month and electric heat-by-
season. Standard errors are clustered by CBG-baseline territory
and by month of sample. *** ** *indicate significance at the
1% and 5% and 10% level, respectively.
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A.3 Definition of baseline territories

PaCIfl? Gas and . Revised Cal. P.U.C. Sheet No.  34601-E
" & Electﬂc campany Cancelling Revised Cal. P.U.C. Sheet No.  12081-E
U 39 San Francisco, California
ELECTRIC PRELIMINARY STATEMENT PART A Sheet 1

DESCRIPTION OF SERVICE AREA & GENERAL REQUIREMENTS

A. DESCRIPTION OF SERVICE AREA AND GENERAL REQUIREMENTS
1. TERRITORY SERVED BY PG&E

a. The Pacific Gas and Electric Company (PG&E) supplies electric service in all or portions of

47 counties in the northern and central part of the State of California. A map of counties and (N)
associated zip codes that PG&E provides service to can be found on PG&E’s website at |
http://www.pge.com/tariffs/ under electric maps. (N)
b.  The baseline territories used in the residential rate schedules are shown below for each
county. Baseline territories correspond with elevation lines, unless specific boundaries were (M
drawn to avoid dividing communities or neighborhoods as described in Section A.1.c. ©)
Locations, Elevation Range Baseline
County or Description at c. Below Territory Code
ALAMEDA c.(1)(S) S
c.(1)(T) T
All Other X
ALPINE* All z
AMADOR Under 1,500' S
1,500'-3,000' P
3,001'-6,000' Y
Over 6,000 Z
BUTTE Under 1,500' S
1,500'-3,000' P
3,001'-4,800' Y
Over 4,800 z
CALAVERAS Under 1,500' S
1,500'-3,000' P
3,001'-6,000' Y
Over 6,000 zZ
COLUSA All S
CONTRA COSTA c.(2)(S) S
c.(2)(M) T
All Other X
EL DORADO* Under 1,500' S
1,500'-3,000' P
3,001'-6,000' Y
Over 6,000' z
FRESNO* Under 3,500' R
3,501'-6,500' Y
Over 6,500 zZ
GLENN Under 3,000' S
Over 3,000 Y
HUMBOLDT c.(3)(V) Y
All Other Y
KERN* Under 1,000' W
Over 1,000 R
KINGS* All W
LAKE* All P
LASSEN* Under 4,800' Y
Over 4,800 Z
*Pertains to PG&E electric service area only.
(Continued)
Advice 4535-E-A Issued by Date Filed December 15, 2014
Decision Steven Malnight Effective December 17, 2014
Senior Vice President Resolution
Regulatory Affairs
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Pac’ﬂc Gas a”d Revised Cal. P.U.C. Sheet No.  44041-E

. & Electric company" Cancelling Revised Cal. P.U.C. Sheet No. 12082-E
U 39 San Francisco, California
ELECTRIC PRELIMINARY STATEMENT PART A Sheet 2

DESCRIPTION OF SERVICE AREA & GENERAL REQUIREMENTS

A. DESCRIPTION OF SERVICE AREA AND GENERAL REQUIREMENTS (Cont'd.)

1. TERRITORY SERVED BY PG&E (Cont'd.)

Locations, Elevation Range Baseline
County or Description at c. Below Territory Code

MADERA* Under 4,000’ R

4,001'-6,500' Y

Over 6,500 z

MARIN c.(4)(T) T

All Other X

MARIPOSA Under 3,500 R

3,501'-6,000' Y

Over 6,000 z

MENDOCINO c.(5)(T) T

All Other X

MERCED All R

MONTEREY c.(6)(T) T

All Other X

NAPA All X

NEVADA Under 1,500 S

1,500'-3,000 P

3,001'-5,500' Y

Over 5,500 4

PLACER* Under 1,500' S

1,500'-3,000 P

3,001'-5,500' Y

Over 5,500 z

PLUMAS* Under 4,800' Y

Over 4,800' z

SACRAMENTO All S

SAN BENITO c.(7)(T) T

All Other X

SAN FRANCISCO All T

SAN JOAQUIN All S

SAN LUIS OBISPO c.(8)(R) R

c.(8)(T) T

All Other X

SAN MATEO c.(9)(T) T

c.(9)(Q) Q

All Other X

SANTA BARBARA* c.(10)(R) R

c.(10)(T) T

All Other X

SANTA CLARA c.(11)(Q) Q

All Other X

SANTA CRUZ Under 1,500' T
1,500' & Over Q** m

* Pertains to PG&E electric service area only.

** Territory Q also includes customers in the following locations (zip codes) within Santa Cruz County at (N)
elevations less than 1,500 feet: Ben Lomond (95005), Boulder Creek (95006), Brookdale (95007), Felton |
(95018), Mount Hermon (95041) and unincorporated areas (95033). (N)

(Continued)
Advice 5522-E Issued by Submitted April 11, 2019
Decision 18-08-013 Robert S. Kenney Effective April 25, 2019
Vice President, Regulatory Affairs Resolution
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PaCIflc Gas and Revised Cal. P.U.C. Sheet No.  12083-E

" & Electfic campany’ Cancelling Revised Cal. P.U.C. Sheet No.  9320-E
U 39 San Francisco, California
ELECTRIC PRELIMINARY STATEMENT PART A Sheet 3

DESCRIPTION OF SERVICE AREA & GENERAL REQUIREMENTS

A. DESCRIPTION OF SERVICE AREA AND GENERAL REQUIREMENTS (Cont'd.) L)
1. TERRITORY SERVED BY PG&E (Contd.) )
Locations, Elevation Range Baseline L)
County or Description at c. Below Territory Code |
|
SHASTA Under 2,000' R |
2,001'-4,500' Y |
Over 4,500 z |
SIERRA Under 5,500' Y |
Over 5,500 V4 |
SISKIYOU* Under 4,500 Y |
Over 4,500’ V4 |
SOLANO c.(12)(X) X |
All Other S |
SONOMA c.(13)(T) T |
All Other X |
STANISLAUS All S |
SUTTER All S |
TEHAMA Under 2,500' R |
2,501'-4,800' Y |
Over 4,800 V4 |
TRINITY Under 2,000' X |
2,001'-4,500' Y |
Over 4,500 z |
TULARE* Under 1,000 w |
1,001'-3,500' R |
3,501'-6,500" Y |
Over 6,500 z |
TUOLUMNE* Under 1,500' S |
1,500'-3,500' P |
3,501'-6,000' Y |
Over 6,000 z |
YOLO All S |
YUBA Under 1,500' S |
1,500' & Over P (L)
* Pertains to PG&E electric service area only. (D)
(Continued)
Advice 1409-E Issued by Date Filed September 1, 1992
Decision Robert S. Kenney Effective October 10, 1992
Vice President, Regulatory Affairs Resolution
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A.4 Marginal price regressions

This section of the Appendix shows marginal price elasticity estimates (in contrast with the av-
erage variable price elasticity estimates shown in the main body of this paper). While short-run

marginal price elasticity estimates are shown in the main body, this Appendix section shows long-
run marginal price elasticity estimates.

Table 17: Long-run marginal price first stage

1 mile 1/2 mile 2 miles
hi 0.032%** 0.029%** 0.035***
(0.0024) (0.0021) (0.0028)

Distance to border -0.0000058** -0.0000030  -0.00000086

(0.0000025)  (0.0000022)  (0.0000014)
Hi x Distance  0.000017*%*  0.000021***  0.00000061

(0.0000040)  (0.0000036)  (0.0000026)
Observations 7463542 5694337 9107026

Note: Fized effects include CBG-by-month. Standard errors are
clustered by CBG-baseline territory and by month of sample. ***,

** ¥ indicate significance at the 1% and 5% and 10% level, re-
spectively.

Table 18: Long-run IV estimate of marginal price elasticity

1 mile 1/2 mile 2 miles
Log Marginal Price ~ -1.50%** -1.59%%* -1.30%*
(0.44) (0.44) (0.43)

Distance to border -0.00014*** -0.00015***  -0.000036

(0.000039)  (0.000022)  (0.000024)
Hi x Distance 0.00029***  0.00039***  (0.000014

(0.000060)  (0.000088)  (0.000038)

Observations 7327914 5599033 8932262
F 108.3 107.3 115.1

Note: Fized effects include CBG-by-month. Standard errors are
clustered by CBG-baseline territory and by month of sample.

*FEKE X indicate significance at the 1% and 5% and 10% level,
respectively.

A.5 Heterogeneity by CBG-level characteristics

This section of the Appendix shows heterogeneity estimates. Across all CBG-level demographic
traits, I estimate short- and long-run elasticities for two separate groups — those above and below
the median CBG. Below, I show estimates for per-capita income, home ownership, age of housing
stock, race, and within-CBG income inequality (as measured by a Gini coefficient).
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Usage (kWh)
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Figure 29: Long-run estimates by CBG-level per-capita income
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Figure 30: Long-run estimates by CBG-level home ownership rate
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Figure 31: Long-run estimates by CBG-level age of housing stock
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Figure 32: Long-run estimates by CBG-level race
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Figure 33: Long-run estimates by CBG-level Gini coefficient
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A.6 Supplementary heterogeneity results

Table 19: Elasticity estimation by income

Low income  High income

Log Average Price -3.34%%* -1.02%*
(0.59) (0.39)
Distance to border -0.000047 -0.00019***
(0.000046)  (0.000015)

Hi x Distance 0.00019%*** 0.00031***

(0.000055) (0.000048)
Observations 4080008 3247906
F 34.7 59.6

Note: This table shows two separate instrumental
variable regressions by income of log consumption on
price, instrumenting for price with distance to the
baseline territory boundary. Income is proxied with
CBG-level per-capita income. Fized effects include
CBG-by-month and a binary variable indicating elec-
tric heat. Standard errors are clustered by baseline
territory and by month of sample. *** ** ¥ indi-
cate significance at the 1% and 5% and 10% level,
respectively.

A.7 Medium-run responses to prices

Here, I build on the short-run specifications to estimate elasticities in the medium run. In my
primary medium-run specification, I refer to the medium run as a time horizon of four years.
Currently, there is little existing work in the literature on medium-run elasticities, especially in
a quasi-experimental setting. Deryugina, MacKay and Reif (2019) find that customers are more
responsive in the medium-run than in the short-run. This is is consistent with a number of studies
using aggregated state-level data that similarly find that consumption responses to price build over
time. In this section, I estimate how four-year consumption differences can be attributed to price
changes that occur within that four-year period.

There are several different channels through which customers might respond to prices. After ob-
serving a change in price, consumers might respond in the short run by reducing their consumption
of certain appliances — for example, a consumer might turn off their lights more frequently. If this
short-run behavior becomes a habit for the consumer, we might continue to see this response carry
through to the medium-run. However, customers may also respond by changing their investment of
durable goods, such as energy efficient appliances, electric heat, or solar panels. We should expect
that durable good adoption will impact consumption in both the short-run and the medium-run.
These two channels — habit formation of conservation behaviors and durable good adoption — are
the primary channels through which past prices can impact current consumption.

In order to estimate medium-run elasticities in this setting, I extend Ito’s approach using time
lags. Now, the dependent variable is the difference in consumption between the contemporaneous
period and four years prior for a given household. I include the full price path as right-hand
side variables, with a series of annual price differences within a four-year window as the primary
covariates of interest. I used two-stage least squares, with four endogenous variables and four
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instruments:

First stage: Aln(MP; ;) = In(MP;;_12) — In(M P;;_15(41)) for each 1 € 0,1,2,3 (9)
3
Second stage: Aln(cii-as) = > B AIn(MP1y) + fi(ciz—e0) + Vet + it (10)
=0

where Aln(c;tr—ag) = In(cir) — In(cir—ag) and fi(cii—eo) is a set of dummy variables determined
by the percentile of consumption in period ¢ — 60.

As in the short-run specifications, each price difference is endogenous to consumption due to
the nature of increasing block pricing. Again, I use simulated instruments to solve this issue. For
each endogenous price covariate, an associated simulated instrument is included.

In the short-run specifications, consumption levels from period ¢ — 6 were used in the instru-
ment. Here, however, consumption in period ¢ — 6 is endogenous to the price differences included
as covariates. Instead, in the medium-run specifications, consumption levels from period ¢t — 60
(one year prior to the first included price period) are used. This ensures that the instrument iso-
lates exogenous changes in the price schedule and eliminates all endogenous price variation driven
by consumption changes. Note that this specification includes only utility accounts continuously
present in the sample over the course of five years (months ranging from ¢ to t —60). Any customers
who move over the course of this period are dropped from the sample. Hence, the external validity
of these medium-run estimates is limited to consumers who are fairly stable and live in a single
location for an extended period of time.

It’s important to note that the empirical setting in this paper is quite different than in past
work, including Deryugina, MacKay and Reif (2019). Deryugina et al. leveraged on a one-time
change in prices and followed customers’ demand levels over time. Here, price schedule fluctua-
tions frequently occur and impact customers differently depending on their baseline territories and
underlying consumption levels. As such, the interpretation of estimates is different in this setting:
while elasticity estimates in Deryugina et al. should be interpreted as a consumption response to
a single permanent change in price, the estimates in this paper tell us how to attribute changes
in consumption to changes in price over the relevant period. When consumption changes over a
four year period, how much of that change should be attributed to price changes in each year?
Examination of each coefficient in the regression demonstrates how elasticities evolve over time.

Results of these medium-run regressions over a four-year period are shown in Table 20. These
results demonstrate that responses to prices last over the course of several years, indicating that
habits and /or durable good adoption play a vital role. When including past price periods, customers
are similarly responsive to short-run fluctuations in price, with a price elasticity of -0.18. This
elasticity stays close to -0.2 through two years, before fading towards -0.1 by the fourth year.

In the Table 21, T also estimate medium-run elasticities over an eight-year period. Note that
this sample is even more highly selected to include only customers who do not move over a nine year
period within my twelve year sample. Again, the external validity of these estimates is restricted
only to consumers who live in a single location for an extended period of time — in this case, nine
years.

These results are consistent with a combination of a short-run transient behavioral responses
and significant durable good investment. After price fluctuations, consumers respond by changing
their consumption. However, customers may also respond to price changes by investing in durable
goods, which last for the duration of the sample. As a result, they still demonstrate responsiveness
to price changes that occurred in more distant periods — in this case, three to four years prior to
the contemporaneous period.
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Table 20: Dynamic medium-run average variable price elasticities

kWh
(1)
Aln(AP_it)  -0.18%%*

(0.044)

Aln(AP_,t, 1) -0.19%**
(0.042)

Aln(AP_,t,2) -0.13%**
(0.030)

Aln(AP_,t,3) -0.12%%*
(0.034)

Observations 2606624

F 194.9

Note: Fized effects include CBG-by-month and consumption deciles from the period twelve months prior to
the initial price period. Standard errors are clustered by CBG-baseline territory and by month of sample.
*AE KX Findicate significance at the 1% and 5% and 10% level, respectively.

In addition, I estimate heterogeneity in medium-run elasticities across income, again using
CARE enrollment as a proxy for income, as shown in Table 22. Consistent with the short-run
results, non-CARE (higher-income) consumers are more responsive to changes in their electric-
ity prices in all periods.Once again, this suggests that investment in durable goods may play a
substantial role in how consumers respond to energy prices.

Furthermore, these results suggest that consumers’ responses to price changes may accumulate
over time as consumers continue to respond to prices from four years prior. However, the type
of dynamic two-way fixed effects panel regressions shown to this point only allow for evaluation
up to the length of the observed sample, and may miss important mechanisms, such as durable
goods investments in new homes. These are better captured by long-run elasticities, as described
in Section 4.1.
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Table 21: Dynamic medium-run price elasticities - all average variable prices (8 year stable sample)

12
(1)
Aln(AP_it)  -0.072

(0.059)
Aln(AP_i t,1) -0.14**
(0.058)

Aln(AP_i,t,2) -0.030
(0.053)

Aln(AP_i,t,3)  0.048
(0.056)

Aln(AP_i,t,4) 0.027
(0.068)
Aln(AP_i,t,5) -0.0088
(0.056)

Aln(AP_i,t,6) -0.058
(0.061)
Aln(AP_i,t,7) -0.21**
(0.088)
Observations 955837

F 62.6

Note:  Fized effects include CBG-by-
month and consumption deciles from the
period twelve months prior to the initial
price period. Standard errors are clustered
by CBG-baseline territory and by month
of sample. *** ** *indicate significance
at the 1% and 5% and 10% level, respec-
tively.

Table 22: Dynamic medium-run average variable price elasticities by CARE

CARE nonCARE
(1) (2)
Aln(AP_it) -0.11%* -0 21%**
(0.053) (0.050)
Aln(AP,t,1) -0.12%F  -0.23%+*
(0.052) (0.049)
Aln(AP.i,t,2) 0.0038  -0.18%**
(0.043) (0.034)
Aln(AP,t,3) -0.056 -0.13%**
(0.052) (0.037)

Observations 413612 2192841
F 166.4 200.7

Note: Fized effects include CBG-by-month and consumption deciles from the period halfway between the
present period and the lagged consumption period. Standard errors are clustered by CBG-baseline territory
and by month of sample. ***, ** * indicate significance at the 1% and 5% and 10% level, respectively.
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