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Abstract

How do agents respond to policy when investments have high upfront costs and lasting
payoffs? We estimate farmers’ short- and long-run responses to changes in groundwater
pumping costs in California—where perennial crops with these features are prevalent,
and where groundwater pumps consume 6% of the state’s electricity. We use both fixed
effects and dynamic discrete choice models that leverage quasi-experimental variation
in agricultural electricity tariffs. In the short run, farmers’ groundwater (electricity)
demand elasticity is −0.76 (−0.72), and they do not change crops. In contrast, the long-
run groundwater (electricity) elasticity is −0.36 (−0.37), driven in part by meaningful
reductions in water-intensive perennial cropping. Meeting California’s sustainability
targets would require reallocation of 9% of acres, including a 50% increase in fallowing.
This would also reduce electricity consumption for this end-use by nearly 20%.
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1 Introduction

Water is a precious natural resource, which economists have studied for over a century

(Coman (1911)). Agriculture contributes 90% of global freshwater consumption (Carleton,

Crews, and Nath (2024)); irrigation enables both high-value crop production and farmer

adaptation to climate shocks (Schlenker, Hanemann, and Fisher (2005); Hultgren et al. (2022)).

Groundwater is a major source of irrigation, supplying over 35% of irrigated acres world-

wide (Carleton, Crews, and Nath (2023)). As a textbook common-pool resource (Ostrom

(1990); Provencher and Burt (1993)), groundwater is being extracted more quickly than it

is naturally recharged in key farming regions—leading to rapid aquifer depletion (Jasechko

et al. (2024)), which will necessitate long-run groundwater management.

The efficacy of policies to curb aquifer depletion depends on how farmers respond in

both the short and long run. These responses could differ substantially for different time

horizons if farmer choices include dynamic considerations. Perennial crops are inherently

dynamic, requiring large upfront investment costs and yielding multiple years of production.

As a result, a farmer may respond to a short-run groundwater cost shock (e.g., a drought that

raises pumping costs) by applying less water to her perennial crop for a single growing season.

However, faced with a long-run cost shock (e.g., a permanent groundwater tax), she may

instead choose to switch to a less-water-intensive annual crop. Such long-run adjustments

will be difficult to detect in a short-run analysis alone. These features are not unique to

agriculture: a wide variety of settings are characterized by agents making dynamic investment

decisions. Understanding the effectiveness and broader consequences of policy therefore

requires long-run estimates.

This paper generates novel empirical estimates of farmers’ short- and long-run responses

to changes in groundwater pumping costs in California, one of the world’s most valuable agri-

cultural regions. California farmers produce 18% of total U.S. crop value, and rely heavily

on groundwater for irrigation (Bruno (2017); Liu et al. (2022)). Yet despite rapidly declining

aquifer levels and a series of severe droughts, most California farmers currently face no mean-

ingful restrictions on groundwater extraction. The state is in the process of implementing the

Sustainable Groundwater Management Act (SGMA)—its first comprehensive groundwater
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regulations, which are designed to achieve groundwater sustainability by 2042.1 The effec-

tiveness and economic consequences of any such permanent groundwater regulation hinge on

both the extent of farmers’ response and their means of adapting to higher irrigation costs

over the long run.

We ask two main research questions. First, what is the elasticity of demand for agricul-

tural groundwater over the short and long run? Second, to what extent do farmers switch

crops in response to higher groundwater costs? Despite the importance of these questions,

answers have proven elusive because (i) groundwater extraction is rarely priced or measured,

(ii) there is a dearth of plausibly exogenous variation in groundwater costs, and (iii) modeling

how forward-looking farmers respond to cost shocks is a complex dynamic problem.

We overcome these challenges using a new measurement strategy, quasi-experimental

variation in groundwater costs, and a dynamic discrete choice model. First, we leverage the

fact that electricity is the main variable input in groundwater pumping. We assemble data on

electricity prices and quantities for all agricultural consumers served by Pacific Gas & Electric

(PGE). Combining these data with newly constructed pump-specific production functions

enables us to recover groundwater costs and quantities for farmers across the majority of

California’s Central Valley. Second, we use exogenous variation in PGE’s regulated electricity

tariffs, which change farmers’ groundwater costs differentially across space and over time.

Third, to understand farmers’ long-run responses to changing groundwater costs, we use

this exogenous variation in electricity prices to identify a dynamic discrete choice model

of farmers’ cropping decisions. We use the conditional choice probability (CCP) approach

(Scott (2013); Kalouptsidi, Scott, and Souza-Rodrigues (2021)) in order to estimate model

parameters without making parametric assumptions about farmer expectations.

We begin by estimating the short-run effects of groundwater cost shocks on groundwa-

ter extraction using a reduced-form approach and exogenous variation in electricity tariffs.

We recover an annual groundwater demand elasticity of −0.762, revealing that farmers in-

deed make behavioral changes in response to groundwater cost shocks.2 Next, we estimate

1. While SGMA grants local agencies flexibility over the instruments they use to achieve these reductions,
more than half are proposing price-based approaches (Bruno, Hagerty, and Wardle (2022)).

2. Mieno and Brozovic (2017) point out that prior studies using energy data to estimate groundwater
demand often recover biased estimates, due to significant measurement error or a lack of identifying variation.
Our detailed microdata and quasi-experimental identification help us overcome these challenges.
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how short-run groundwater cost shocks impact land use across four major crop categories

in California: annuals, fruit/nut perennials, hay perennials, and non-crop (or fallowing).3

Restricting our sample to farms growing the same crop category in consecutive years reduces

our annual elasticity estimate only slightly to −0.679. Moreover, when we use crop category

shares as the outcome variable for analogous reduced-form regressions, we find precise null

results on land use for all four categories. These results suggest that farmers do not switch

crops in response to short-run variation in pumping costs.

Importantly, this short-run model mischaracterizes the decisions of farmers in Califor-

nia, where 62% of total crop revenues come from perennials such as almonds, grapes, and

alfalfa. Since these crops have high upfront planting costs and produce multiple years of

harvests, accurately characterizing crop choices in this setting requires modeling state de-

pendence and forward-looking farmers. We embed these features into a dynamic discrete

choice model of crop choice, in which farmers are able to reduce water use both by switch-

ing crops and by using less water conditional on crop choice (Boser et al. (2024)).4 As

in our reduced-from approach, we identify model parameters using exogenous variation in

groundwater costs driven by changes in regulated electricity prices.

Using these parameter estimates, we compute long-run semi-elasticities of land use by

solving for farmers’ value functions via a fixed-point algorithm and simulating a long-run

steady state under different groundwater costs. We find that farmers do switch crops in

response to permanent groundwater cost changes, with semi-elasticities of 0.071, −0.138,

−0.006, and 0.072 for annuals, fruit/nut perennials, hay perennials, and non-crop, respec-

tively. In contrast with our short-run estimates, appropriately accounting for dynamics

shows that permanently higher groundwater costs cause farmers to shift towards less water-

intensive crops in the long run.

3. We restrict our analysis to these four categories for two reasons. First, our land use data come from
the USDA’s Cropland Data Layer. These satellite-derived data can clearly distinguish between categories
(e.g., orchard vs. row crops), but are less accurate within categories (e.g. almond vs. orange trees). Second,
aggregating crops into categories is necessary for the tractability of our structural model. Our short-run
elasticity estimates still capture the effect of within-category crop switches.

4. To incorporate the latter channel, we use long-difference models to calibrate the proportion of the
short-run elasticity which is likely to persist over the long run. Our central estimates assume that farmers
anticipate making intensive-margin adjustments when choosing crops. If we eliminate these intensive-margin
adjustments, we recover larger crop-switching semi-elasticities.

3



Combining these land-use changes in land use with farmers’ intensive-margin adjust-

ments, we estimate long-run demand elasticities of −0.359 for groundwater and −0.369 for

electricity. Incorporating forward-looking behavior and state dependence is crucial: if we shut

down these features, the analogous static model produces elasticity estimates over an order

of magnitude smaller. These long-run elasticity estimates are meaningfully smaller than our

short-run estimates—suggesting that over a longer time horizon, the mechanism of farmer

responses shifts towards crop switching, and away from unsustainable short-run strategies.

Our results further demonstrate how short- and long-run responses to environmental pol-

icy may diverge substantially, as different mechanisms—yielding different elasticities—are

optimal over different time horizons.

Finally, we simulate farmers’ long-run responses to counterfactual groundwater taxes,

which internalize open-access externalities and may be used to achieve sustainable levels

of groundwater extraction.5 According to the state’s Groundwater Sustainability Plans

(GSPs), achieving “sustainable yield” under SGMA in currently overdrafted regions will

require groundwater pumping reductions of 19% on average. Our simulations suggest that a

60% tax on groundwater pumping could achieve this sustainability target. Such a stringent

tax would cause nearly 9% of cropland to switch category, driven by a 24% drop in fruit/nut

perennials and a 50% rise in fallowing (compared to a no-tax scenario). These results imply

that SGMA’s sustainability goals are achievable, but will likely induce dramatic changes to

California’s 20 million acres of cropland.

This paper makes four contributions. First, and most importantly, we use both panel

fixed effects and dynamic discrete choice methods to generate short- and long-run de-

mand elasticity estimates for agricultural groundwater. We find that these elasticities differ

markedly in both their magnitudes and their underlying mechanisms. Our preferred approach

captures key dynamics in agricultural land use, in contrast to previous static estimates of

groundwater demand (e.g., Hendricks and Peterson (2012); Bruno and Jessoe (2021a); Pfeif-

5. Groundwater extraction creates two main externalities (Provencher and Burt (1993)). The “stock
externality” arises when agents fail to fully account for the future value of resource, leading to depletion that
is faster than the social planner’s optimal extraction path. The “pumping cost” externality arises when one
agent’s extraction lowers water levels and increases pumping costs for other (nearby) users in the short run.
Other externalities might include land subsidence and air pollution from soil drying.
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fer and Lin (2014); Smith et al. (2017)).6 Bruno, Jessoe, and Hanemann (Forthcoming) use

a reduced-form approach to study land use and groundwater dynamics over five years, in

response to water pricing in a single water district in California’s Pajaro Valley. Our results

build on this work: we capture both short- and long-run land use and groundwater responses

to groundwater cost shocks across the majority of California’s farming areas.

Our findings highlight the value of long-run environmental policy analysis. While our

results come from one key context—California groundwater—the lesson that agents may

respond differently to short- vs. long-run policies is applicable wherever resource manage-

ment requires a long time horizon, including forests (Araujo, Costa, and Sant’Anna (2022);

Hsiao (2022); Balboni et al. (2023)), fish (Costello et al. (2010)), the global climate (Nord-

haus (2019)), and other renewable (Gordon (1954)) and nonrenewable (Hotelling (1931))

resources. More broadly, the dynamics of perennial cropping, which are driven by high up-

front costs followed by a multi-year payoff, mirror a wide range of investments, including

vehicles (Dahl (2014)), household appliances (Dubin and McFadden (1984)), and pollution

control technologies (Blundell, Gowrisankaran, and Langer (2020)).

Second, we estimate long-run agricultural electricity demand, accounting for crop in-

vestment dynamics. Long-term investments are major determinants of electricity use across

sectors, including durable appliances (McRae (2015)), energy efficiency upgrades (Fowlie,

Greenstone, and Wolfram (2018)), and solar panels (Borenstein (2017)).7 Despite the influ-

ence of investment dynamics on electricity use, existing work in this area is limited.8 We

extend a small recent literature, which uses quasi-experimental variation to estimate long-run

electricity demand in the residential sector (Deryugina, MacKay, and Reif (2020); Feehan

(2018); Buchsbaum (2023)), by combining quasi-random price changes with a structural

6. Scheierling, Loomis, and Young (2006) conduct a meta-analysis of 24 earlier papers estimating agri-
cultural water demand. Most of these studies rely on agronomic models or field crops experiments with
restrictive assumptions on farmers’ response to changing water costs. In contrast, more recent estimates of
agricultural water demand rely on observed farmer responses (e.g., Bruno and Jessoe (2021b)).

7. Suppose an electricity price shock causes a household to invest in insulation. Properly modeling this
investment decision requires forward-looking expectations (i.e., the household will be less likely to invest in
insulation if it believes the price increase to be short-lived) and state-dependence (i.e., after investing in
insulation, the household is unlikely to make similar investments in future periods).

8. Numerous studies have using quasi-experimental variation to estimate short-run electricity demand,
mainly in the residential sector (e.g., Fell, Li, and Paul (2014); Ito (2014)). There are few short-run estimates
of commercial/industrial electricity demand (exceptions include Jessoe and Rapson (2015); Blonz (2022)).
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model of a major commercial electricity end-use: groundwater pumping. We provide one of

the first long-run estimates of electricity demand derived from a model of forward-looking

agents that make state-dependent investments (following Rapson (2014)). Our results are

among the first rigorous estimates of long-run electricity demand in the agricultural sector,

which consumes nearly 8% of California’s electricity.

Third, we estimate the short- and long-run impacts of water costs on land use. While

agricultural economists have long studied the effect of output prices on cropping patterns

(e.g., Nerlove (1956); Roberts and Schlenker (2013); Scott (2013)), fewer studies have doc-

umented how groundwater costs impact crop choice, which has important implications for

agricultural output markets.9 We build on Hornbeck and Keskin (2014) by demonstrating

that farmers change crops in response to groundwater costs in the long run, but not in the

short run.10 Our work complements recent studies of surface water irrigation (Rafey (2023);

Hagerty (2022); Hagerty (2023)), where regulatory and market institutions are far more

mature. We extend recent studies of localized groundwater regulations (Ayres, Meng, and

Plantinga (2021); Bruno, Jessoe, and Hanemann (Forthcoming)) by providing estimates of

land use change under groundwater policy—for the majority of California’s farmland—in

both the short and long run.

Fourth, we extend the literature on groundwater management by simulating farmer

responses to (counterfactual) groundwater policy, in the context of California’s landmark

SGMA regulation. Natural scientists have uncovered substantial groundwater depletion in

key agricultural regions across the globe (Fan, Li, and Miguez-Macho (2013); Rodell et

al. (2018)). However, large-scale groundwater regulation remains rare (Carleton, Crews, and

Nath (2023)), as the few existing policies are mostly local in scope.11 In this context, SGMA

stands to be one of the world’s most consequential groundwater regulations. Early work on

SGMA has focused on the political economy of (Bruno, Hagerty, and Wardle (2022)) and

9. Blakeslee, Fishman, and Srinivasan (2020) and Ryan and Sudarshan (2022) show that groundwater
depletion hurts long-run farm profits in India, but there is far less evidence from high-income countries.

10. Dinar (1994) uses a dynamic theory model to show that rising energy costs are likely to impact crop
choice. Caswell and Zilberman (1986) analyze the theoretical relationship between energy demand and
irrigation technology choice, a separate determinant of irrigation costs.

11. For example, groundwater regulations exist in part areas of Kansas (Drysdale and Hendricks (2018)),
parts of Colorado (Smith et al. (2017)), and small regions of California (Bruno, Jessoe, and Hanemann
(Forthcoming); Ayres, Meng, and Plantinga (2021)).
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anticipatory responses to (Bruno and Hagerty (2023)) the regulation. We contribute novel

estimates of the impact of groundwater pricing, demonstrating that stringent policies will

be required to achieve SGMA’s sustainability goals—which will alter the landscape of some

of the most valuable crop land on earth.

This paper proceeds as follows. Section 2 provides background on groundwater pumping

and energy use in California agriculture. Section 3 describes our data. Section 4 outlines

our reduced-form approach and presents results. Section 5 outlines our structural model and

presents our dynamic estimates and counterfactual simulations. Section 6 concludes.

2 Background

2.1 Agriculture and irrigation in California

California is a major player in global agricultural production. The state produced $32

billion in crop value in 2019, representing 18% of the U.S. total—including 75% of the

total value of U.S. fruits and nuts, and 57% of the total value of U.S. vegetables (USDA

(2021)). California’s 77,000 farms produce over 400 commodities, and they are the exclusive

domestic producers of almonds, artichokes, olives, walnuts, and numerous other high-value

crops (California Department of Food and Agriculture (2011)).

Irrigation is essential for farming in California due to scant summer precipitation. 95%

of the state’s 8.3 million harvested acres are irrigated (Johnson and Cody (2015)), and the

agricultural sector is responsible for 80% of the state’s total water consumption. Many

of California’s crops use large amounts of water. For example, hay, almonds, grapes, and

rice—four of California’s top crops by acreage—all require at least 3 acre-feet per acre per

year, with rice using 5 acre-feet per acre per year (Bruno (2019)).12 To water these thirsty

crops, farmers rely on two water sources with vastly different governance structures (Sawyers

(2007)): 61% of irrigation comes from surface water, while 39% comes from groundwater

(California Department of Water Resources (2015)).

12. For comparison, the average California household uses 0.52 acre-feet per year (Hanak et al. (2011)).
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Surface water Surface water in California is strictly regulated. Almost all farms with

access to surface water obtain it via water districts. Most water districts function as co-

operatives that divert water from rivers and canals for distribution to farmers in their ge-

ographic territory.13 Individual farmers typically receive water allocations proportional to

their acreage within the district (Schlenker, Hanemann, and Fisher (2007)); these alloca-

tions fluctuate from year to year depending on scarcity (e.g., the amount of snowpack).

Importantly, farmers pay a lower marginal cost for district water allocations than for self-

pumped groundwater (Hagerty (2022)). We therefore treat district water consumption as

inframarginal to any observed groundwater use—since a farmer is unlikely to incur ground-

water pumping costs without exhausting her annual allocation of (cheaper) district water.

Farmers also have a limited ability to purchase surface water on the open market.

However, such transactions constitute only a very small share of total water deliveries, at

prices several times higher than marginal groundwater pumping costs (Hagerty (2023)). We

therefore assume that purchased water is not a viable substitute for agricultural groundwater.

Groundwater Groundwater supplies 30–40% of all water end uses in California in a nor-

mal year, and close to 60% in drought years when surface water is scarce (California Depart-

ment of Water Resources (2014)). Unlike surface water, agricultural groundwater rights in

California tend to be far more vague. The typical groundwater right is “overlying,” meaning

that a landowner whose property sits above an aquifer has the right to extract the underly-

ing groundwater.14 Historically, the vast majority of groundwater use has been unmetered,

with users facing no variable prices beyond the costs of pump operation (Bruno and Jessoe

(2021a)).15 This has enabled farmers to extract vast amounts of groundwater to irrigate

their overlying cropland.

13. Districts were established between 1860 and 1950, and their boundaries have remained essentially fixed.
Though some farms have individual water entitlements, the vast majority of surface water allocations come
from districts. Hagerty (2022) provides a detailed description of surface water rights in California.

14. Pre- and post-SGMA, overlying rightsholders face few restrictions to drilling new groundwater wells,
which cost $75,000 on average and typically reach 300–500 feet (Bruno et al. (2023)). While new wells must
be reported to the Department of Water Resources, construction usually lasts less than one week (Central
Valley Flood Protection Board (2020)). There are also “appropriative” groundwater rights, for users who do
not own land above the aquifer. Users may only exercise appropriative rights in the case of a surplus.

15. There are limited exceptions to this rule, where a few irrigation districts impose a per-unit price on
groundwater (e.g., the Pajaro Valley described in Bruno and Jessoe (2021a)).
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Nearly all groundwater pumps in California run on electricity, the sole variable input to

groundwater production. This makes groundwater pumping the dominant electricity end use

in the agricultural sector, which accounts for nearly 8% of the state’s electricity consump-

tion (California Energy Commission (2005)). Our empirical strategy leverages exogenous

variation in electricity prices to instrument for groundwater pumping costs.16

2.2 Groundwater depletion and management policy

Due to California’s longstanding open-access groundwater extraction regime, many of the

state’s groundwater basins are “overdrafted”—meaning that withdrawals exceed the pace of

replenishment, often by millions of acre-feet each year. The Central Valley has seen substan-

tial groundwater losses, where the “critically overdrafted” Tulare and San Joaquin basins lost

a combined 120 million acre-feet of groundwater from 1925 to 2008 (Konikow (2013)). Cali-

fornia’s groundwater depletion has been accelerating: while the average depletion rate from

1961–2021 was approximately 1.5 million acre-feet per year, a series of severe droughts in-

creased this rate to 7 million acre-feet per year from 2019 to 2021 (Liu et al. (2022)). The left

panel of Figure 1 shows that much of the Central Valley faced 10% average annual increases

in groundwater depths (i.e., reductions in aquifer levels) during our 2008–19 study period,

with greater losses in the southern half of the Valley. The right panel of Figure 1 illustrates

that these same areas are home to concentrated production of (high-value, water-intensive)

fruit and nut perennial crops.

A severe drought beginning in 2011 raised serious concerns about the future sustainabil-

ity of California’s groundwater resources. In September 2014, state lawmakers responded by

passing the Sustainable Groundwater Management Act (SGMA). This sweeping legislation

represented the first statewide effort to regulate groundwater extraction across all agricul-

tural areas in the state, which are responsible for 90% of groundwater pumping (Bruno,

Hagerty, and Wardle (2022)). SGMA comprises three separate bills. AB 1739 empow-

16. While previous studies have used variation in energy costs to estimate the price elasticity of groundwater
demand (e.g., Hendricks and Peterson (2012); Pfeiffer and Lin (2014); Badiani and Jessoe (2019); among
others) Mieno and Brozovic (2017) argue that prior estimates tend to be limited by a combination of (non-
classical) measurement error, a lack of micro-level identifying variation, and relatively narrow geographies—
challenges we overcome with our instrumental variables approach and data spanning PGE.
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Figure 1: Groundwater depletion and perennial crops

Notes: The left map plots California’s groundwater sub-basins, shading based on the average annualized change in depth during
our 2008–2019 sample period. A 10% change in depth corresponds to a 10% increase in groundwater pumping costs, holding all
else constant. This map averages depth measurements across each sub-basin from April–June of each year, to remove seasonality.
The right map plots the extent of fruit and nut perennial cropping from 2019, shading parcels for which “fruit/nut perennial”
was the modal crop category. We also plot PGE’s service territory, which encompasses most of this perennial acreage.

ers California’s Department of Water Resources (DWR) or local groundwater sustainability

agencies (GSAs) to charge fees for groundwater extraction, and it requires GSAs to prepare

groundwater sustainability plans (GSPs). SB 1319 authorizes GSAs to implement these

GSPs. SB 1168 mandates that groundwater end uses be both reasonable and beneficial, and

it enables GSAs and the DWR to require groundwater monitoring.

SGMA represents the future of groundwater management in California, with the goal

of long-run sustainability—or having each basin operate within its sustainable yield and

avoiding “undesirable results.”17 Critically over-drafted (other medium- and high-priority)

basins were required to submit GSPs by 2020 (2022) and are required to achieve sustainability

17. Undesirable results include “chronic lowering of groundwater levels,” “significant and unreasonable re-
duction of groundwater storage,” “significant and unreasonable seawater intrusion,” significant and unreason-
able degraded water quality,” “significant and unreasonable land subsidence,” or “depletions of interconnected
surface water” (California Department of Water Resources (2017)).
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by 2040 (2042).18 Using data from the universe of GSPs, we calculate that the average

required reduction in pumping among regions currently experiencing overdraft is 19.2%.19

GSAs have a variety of tools at their disposal for reducing groundwater pumping, includ-

ing price instruments (such as taxes or fees), quantity instruments (including both tradable

and non-tradable allocations), ad-hoc pumping restrictions, and other conservation incen-

tives (Bruno, Hagerty, and Wardle (2022)). Researchers predict these policy instruments

will induce a variety of behavioral changes, including reducing irrigation intensity, shifting

towards less water-intensive crops, and/or land fallowing (Bruno (2019)).

3 Data

3.1 PGE data

We use confidential customer-level microdata from all of PGE’s agricultural service points

(i.e., electricity meter locations). For each service point, we observe monthly billing data

from 2008–2019. These data report the service point’s latitude and longitude, monthly

electricity consumption (in kilowatt-hours, or kWh), monthly bill amount (in dollars), and

electricity tariff. We use PGE’s published agricultural tariff schedules to calculate average

marginal prices (in $/kWh) for each service point-month.20

In addition, we leverage a unique PGE dataset of agricultural groundwater pump audits.

We observe detailed measurements and technical specifications from over 30,000 pump tests

from 2011–2019. We match pump tests to service points in our billing data using electricity

meter identifiers, isolating a subset of service points where agricultural groundwater pumping

is almost certainly the sole electricity end use.21

18. All SGMA implementation has occurred after our 2008–2019 analysis period. Bruno and Hagerty (2023)
argue that there has not been anticipatory action to reduce groundwater use in response to SGMA’s passage.

19. This weights GSPs by current pumping levels. An unweighted calculation (which gives each GSP equal
weight) yields a required reduction of 20.8%. See Appendix C.7 for more details on the GSP data.

20. We drop customers with solar panels from our analysis, since their billed electricity use is net of
(unobserved) solar production. Appendix C provides further details on the data described in this section.

21. PGE typically installs a dedicated meter for each groundwater pump. We focus our analysis on this
subset of matched service points to ensure that we are measuring energy used for pumping, avoiding other
agricultural electricity end uses (e.g., refrigeration, or heating greenhouses).
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3.2 Constructing groundwater prices and quantities

Physics governs the relationship between kWh of electricity input and acre-feet (AF) of

groundwater output for each pump:

AF =
Operating pump efficiency (%)

[Lift (feet)]× 1.0241
× kWh (1)

PGE’s pump audit data report the operating efficiency of each pump. To parameterize

lift—the vertical distance from the groundwater source to the surface—we combine PGE’s

measurements with publicly available data on groundwater depths from California’s Depart-

ment of Water Resources. Since these depth measurements vary across space and time, we

condition Equation (1) on contemporaneous groundwater levels at each service point.22 Us-

ing these pump-specific production functions and data on electricity quantities and prices,

we compute groundwater use (in AF) and marginal groundwater costs (in $/AF).

3.3 Land use data

We use California county assessor tax parcels as farm boundaries, as in Bruno, Jessoe,

and Hanemann (Forthcoming). We spatially merge PGE service points to parcel polygons,

linking each groundwater pump to the fields that it most likely irrigates. Then, we match

parcel polygons to the USDA’s Cropland Data Layer (CDL), which reports annual satellite-

derived crop coverage for each 30m2 pixel in California. We classify CDL-reported land

types into five mutually-exclusive and exhaustive categories: annuals, fruit/nut perennials,

hay perennials, non-crop (i.e., fallow cropland), and not croppable.23 We also link parcels to

groundwater sub-basins (to enable controls for common shocks to groundwater depth) and

to water districts (to enable controls for surface water allocations).

22. We rasterize thousands of separate depth measurements for each sample month. Calculating lift also
requires pump-specific measures of drawdown (i.e., how much a pump’s extraction impacts its own depth),
which depends on rate of flow and subsurface characteristics. We observed repeat tests for 64% of service
points, enabling us to incorporate within-pump variation in efficiency over time.

23. Our analysis removes all not croppable acreage (e.g., development, forests), adjusting the denominator
of each parcel to include only cropland. Due to measurement error in the CDL (as discussed in Hagerty
(2022)) and to ease computational burden, we use crop categories rather than individual crop classifications.
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3.4 Summary statistics

Panel A of Table 1 compares our matched sample of groundwater pumps to the remaining un-

matched agricultural service points. While these two groups face similar marginal electricity

prices ($0.13/kWh vs. $0.16/kWh), our matched sample has much greater energy consump-

tion (10,122 vs. 4,962 kWh/month). This is unsurprising since groundwater pumping is far

more energy-intensive than other farm end-uses. To the extent that our matching process

filters out groundwater pumps that never received PGE pump tests, our sample is skewed

towards larger pumps that are most important for groundwater management policy.24

Within our matched sample, the average service point consumes 33.5 AF of groundwater

per month at a marginal cost of $47.37/AF. Farmers face far more variation in groundwater

costs than in electricity prices, due to both dispersion in pumping efficiencies and changing

groundwater depths. Panel B aggregates our matched sample up to the parcel-year level.

The average parcel has 290 croppable acres, with 22%, 45%, 25%, and 8% of acres in annuals,

fruit/nut perennials, hay perennials, and non-crop, respectively. Across all four categories,

farmers consume an average of nearly 4 AF of groundwater per acre per year.25

4 Reduced form estimation and results

This section presents our reduced-form analysis, using a panel fixed effects approach to esti-

mate short-run responses to changes in groundwater costs. We present three sets of short-run

results. First, we estimate monthly cost elasticities of groundwater and electricity demand

at the pump level, as a proof-of-concept of our identification strategy. Next, we estimate

our main short-run results of interest: annual, parcel-level cost elasticities of groundwater

demand. Finally, we present annual crop choice responses to groundwater cost shocks.

24. In Appendix Tables B7 and B11, we use hierarchical clustering to predict which unmatched service
points might be groundwater pumps. Including these “predicted pumpers” in our reduced-form analysis does
not meaningfully alter our estimates of electricity demand.

25. This average (which comes from applying Equation (1) to our electricity data) aligns with irrigation
budgets in agronomic studies. For example, almond orchards in California’s San Joaquin Valley are estimated
to require 3–5 AF per acre per year (https://coststudies.ucdavis.edu/current/commodities/almonds).
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Table 1: Summary statistics

A. Service point × month sample Matched to pumps Unmatched

Unique service points (SPs) 10,248 90,137

Months observed (2008–2019) 110.7 105.8
(41.0) (45.8)

Average electricity consumption (kWh/month) 10,122 4,962
(13,668) (33,390)

Average marginal electricity price ($/kWh) 0.13 0.16
(0.03) (0.04)

Average electricity bill ($/month) 1,813.16 836.05
(1972.45) (3718.41)

Average groundwater consumption (AF/month) 33.45
(42.76)

Average marginal groundwater cost ($/AF) 47.37
(25.49)

B. Parcel × year sample Parcels containing matched SPs

Unique parcels with SP-pump matches 6,416

Count of matched SPs per parcel 1.82
(1.50)

“Croppable” area of parcel (acres) 290.57
(283.59)

Average share of annual crops 0.217
(0.277)

Average share of fruit/nut perennial crops 0.453
(0.403)

Average share of hay perennial crops 0.248
(0.284)

Average share of non-crop (fallow) 0.082
(0.134)

Average groundwater use (AF/acre) 3.987
(4.699)

Parcel within surface water district (1/0) 0.600
(0.490)

Notes: We report means and standard deviations (in parentheses) across unit-specific averages. Panel A uses monthly billing
data for PGE agricultural electricity service points (i.e. meters). We restrict our analysis to the 10,248 SPs that we can
match to a vertical agricultural groundwater pump audit. The right column includes all unmatched agricultural SPs. We
omit unmatched SPs from our analysis to avoid mistakenly including other agricultural electricity end-uses (e.g. refrigeration).
All reported unmatched sample means are statistically different from the matched sample (p < 0.01). We cannot calculate
kWh/AF, AF/month, or $/AF for unmatched serivce points. Panel B aggregates the matched sample up to the parcel-year
level. For consistency with our reduced-form and dynamic discrete choice analyses, we: weight parcels by (time-invariant)
croppable acreage; use croppable (rather than total) acreage to denominate crop shares; omit parcels with less than 1 or greater
than 5,000 croppable acres; and omit parcels with annual electricity bills exceeding $3,000 per croppable acre.
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4.1 Monthly demand elasticities

We estimate groundwater demand using the following two-stage least squares specification:

log (Qwater
it ) = γ ̂log (Pwater

it ) + δit + ϵit (2)

log (Pwater
it ) = θ log (P elecDefault

it ) + ψit + νit (3)

The outcome variable is the natural logarithm of groundwater extractedat service point

i in month t. The explanatory variable is the natural logarithm of the marginal cost of

groundwater. δit and ψit are a set of fixed effects, which we describe below. ϵit and νit are

idiosyncratic errors, which we two-way cluster by service point and month-of-sample.

To econometrically identify the demand elasticity, γ, in Equation (2), we leverage cross-

sectional and time-series variation in electricity prices (a component of Pwater
it ). PGE’s tariff

schedules are the outcome of statewide regulatory proceedings, which individual farmers

cannot plausibly influence. Moreover, tariff decisions are made 1–3 years in advance, and

they do not reflect current conditions (e.g., droughts). We therefore treat the tariff schedules

as plausibly exogenous.

However, since farmers have some choice over their tariff (conditional on the schedules),

the prices they face may be endogenous.26 Specifically, PGE sorts farmers into four mutually

exclusive tariff categories based on their pump capacity (smaller vs. larger than 35 horse-

power) and their electricity meter type (conventional vs. smart meters). Farmers with smart

meters are able to choose tariffs from category-specific menus. We therefore instrument for

the marginal cost of water Pwater
it using the “default” marginal electricity price for farmer i’s

category (P elecDefault
it ).27

26. Unlike PGE’s residential tariffs, which have increasing block prices, making a household’s marginal
price endogenous to its own consumption (Ito (2014)), PGE’s agricultural tariffs have linear volumetric
prices. This means that unit i’s marginal electricity price in a given hour depends solely on its tariff.

27. Small-conventional and large-conventional categories each comprise a single (default) tariff. Small-
smart and large-smart categories comprise 8 and 12 tariffs respectively, which we plot in Appendix Figure
C2. We assign the simplest (i.e. least time-varying) tariff in each category as the default tariff; instrumenting
with each category’s modal tariff yields similar results (see Appendix Tables B6 and B10). We omit a fifth
category reserved for the 1.7% of farmers transitioning off of internal combustion engines, since they are likely
not comparable to the rest of our sample, and we do not observe them before they consumed electricity.
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Figure 2: Marginal electricity prices for four default tariffs
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Notes: This figure plots times series of monthly average marginal electricity prices ($/kWh) for PGE’s four default agricultural
tariffs. The left panel plots raw average marginal prices for each month in our estimation sample, taking unweighted averages
across all hours. Marginal prices are systematically higher in summer months, and on non-holiday weekdays. The right panel
plots residuals of these four time series after partialing out tariff × month-of-year and month-of-sample fixed effects (aligning
with the fixed effects we use when estimating Equations (2)–(3)). The four tariff categories are defined by customers’ physical
capital: small (< 35 hp) vs. large (≥ 35 hp) pumps, and conventional vs. smart meters. Our identifying variation comes
from differential price changes across default tariffs, as well as PGE’s smart meter rollout—which exogenously shifted many
customers from conventional to smart categories, lowering their marginal price.

This instrument eliminates selection bias from a high-volume pumper choosing a tariff

with advantageously low volumetric prices. It also eliminates: (i) other potentially endoge-

nous variation in Pwater
it (e.g., groundwater demand shifters); (ii) within-pump simultaneity,

whereby high Qwater
it can depress localized groundwater levels and increase Pwater

it ; and (iii)

measurement error in Pwater
it from imprecision in parameterizing Equation (1).28

Having purged within-category variation, we identify γ off of differential changes in

electricity prices across categories over time. The left panel of Figure 2 plots raw time

series of P elecDefault
it during our sample period. Equations (2)–(3) include a series of fixed

effects to address potential confounders. We use month-of-sample fixed effects to control

for common trends in prices that might be correlated with unobservable determinants of

groundwater pumping (e.g., crop prices). We also use unit-by-month-of-year fixed effects

to control for seasonality in P elecDefault
it , which may also be correlated with unit i’s seasonal

irrigation patterns. The right panel of Figure 2 shows that, after partialling out these fixed

effects, there remains substantial across-category variation in P elecDefault
it over time.

28. In Equation (2), measurement error from converting kWh to AF enters in Pwater
it (i.e., $/kWh ÷

AF/kWh) and in Qwater
it (i.e., kWh × AF/kWh). Instrumenting with default electricity prices negates

the correlation between left-hand-side and right-hand-side measurement error. An un-instrumented OLS
regression returns a larger elasticity (in absolute value), which we report in Appendix Table B6.
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We also include groundwater-basin-by-year and water-district-by-year fixed effects, to

control for differential selection related to changes in depth or surface water allocations. A

remaining concern is selection across tariff categories. We observe no bunching at the 35

horsepower cutoff between small vs. large pumps.29 Moreover, only 4% of service points in our

sample switch between small- and large-pump categories; we use unit-by-large-pump fixed

effects to control for these shifts (i.e., a small-to-large-pump switch mechanically increases

Qwater
it and decreases P elecDefault

it ). In contrast, 21% of service points switch from conventional-

to smart-meter categories during our sample period due to PGE’s smart meter rollout. Since

the timing of this rollout reflected institutional factors outside of farmers’ control, meter-

induced category switches provide additional plausibly exogenous variation in P elecDefault
it .30

Table 2 presents our demand estimates. We find a monthly groundwater cost elasticity

of −0.294 (Column (1); p < 0.01), implying that farmers do respond to short-run increases

in groundwater costs by reducing groundwater pumping. To rule out the possibility that

farmers respond to higher costs by investing in pump upgrades (which would affect our

kWh-to-AF conversion), we restrict the sample to the 30% of observations within 12 months

of an observed pump test; this yields a similar elasticity estimate (Column (2); p < 0.10).

Our results are highly robust, including to: using various windows around a pump test;

interacting month-of-sample fixed effects with service point characteristics; adding time-

varying controls; and alternate kWh-to-AF conversions.31 We also estimate the analogous

model of electricity demand (replacing Qwater
it and Pwater

it with Qelec
it and P elec

it ), which yields a

nearly identical monthly elasticity estimate of −0.285 (Column (3); p < 0.01). These results

provide strong evidence that farmers’ short-run irrigation decisions are sensitive to cost.

29. See Appendix Figure C3. Appendix Table B2 reveals that our results are similar if we interact month-
of-sample fixed effects with deciles of horsepower.

30. During our sample period, PGE gradually replaced any remaining conventional (analog) meters with
smart (digital) meters, for both agricultural and non-agricultural customers. Previous research has estab-
lished that PGE did not design their smart meter rollout to target customers with particular usage patterns
(Blonz (2022)). Since farmers could not influence the timing of their meter upgrades, it is highly unlikely
that they are systematically correlated with unobserved changes in pumping behavior. Our results are robust
to interacting month-of-sample fixed effects with predictors of the rollout (Appendix Table B5) and lagging
the instrument to mitigate any rollout anticipation effects (Appendix Table B6).

31. We present these sensitivities in Appendix B.1.
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Table 2: Groundwater use responds to monthly variation in pumping costs

(1) (2) (3)
log(Qwater) log(Qwater) log(Qelec)

log (Pwater ($/AF)) −0.294∗∗∗ −0.260∗

(0.080) (0.134)

log (P elec ($/kWh)) −0.285∗∗∗

(0.080)

Pump test within 12 months Yes
Service point units 10,091 9,202 10,091
Months 148 124 148
Observations 953,469 276,958 953,469

First-stage estimates

log (P elecDefault ($/kWh)) 1.321∗∗∗ 1.486∗∗∗ 1.306∗∗∗

(0.024) (0.060) (0.016)

Kleibergen-Paap F -statistic 3079 609 6341

Notes: Column (1) estimates Equations (2)–(3) at the service point (SP) by month level. The outcome variable is the natural
logarithm of groundwater consumption, and we instrument for pumping costs with default electricity prices. This recovers an
estimate of the cost elasticity of groundwater demand. Column (2) restricts the sample to SP-months within 12 months of an
observed pump test, to minimize unobserved changes in pump efficiency. Column (3) uses the quantity and price of electricity
(which we observe directly), rather than the quantity and price of groundwater (which we construct). All regressions use two-
stage least squares, and include the following fixed effects: SP × month-of-year (to control for seasonality), SP × 1[large pump]
(to control for tariff category switches), groundwater basin × year (to control for trends in depth), water district × year (to
control for changes in surface water availability), and month-of-sample. Standard errors (in parentheses) are two-way clustered
by service point and month-of-sample. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

4.2 Annual elasticities and crop choice

For our main short-run estimates, we next aggregate from service points to parcels (i.e.,

our definition of farms). This links groundwater pumps to the fields they likely irrigate,

while accounting for multiple pumps within the same farm. We also aggregate from months

to years to align with the annual cropping cycle. To estimate Equations (2)–(3) at the

parcel-year level, we use the following fixed effects: parcel-by-large-pump (to control for unit-

specific means and small-to-large category switches), groundwater-basin-by-year (to control

for differential trends in depth), and water-district-by-year (to control for changing surface

water allocations). We weight these regressions by each parcel’s croppable acreage (excluding

forests, development, etc.), making our estimates representative per acre of cropland.

We also use this parcel-year panel to estimate an intensive-margin cost elasticity of

groundwater demand, holding each parcel’s crop category (i.e., annuals, fruit/nut perennials,

hay perennials, or non-crop) constant. To do this, we restrict our sample to parcels that
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Table 3: Short-run groundwater elasticities do not reflect crop switching

(1) (2) (3) (4) (5) (6)

log(Qwater) log(Qwater)
Share

annuals
Share

fruit/nut
Share
hay

Share
non-crop

2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

log (Pwater ($/AF)) −0.762∗∗∗ −0.679∗∗∗ 0.022 −0.011 −0.007 −0.003
(0.219) (0.230) (0.017) (0.020) (0.018) (0.017)

Intensive margin Yes
Parcel units 6,388 6,287 6,415 6,415 6,415 6,415
County-years 367 334 367 367 367 367
Observations 54,220 41,445 55,363 55,363 55,363 55,363

First-stage estimates

log (P elecDefault ($/kWh)) 1.409∗∗∗ 1.318∗∗∗ 1.414∗∗∗ 1.414∗∗∗ 1.414∗∗∗ 1.414∗∗∗

(0.042) (0.051) (0.042) (0.042) (0.042) (0.042)

Kleibergen-Paap F -statistic 1121 660 1139 1139 1139 1139

Notes: Column (1) estimates Equations (2)–(3) at the parcel by year level, using two-stage least squares. The outcome variable
is the natural logarithm of groundwater consumption, and we instrument for pumping costs with default electricity prices. This
recovers an estimate of the short-run cost elasticity of groundwater demand. Column (2) is identical, but restricts the sample to
parcel-years with the same modal crop category (i.e., annuals, fruit/nut perennials, hay perennials, non-crop) as the preceding
year and interacts parcel fixed effects with the four categories; this shuts down the crop-switching channel that we structurally
estimate below. Columns (3)–(6) are identical to Column (1), with shares of acres in a crop category for each parcel-year
as outcome variables. All regressions include the following fixed effects: parcel × 1[large pump] (to capture tariff category
switches), groundwater basin × year (to capture trends in depth), and water district × year (to capture varying surface water
availability). Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.). Standard
errors (in parentheses) are two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

chose the same crop category as the preceding year, while also adding parcel-by-crop-category

fixed effects (to control for parcel-crop-specific irrigation needs). Finally, we explore the crop-

switching margin directly by replacing the dependent variable in Equation (2) with the share

of the parcel’s (croppable) acres allocated to each crop category in each year.

Table 3 reports these annual estimates. In Column (1), we find that the short-run

groundwater demand elasticity is −0.762 (p < 0.01). This is larger than the monthly elas-

ticity estimate of −0.294, consistent with farmers having more flexibility over longer time

intervals. Column (2) reports our intensive-margin elasticity estimate of −0.679 (p < 0.01),

which is nearly as large as the Column (1) estimate that includes both margins—indicating

that farmers’ responses to year-on-year changes in groundwater costs are not driven by the

crop switching margin. The semi-elasticity estimates in Columns (3)–(6) provide corroborat-

ing evidence: for all four crop categories, we recover precise null estimates on crop switching

due to year-on-year groundwater cost shocks. Together, these results suggest that we do not
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detect crop-switching behavior because our panel fixed effects estimator does not incorporate

dynamics.

5 Structural estimation and results

We specify a dynamic discrete choice model of farmers’ cropping decisions that captures two

key features of our setting. First, since many California farmers make long-run investments

in perennial crops, we incorporate state dependence in annual cropping decisions. Second,

because SGMA introduces permanent changes to groundwater policy, we let farmers’ annual

decisions reflect rational forward-looking expectations. We use a conditional choice proba-

bility approach (Scott (2013); Kalouptsidi, Scott, and Souza-Rodrigues (2021)) to estimate

parameters without needing to specify the evolution of individual market-level states. We

then use our estimated dynamic model to simulate long-run steady states under counterfac-

tual groundwater taxes. These results generate long-run (semi-)elasticities of crop choice,

groundwater use, and electricity use with respect to the marginal cost of groundwater. Our

model closely follows Scott (2013), who estimates how changes in crop revenues impact land

use. We extend this prior work by (i) estimating land use responses to input costs rather

than output prices; (ii) expanding from two to four land-use categories; (iii) allowing for

both intensive- and extensive-margin responses to water costs in counterfactual simulations;

(iv) incorporating expectations over drought, a key market state variable, in simulations;

and (v) going beyond land use to generate elasticities for electricity and groundwater.

5.1 Model of crop choice

We model annual farmer profits on a given field as a function of crop choice, with crop-

specific groundwater pumping costs. Each year, a farmer chooses a crop c ∈ C = {annuals,

fruit/nut perennials, hay perennials, non-crop} to maximize expected discounted profits over

an infinite time horizon.32 Profits from crop choice c depend on two state variables: the field

state and the market state. The field state k ∈ K represents field-level characteristics at

32. We aggregate crops into these four broad categories both for model tractability and to avoid concerns
about measurement error in the CDL. Fruit/nut crops and hay crops are both perennials, but have different
cost structures: whereas hay requires low upfront costs and can be harvested soon after planting, orchards
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the start of a growing season, which depend on past cropping decisions. The market state

ω ∈ Ω is the set of market-level variables that affect the expected profitability of each crop,

such as input prices, output demand, government policies, and widespread weather events

(e.g. drought). The market state is known to all farmers but is not fully observed by the

econometrician.

Assumption 1: Profit function Annual profits on a given field in year t depend on crop

choice ct, field state kt, market state ωt, and a vector of idiosyncratic shocks εt. We define

the profit function as:

π(ct, kt, ωt, εt) = αGG(ct, ωt) + α(ct, kt) + ξ(ct, kt, ωt) + εct (4)

G(ct, ωt) is the total variable cost of groundwater pumping, which depends on the water

requirements of crop ct and the market state ωt; we estimate the parameter αG.33 α(ct, kt)

represents the time-invariant component of average net returns to crop ct, excluding ground-

water costs and net of the costs of transitioning from field state kt to crop ct; we estimate

these parameters. ξ(ct, kt, ωt) represents the time-varying component of average net returns

to crop ct in field state kt, which depends on the market state ωt. Finally, εct is an idiosyn-

cratic shock to profits for crop ct in year t, which we assume is independent and identically

distributed Type-I extreme value; we denote the joint distribution of vector εt as F ε(εt).

Assumption 2: State dependence and renewal actions Crop choice dynamics enter

through the transition cost component of α(ct, kt).34 Accounting for state dependence is

essential given California’s abundance of perennial crops, which are harvested across multiple

years from a single planting. Growing a perennial crop in consecutive years incurs much lower

and vineyards require high upfront costs and take longer to reach maturity. We use “fruit/nut” to refer to
perennial fruit and nut crops, and “hay” to refer to perennial hay crops (e.g., alfalfa).

33. We use total variable costs, rather than total costs, because fixed fees on electricity bills are crop-
choice invariant. Assuming Qwater responds only on the extensive (crop choice) margin, a percent change in
marginal cost (measured in $/AF) is equivalent to the same percent change in total variable cost (measured
in $), meaning (semi-)elasticities with respect to both cost measures are identical. If Qwater also responds
on the intensive margin, a percent change in marginal cost yields a smaller percent change in total variable
cost. Our simulations below consider both margins, necessitating this marginal vs. variable cost distinction.

34. As Scott (2013) discusses, it is common for dynamic incentives to enter only through an intercept term.
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costs than switching into the same perennial crop because the latter comes with an upfront

investment cost.

Formally, we assume the field state in year t is Markovian and depends on only the

preceding year’s crop choice, not on choices in prior years: kt = ct−1. Thus, profit in year

t is unaffected by choices made prior to year t − 1. This assumption captures the salient

feature of perennial cropping in our setting—high upfront costs followed by a stream of

annual harvests with lower recurring costs.35 As a result, any crop choice c ∈ C is a “renewal

action,” meaning that choice ct will yield a particular field state in the following year kt+1

regardless of states in prior years (Kalouptsidi, Scott, and Souza-Rodrigues (2021)).36

Assumption 3: Small fields We assume that the market state ωt evolves following a

Markov process that is independent of the crop choice on any single field. That is, the

distribution of the market state, F ω(ωt), satisfies F ω(ωt+1 | ct, ωt) = F ω(ωt+1 | ωt) for all

ct on each field. This assumption implies that fields are small relative to the size of their

market, causing farmers to treat ωt as exogenous. Following from this assumption, we also

treat each field as independent.37

Value function and conditional choice probabilities Under Equation (4), the ex-

pected discounted stream of future profits from a given field is given by the value function:

V (kt, ωt, εt) = max
ct∈C

{π(ct, kt, ωt, εt) + βE [V (kt+1, ωt+1, εt+1) | ct, ωt]} (5)

We assume the common discount factor β = 0.9 following the literature (e.g., Scott (2013);

Hsiao (2022)). The resulting conditional choice probabilities (CCPs), or the probability that

35. This assumption is sufficient to generate distinct responses to short-run transient cost shocks vs. long-
run permanent cost shocks. Without field state dependence, farmers might unrealistically tear out their
almond orchards in response to a single-year shock and then replant almonds the following year. By assuming
even a single year of field state dependence, we impose crop switching costs that would likely make this kind
of response unprofitable. In doing so, we abstract from second-order dynamic considerations that are less
likely to impact the long-run cropping response, such as the time it takes for young perennials to reach
maturity and bear fruit, because (i) modeling multiple perennial vintages would be less tractable and (ii)
growth profiles vary substantially across crops within our “fruit/nut perennials” category.

36. For estimation, we rely on fallowing being a renewal action: choosing ct = non-crop effectively resets
the transition costs in the following year, regardless of the cropping history.

37. If one landowner operates multiple fields, this assumption implies that maximizing profits jointly across
fields would be equivalent to maximizing profits for each field independently.
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the farmer chooses crop ct conditional on being in field state kt, are:

p(ct, kt, ωt) =
exp [v(ct, kt, ωt)]∑
c′t∈C

exp [v(c′t, kt, ωt)]
(6)

where v(ct, kt, ωt) gives the conditional value of selecting crop choice ct in field state kt, which

follows from the value function in Equation (5).38 This expression emphasizes that CCPs

contain information about the relative value of making different crop choices.

Euler equation To generate an estimating equation, we consider the comparison between

two crop choices in year t: ct and c′t. By Assumption 2, any crop choice in year t + 1 is a

renewal action, which we denote as rt+1. It follows that the field state in year t+ 2 depends

only on rt+1—not on ct. This means that after choosing rt+1 in year t + 1, continuation

values in year t + 2 will be the same regardless of whether a farmer chooses ct or c′t in year

t. This comparison produces an Euler equation that can be written as:39

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
+ β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
= αG [G(ct, ωt)−G(c′t, ωt)]

+ α(ct, kt)− α(c′t, kt) + β [α(rt+1, ct)− α(rt+1, c
′
t)]

+ ξ(ct, kt, ωt)− ξ(c′t, kt, ωt) + β [ξ(rt+1, ct, ωt+1)− ξ(rt+1, c
′
t, ωt+1)]

+ β
[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
(7)

Each side of Equation (7) is equivalent to the difference in values between choosing ct or c′t
in year t, followed by renewal action rt+1, and then choosing optimally in all following years.

5.2 Estimation

To empirically estimate Equation (7), we require CCPs and total variable groundwater costs

for each crop in the choice set, as well as an instrument for (potential) groundwater cost

38. See Appendix A.1 for mathematical definitions of the ex ante and conditional value functions.
39. The term eV (ct, ωt, ωt+1) is the expectational error given by the difference between expected and realized

ex ante value functions in year t + 1. See Appendix A.1 for a mathematical definition of the expectational
error term and a derivation of this Euler equation.
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endogeneity.40 We construct these variables using data from all fields in a “market” in which

farmers face a similar choice environment—including similar transition costs, crop-specific

groundwater costs, and market states. We define markets using three criteria: electricity

tariff, surface water availability, and geography.41 We construct CCPs by aggregating crop

choices within each market, and we use observed groundwater costs in the market to construct

crop-specific pumping costs.

5.2.1 Variable construction

Conditional choice probabilities We observe land use at a 30-meter resolution in the

CDL. We calculate CCPs from the observed pixel-level sequence of crop choices in parcels

in our sample. We aggregate pixel-level conditional choices within each market:

pm(ct, kt, ωmt) =
nmckt∑

c′∈C nmc′kt

where nmckt is the count of pixels in market m with crop c after starting in field state k in

year t. The denominator is the count of all pixels in market m in field state k in year t. As

in Scott (2013), we smooth CCPs over space to ensure no CCP has a value of zero or one.42

Groundwater cost, groundwater use, and electricity use For each parcel, we observe

realized groundwater pumping costs, groundwater quantity, and electricity quantity. We

40. For each field, we observe groundwater costs for the chosen crop, but not CCPs or groundwater costs
for all other possible crop choices.

41. We first split by PGE’s small- and large-pump tariff categories. For surface water availability and
geography, we then group fields by water district, or (if not in a water district) by county. For water districts
where we observe fewer than 30 parcels, we instead group by counties to ensure sufficient observations within
a market. Appendix A.2 provides more details on market construction.

42. We smooth a market’s CCPs using other markets with similar surface water availability (i.e., in vs. out
of a water district) and electricity tariff (i.e., small- vs. large-pump tariffs). Smoothing weights are inversely
proportional to the square of the distance between the market centroids. Formally, the smoothed CCPs are:

p̂m(ct, kt, ωmt) =

∑
m′∈M wmm′pm′(ct, kt, ωm′t)∑

m′∈M wmm′

where weight wmm′ = (1 + dmm′)−2 if markets m and m′ have similar electricity tariffs and surface water
availability, and 0 otherwise. dmm′ is the distance between centroids of m and m′ in kilometers.
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project these outcomes at the parcel level using the following OLS specification:

Oft =
∑
c ̸=0

(
ζcmF

c
ft + κcmF

c
ft · t

)
+ ηf + ϕmt + ιft (8)

where Oft is the per-acre outcome (pumping cost, groundwater quantity, or electricity quan-

tity) for parcel f in year t. F c
ft is the fraction of parcel f planted with crop c in year t,

omitting non-crop (c = 0) to avoid collinearity. ηf are parcel fixed effects, ϕmt are market-

year fixed effects, and ιft is an idiosyncratic error term. ζcm + κcmt recovers the average

per-acre outcome for crop c in market m and year t (relative to choosing non-crop), which is

identified from within-parcel crop switches. These market-specific coefficients accommodate

geographic variation in both groundwater needs (e.g., due to surface water allocations) and

irrigation needs within each crop category c (e.g., grape- vs. almond-growing regions).

Using these fitted regression models, we project per-acre outcomes for each parcel-year

under each crop category. Then, we aggregate projections up to the market-crop-year by

taking an acreage-weighted median of all parcels within that market-year.43 This aggregation

yields total variable groundwater costs Gmct = Gm(ct, ωmt), groundwater quantities Q̂water
mct ,

and electricity quantities Q̂elec
mct, each at the market-crop-year level and measured per-acre.44

5.2.2 Identification

Equation (7) holds for any choice of crops ct and c′t in year t followed by any renewal action

rt+1 in year t+1. To generate an estimable regression equation, we set both the comparison

crop c′t and the renewal action rt+1 to be the non-crop category (i.e., c′t = 0 and rt+1 = 0),

leaving ct to denote any of the three other crop choices. We estimate this resulting regression

equation at the market level, using the data described above and weighting markets by

acreage:

43. This procedure yields crop-specific estimates for total variable pumping costs, groundwater quantities,
and electricity quantities for a typical acre in each market and year. Taking acreage-weighted means yields
similar results (see Appendix Figure A2). We further calculate a time-invariant market-level measure of
each crop-specific outcome by taking the weighted median over all parcel-years in a market, which we use as
steady-state costs and quantities in our counterfactual simulations. We also aggregate separately by drought
vs. non-drought years to incorporate drought expectation in our counterfactual simulations.

44. We use Q̂ to differentiate these per-acre quantity projections from the observed quantities Qwater and
Qelec used in our reduced-form analysis.
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ln

[
pm(ct, kt, ωmt)

pm(0, kt, ωmt)

]
+ β ln

[
pm(0, ct, ωmt+1)

pm(0, 0, ωmt+1)

]
= αG∆Gmct + ∆̃αmck + ∆̃ξmckt +∆eVmct (9)

The outcome variable is the difference in values between a cropping sequence in which

crop c is chosen in year t vs. one in which non-crop is chosen in year t, which we construct from

our calculated CCPs. Each right-hand-side term represents a component of this difference.45

∆Gmct is the difference in pumping costs between crop choice c and non-crop in year t.

∆̃αmck is a set of intercept terms capturing the difference in the present value of average net

returns between the two cropping sequences. ∆̃ξmckt is an unobserved term that reflects the

difference in time-varying net returns, and ∆eVmct is the unobserved difference in expectational

errors; their sum is the regression’s composite error term. Our main objects of interest are

the groundwater cost parameter αG and the intercepts ∆̃αmck, which we use to recover the

profit intercept parameters αm(ct, kt). We cluster our standard errors at the market-by-year

level, to allow for correlation across contemporaneous crop choices and field states within

each market.

Instrumenting for groundwater cost In order to recover consistent estimates of αG, we

require E[∆̃ξmckt +∆eVmct | ∆Gmct] = 0. While the expectational error ∆eVmct is uncorrelated

with ∆Gmct by construction, unobserved net returns ∆̃ξmckt may be correlated with ∆Gmct.46

As a result, we must instrument for ∆Gmct, the groundwater pumping costs for crop c

(relative to non-crop) in market m in year t.

We construct an instrument for ∆Gmct as the product of plausibly exogenous quantity

and price measures. The quantity is the time-invariant average electricity quantity needed

for groundwater pumping for crop c (relative to non-crop) in market m, ∆Q̂elec
mc . The price is

the time-varying average default electricity price in market m, P elecDefault
mt .47 This instrument,

45. We use ∆ to denote a contemporaneous difference between ct and c′t, and ∆̃ to denote this contem-
poraneous difference plus a discounted difference in year t + 1. Equation (A3) in Appendix A.1 provides
definitions for each of these terms.

46. For example, weather could affect groundwater pumping costs for crop c (relative to non-crop) by
altering water requirements, and weather could also affect (relative) net returns by influencing output prices.

47. Our markets partition small vs. large pump categories. P elecDefault
mt collapses from four to two tariff

categories, averaging over the composition of conventional and smart meters within each market-year. We
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∆Q̂elec
mc × P elecDefault

mt , is strongly correlated with ∆Gmct since changes to default electricity

prices influence the variable costs of groundwater pumping. It is also plausibly excludable,

since exogenous electricity tariffs should only influence pumping costs (as discussed in Section

4.1) and time-invariant ∆Q̂elec
mc is uncorrelated with annual variation in the market state.

Recovering profit intercept parameters We require estimates of 16 profit intercepts for

each market—one αm(ct, kt) for each crop choice-field state pair. However, Equation (9) only

includes 12 ∆̃αmck intercept terms for each market, since we use the non-crop category as the

comparison. Recovering all 16 intercepts therefore requires additional assumptions.48 First,

we normalize αm(0, 0) = 0, where both field state and crop choice are non-crop. Second, we

assume that switching from crop c to non-crop costs half as much as switching from non-crop

to crop c. Third, we assume there is no transition cost to remain in the same crop.49

5.3 Counterfactual simulations

We use estimated model parameters to simulate steady-state counterfactuals under different

groundwater tax scenarios. In each scenario, we proceed as follows. First, we use Equation

(4) to calculate expected annual profit—which is a function of that scenario’s groundwater

tax—for each crop choice in each state in every market. Second, we combine these profits

with a fixed point algorithm to solve for the continuation values, which follow from Equation

(5), for each crop choice at each state. Third, use these continuation values to calculate CCPs

in each market, per Equation (6). Finally, starting from an initial distribution of field states

in each market, we iteratively apply these CCPs to solve for crop choices and, therefore,

groundwater and electricity use over a 20-year period.50 To simulate these counterfactuals,

we make two additional assumptions.

assign each parcel’s modal pump size before defining markets, such that P elecDefault
mt eliminates variation from

any potentially endogenous switches between small- and large-pump tariff categories.
48. As described by Scott (2013) and Kalouptsidi, Scott, and Souza-Rodrigues (2021), dynamic discrete

choice models are typically not fully identified (Magnac and Thesmar (2002)). See Appendix A.2 for a
mathematical statement of these assumptions.

49. αm(ct, kt) incorporates both net returns to crop ct and any additional transition costs due to field state
kt. For ct = kt, we assume that all costs are recurring (e.g., the yearly cost of replanting an annual crop)
and are therefore captured by the net returns component.

50. We initialize the field states using each market’s average distribution of field states for 2008–2019.
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Assumption CF1: Drought state Drought, which is included in the market state ωmt,

is a key determinant of annual groundwater pumping costs.51 To incorporate drought condi-

tions in our simulations, we project groundwater costs separately for drought vs. non-drought

years and calculate profits under each market state. The resulting continuation values and

CCPs become functions of both current drought and future expectations of drought. We

assume farmers’ expectation of drought in any future year is i.i.d. with probability equal to

the frequency of drought in our sample.52

Assumption CF2: Intensive-margin response Our reduced-form analysis shows that

farmers respond to groundwater cost shocks on the intensive margin (i.e., adjust their water

use even conditional on crop choice). We therefore also allow farmers to adjust each crop’s

groundwater use in response to counterfactual groundwater taxes.53 To calibrate this long-

run within-crop adjustment, we estimate a series of long-differences regressions—analogous

to Equations (2)–(3) in our reduced-form analysis—using increasingly longer differences.

These estimates imply that roughly 35% of our short-run intensive-margin elasticity estimate

is likely to persist in the long run, translating into a long-run intensive-margin elasticity of

−0.238.54 This intensive-margin adjustment reduces groundwater and electricity consump-

tion for a particular crop, thereby lowering the crop’s total variable groundwater costs.55

51. Drought can increase groundwater needs due to low precipitation levels and curtailed surface water
allocations. It can also increase groundwater scarcity, which raises marginal pumping costs. Both effects
increase farmers’ groundwater expenditures.

52. California declared severe droughts in 7 of our 12 sample years (2008–2009 and 2012–2016). We also
simulate alternate simulations with higher/lower probabilities of drought (see Appendix Figure A2).

53. The profit function (Equation (4)) includes total variable pumping costs, or the product of groundwater
quantity and marginal cost: G = Qwater × Pwater. A marginal groundwater tax will cause farmers to
reoptimize Qwater within each crop c (i.e., ∂Qwater/∂Pwater). This intensive-margin response is already
accounted for when projecting factual pumping costs and quantities, which we then use to estimate Equation
(9), because observed Qwater has been optimized to factual Pwater. However, simulating counterfactual Pwater

necessitates assumptions on this optimal ∂Qwater/∂Pwater response.
54. Our short-run elasticity estimate (−0.679) is identified using short-run cost shocks. However, our

counterfactuals simulate a permanent cost shock, and many intensive-margin responses may not persist over
the long run. For example, while a farmer may respond to a one-year groundwater cost shock by allowing
her crop to fail, she is unlikely let the same crop fail year after year. Alternative simulations vary this
assumption of 35% persistence. Appendix A.3 describes these regressions, and Appendix Figure A1 presents
their results.

55. Suppose the marginal cost of pumping increases by 20% due to a tax. With a long-run intensive-margin
elasticity of −0.238, groundwater quantity falls by 4.25%. As a result, the total variable cost of pumping
increases by 14.9%, not the full 20%. For this reason, our (semi-)elasticities are with respect to the marginal
groundwater cost, even though we use total variable groundwater costs to estimate the model.
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This additional margin of response alters expected profits for each crop under counterfac-

tual groundwater taxes, which subsequently alters continuation values, CCPs, and therefore

counterfactual crop choices.

Counterfactual groundwater tax scenarios Our baseline scenario sets total variable

groundwater costs equal to the time-invariant projection for that market and crop. For our

counterfactual groundwater tax scenarios, we increase the marginal cost of pumping by a

specified tax percentage. Since we use crop-specific groundwater costs, a given tax increases

total variable costs more for relatively water-intensive crops, which can induce crop switching.

(Semi-)elasticities Following Scott (2013), we calculate long-run (semi-)elasticities by

comparing the final year of each tax scenario to the final year of the baseline scenario. The

semi-elasticity of crop c with respect to the marginal cost of pumping groundwater is:∑
m∈M (A′

mc − Amc)∑
m∈M

∑
c∈C Amc

/
τ

where Amc is the steady-state acreage in market m planted to crop c in the baseline sce-

nario, A′
mc is the comparable acreage in the tax scenario, and τ is the percentage tax on

marginal groundwater costs. The corresponding pumping cost elasticities of groundwater

and electricity are:56 ∑
m∈M

∑
c∈C

(
A′

mcQ̂
′
mc − AmcQ̂mc

)
∑

m∈M
∑

c∈C AmcQ̂mc

/
τ

where Q̂mc is the time-invariant projection Q̂water
mc or Q̂elec

mc , and Q̂′
mc is the analogous quantity

after any tax-induced intensive-margin adjustments.

We conduct inference on these (semi-)elasticities by taking 500 draws from the sampling

distribution of our estimated groundwater cost parameter αG. For each draw, we first recover

the corresponding αm(ct, kt) parameters, and we then proceed to simulate both the baseline

and tax scenarios using the same parameter draw. This sampling yields 500 sets of (semi-

)elasticities for each tax scenario. Our reported (semi-)elasticities are the means of these

56. Because a τ% change in electricity price translates to the same τ% change in marginal groundwater
pumping costs (see Equation (1)), this expression recovers the elasticity of groundwater use with respect to
marginal groundwater cost, and the elasticity of electricity use with respect to marginal electricity price.
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distributions, and our reported 95% confidence intervals span the 2.5th and 97.5th percentiles

of the distributions.

5.4 Static model

Following Scott (2013), we also estimate a static model of crop choice for comparison. While

this model does not reflect real-world farmer behavior, it provides a useful comparison for

both our reduced-form analysis and our dynamic model. This static model follows directly

from the dynamic model, with two important changes. First, farmers are not forward-looking,

so we set the discount factor to β = 0; this means that only current-year profits enter the

value function. Second, farmers do not account for field state dependence, so we remove all

field state conditioning from the model. The static estimating equation is therefore:

ln

[
pm(ct, ωmt)

pm(0, ωmt)

]
= αG∆Gmct +∆αmc +∆ξmct

The outcome variable is the difference in profits between crop choice c and non-crop in year

t, while each term on the right-hand side represents a component of this difference.57 ∆Gmct

is the difference in pumping costs between the two crop choices. ∆αmc is a set of intercept

terms that reflect the difference in average net returns between the two crop choices. ∆ξmct is

an unobserved term that reflects the difference in time-varying profits. Importantly, none of

these terms depend on year t+1 or field state k, unlike in the dynamic estimating equation.

We estimate this model using the same empirical strategy, instrumenting for ∆Gmct with

the product of plausibly exogenous quantity and price measures. We then use our estimated

static model to simulate static counterfactuals following the same structure outlined above,

but invoking the modified assumptions on the discount factor and field state dependence.

57. See Appendix A.4 for mathematical definitions of each of these terms.
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Figure 3: Long-run elasticities with respect to groundwater pumping cost

A

−.3

−.15

0

.15

.3

S
e

m
i−

e
la

s
ti
c
it
y

Static Dynamic
0% IM 

Dynamic
35% IM 

Dynamic
59% IM 

Annual Hay

Fruit/nut Non−crop

B 0

−.2

−.4

−.6

E
la

s
ti
c
it
y

Static Dynamic
0% IM 

Dynamic
35% IM 

Dynamic
59% IM 

Electricity

Groundwater

Notes: This figure plots long-run (semi-)elasticities of land use (panel A) and groundwater and electricity use (panel B) with
respect to groundwater cost, estimated using our discrete choice model. To recover these (semi-)elasticities, we simulate a 20%
increase in groundwater pumping costs and compute a steady state over a 20-year horizon. In the static model, there is no state
dependence and farmers are not forward looking. In the myopic model, there is state dependence, but farmers are not forward
looking. In the dynamic models, there is state dependence and farmers are forward looking. In “0% IM”, farmers can only
respond to groundwater cost changes by changing crops. In “35% IM,” farmers can also respond on the intensive-margin, by
reducing water use conditional on crop choice by 35% of our within-crop reduced-form elasticity, our central estimate based on
our preferred long-differences model. We also present a specification in which farmers’ intensive-margin response is 59% of our
reduced-form estimate, per a long-differences model with fewer fixed effects. Panel A shows semi-elasticities for annual crops
(circles), hay perennials (squares), fruit/nut perennials (triangles), and non-crop (diamonds). Panel B shows the electricity of
demand for electricity (diamonds) and groundwater (circles). The reported elasticities and semi-elasticities are the means over
500 draws for each model. The plotted 95% confidence intervals (vertical lines) show the 2.5th and 97.5th percentile over draws.

5.5 Model results

Figure 3 presents our main discrete choice results. Panel A plots semi-elasticities of land

use, while Panel B presents demand elasticities for groundwater and electricity, all for a

permanent 20% tax on the marginal cost of groundwater pumping.58

Static model We estimate static semi-elasticities with respect to marginal groundwater

costs of 0.003 (s.e. 0.002), −0.007 (s.e. 0.005), −0.002 (s.e. 0.002), and 0.006 (s.e. 0.005) for

annual crops, fruit/nut perennials, hay perennials, and non-crop (fallowing), respectively.

These results align with our reduced-form results in Table 3, where we find precise null crop-

ping responses to year-on-year changes in marginal groundwater costs. Consistent with these

null results, our static model suggests that farmers’ groundwater and electricity consumption

is close to perfectly inelastic, with elasticity estimates of −0.020 (s.e. 0.019) for groundwater

58. Appendix Table A2 presents these results in tabular form. Appendix Table A1 presents the parameter
estimates resulting from estimating Equation (9). Appendix Figure A2 presents robustness to parcel sample
selection and aggregation to the market level.
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and −0.026 (s.e. 0.027) for electricity. All six estimates are precise and not statistically dif-

ferent from 0 (i.e., our 95% confidence intervals span 0 for all six (semi-)elasticities). These

results imply that, in the absence of field state dependence and forward-lookingness, farmers

would not switch crops in response to permanent increases in marginal pumping costs.

Dynamic model When we incorporate both forward-lookingness and field state depen-

dence in our dynamic model, we find that farmers exhibit a large cropping response to

marginal groundwater costs, driving large groundwater and electricity elasticities.

We first present results assuming no intensive-margin response, meaning that farmers

only respond to changes in marginal groundwater costs on the crop-switching margin (“0%

IM” in Figure 3). We find cropping semi-elasticities that are roughly 20 times their static

counterparts: 0.097 (s.e. 0.030), −0.194 (s.e. 0.067), −0.007 (s.e. 0.004), and 0.104 (s.e.

0.035) for annuals, fruit/nut perennials, hay perennials, and non-crop, respectively. The

signs of these effects are intuitive: farmers reduce land in water-intensive fruit/nut perennial

crops, while increasing land in annual crops and substantially increasing fallowing. Corre-

spondingly, we find that crop switching alone leads to elasticities of −0.225 (s.e. 0.081) for

groundwater and −0.250 (s.e. 0.075) for electricity.

Next, we invoke Assumption CF2 and incorporate the long-run intensive-margin re-

sponse into our dynamic model. In our central case (35% IM, with an intensive-margin

elasticity of −0.238), we estimate cropping semi-elasticities of 0.070 (s.e. 0.024) for annual

crops, −0.135 (s.e. 0.052) for fruit/nut perennials, −0.006 (s.e. 0.004) for hay perennials,

and 0.071 (s.e. 0.026) for non-crop. These semi-elasticity estimates are slightly attenuated

from the 0% IM case, consistent with farmers’ ability to reduce within-crop water use as a

substitute for crop switching. Adding this intensive-margin channel yields larger elasticities

of −0.359 (s.e. 0.058) for groundwater and −0.369 (s.e. 0.055) for electricity—showing that

farmers’ intensive- vs. extensive-margin substitution is incomplete.59

To summarize, our static model corroborates our reduced-form land use regressions,

finding no statistical evidence of crop switching in response to marginal groundwater costs.

59. When we increase the intensive-margin response to 59% of our short-run estimate (an intensive-margin
elasticity of −0.401)—per our alternative long-differences specification with fewer fixed effects—these two
effects are magnified. See Appendix A.3 for details.
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As a result, our static model would suggest that farmers’ groundwater and electricity use are

close to perfectly inelastic, consistent with our finding that crop switching does not explain

our reduced-form elasticity estimates in Table 3. In stark contrast, our dynamic model re-

veals substantial cropping semi-elasticities. In this more realistic model with forward-looking

farmers with field state dependence, larger semi-elasticities translate into meaningful long-

run elasticities of groundwater and electricity use. Our results demonstrate that both the

magnitude and mechanisms underlying farmers’ short- and long-run responses to groundwa-

ter policy differ substantially, highlighting the importance of estimating both.

5.6 Impacts of counterfactual groundwater policy

Finally, we use our dynamic model (under our central 35% IM assumption) to understand the

potential effectiveness of California’s landmark groundwater policy, SGMA.60 In Figure 4, we

present simulation results for land use (Panel A) and groundwater and electricity use (Panel

B) responses to counterfactual groundwater taxes. Panel A shows that as we increase the

groundwater tax from zero, farmers reduce the amount of land planted in fruit/nut perennials

(purple triangles) and hay perennials (beige squares), while increasing the amount of land

planted in annual crops (green circles) and fallowed (gray diamonds). Panel B shows the

resulting reductions in electricity and groundwater use under each counterfactual tax.

Under SGMA, the average Groundwater Sustainability Plan will require groundwater

pumping reductions of 19.2% to achieve sustainability.61 Panel B implies that this will require

a groundwater tax of roughly 60%. A tax of this size would have meaningful impacts on land

use, leading approximately 8.6% of acres to change crop category: 8.2% of total cropland

switching out of fruit/nut perennials, 0.5% switching out of hay, 3.6% switching into annual

crops, and 5.0% switching to fallowing. These changes are substantial, representing a 24%

decline in fruit/nut perennials, a 2% decline in hay, a 12% increase in annual crops, and

a 50% increase in fallowing compared to our no-tax scenario. These results illustrate that,

60. In order to stem rapid aquifer drawdown, the majority of SGMA groundwater sustainability plans are
proposing price-based instruments (Bruno, Hagerty, and Wardle (2022)). Our estimates speak directly to
these plans, and provide a heuristic for possible responses to non-price instruments.

61. See Appendix C.7 for details on our Groundwater Sustainability Plan data.
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Figure 4: Farmer responses to groundwater taxes
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Notes: This figure plots counterfactual changes in crop choice (panel A), and groundwater extraction and electricity use (panel
B) resulting from varying groundwater taxes, estimated using our dynamic discrete choice model. Panel A shows acres in our
sample in annual crops (circles), hay perennials (squares), fruit/nut perennials (triangles), and non-crop (diamonds). Panel
B shows the percent change in electricity (diamonds) and groundwater (circles) for each tax level. 95% confidence intervals,
constructed from the 2.5th and 97.5th percentile of the sampling distribution across 500 simulations, are shown with vertical
lines. In Panel B, the light gray dashed line shows the average groundwater pumping reduction in overdrafted regions under
SGMA, 19.2%.

while SGMA’s sustainability targets are likely attainable with a moderate groundwater tax,

they are likely to induce a major reallocation of California’s 20 million acres of cropland.

6 Conclusion

This paper estimates how agents—California farmers—respond to environmental policy—

groundwater pricing—in both the short and long run. We leverage quasi-random variation

in groundwater costs in two empirical strategies to estimate the elasticity of demand for

groundwater over different time horizons. First, we use a panel fixed effects model, in which

farmers respond to year-over-year changes in groundwater costs, to estimate a short-run

elasticity. Second, we use a dynamic discrete choice model of land use, which models farmers

as forward-looking and accounts for field state dependence, to estimate a long-run elasticity.

We find that both the magnitude of and the mechanisms underlying farmer responses differ

between the short run and the long run. Our long-run elasticity estimate of −0.359 is
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smaller than our annual elasticity estimate of −0.762, but is driven by substantial changes

in cropping patterns that do not arise in the short run.

Our dynamic model predicts that the equivalent of a 60% tax on groundwater pumping

costs will be required to achieve California’s sustainability goals. These results imply that

California’s Sustainable Groundwater Management Act will alter the landscape of crop pro-

duction across California by incentivizing large shifts away from fruit and nut perennials and

towards exit from agriculture. An important topic for future research will be to quantify the

regulation’s general equilibrium impacts: to what extent will these land use changes impact

crop prices earned by farmers and food prices faced by consumers? Given that California

dominates the U.S. market for fruits, nuts, and vegetables, any such price effects could have

major welfare consequences.

Our work broadly underscores the importance of using dynamic models to analyze

environmental and resource management policies. Our results further highlight that agents’

long-run responses need not be larger than their short-run counterparts. These lessons likely

apply across a broad range of settings. For example, distinguishing between short- vs. long-

run response margins is crucial in the context of climate policy, where short-run adaptation

options may not be feasible (or optimal) in the long run, and vice versa.
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A Details on dynamic discrete choice estimation

A.1 Model of crop choice

Our model of crop choice and derivation of an estimating equation follow closely from and
build upon Scott (2013) and Kalouptsidi, Scott, and Souza-Rodrigues (2021). First, from
Assumptions 1–3 in the main text, the value function for a given field is:

V (kt, ωt, εt) = max
ct∈C

{π(ct, kt, ωt, εt) + βE [V (kt+1, ωt+1, εt+1) | ct, ωt]}

as shown in Equation (5) in the main text. This value function gives rise to the ex ante
value function:

V̄ (kt, ωt) ≡
∫
V (kt, ωt, εt)dF

ε(εt)

and the conditional value function:

v(ct, kt, ωt) ≡ π̄(ct, kt, ωt) + βE
[
V̄ (kt+1, ωt+1) | ct, ωt

]
(A1)

where π̄(ct, kt, ωt) ≡ π(ct, kt, ωt, 0) represents an expected profit function with the idiosyn-
cratic shock equal to zero. As shown in Equation (6) in the main text, conditional choice
probabilities depend on these conditional value functions:

p(ct, kt, ωt) =
exp [v(ct, kt, ωt)]∑
c′t∈C

exp [v(c′t, kt, ωt)]

We next invoke the Arcidiacono-Miller Lemma (Arcidiacono and Miller (2011)), which
follows from the Hotz-Miller inversion (Hotz and Miller (1993)) and yields a new expression
for the ex ante value function written as a function of the conditional value and conditional
choice probability:

V̄ (kt, ωt) = v(ct, kt, ωt)− ln p(ct, kt, ωt) + γ (A2)

where γ is the Euler constant. In words, the ex ante value equals the conditional value after
making any crop choice ct plus a correction term to account for the relative value of crop
ct compared to the rest of the choice set. This expression further shows that CCPs contain
information about the values of making different crop choices.

We continue to follow Scott (2013) and Kalouptsidi, Scott, and Souza-Rodrigues (2021)
to derive an Euler equation that will yield an estimating equation for this dynamic discrete
choice model. We consider two sequences of crop choices in years t and t + 1. In the first
sequence, the farmer chooses crop ct in year t followed by a choice that we denote rt+1 in
year t + 1. In the second sequence, the farmer instead chooses crop c′t in year t followed by
the same rt+1 in year t + 1. In each case, the farmer then chooses optimally in years t + 2

and beyond. To generate an Euler equation, we compare the value of these two cropping
sequences.
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We first combine Equations (A1) and (A2) to generate an expression for expected profit
of any crop choice in year t:

π̄(ct, kt, ωt) = V̄ (kt, ωt)− βE
[
V̄ (kt+1, ωt+1) | ct, ωt

]
+ ln p(ct, kt, ωt)− γ

We then decompose the continuation value into its realization and its expectational error,
with expectational error defined as the difference between expectation and realization:

eV (ct, ωt, ωt+1) ≡ E
[
V̄ (kt+1, ω

′
t+1) | ct, ωt

]
− V̄ (ct, ωt+1)

This decomposition yields:

π̄(ct, kt, ωt) + βeV (ct, ωt, ωt+1) = V̄ (kt, ωt)− βV̄ (ct, ωt+1) + ln p(ct, kt, ωt)− γ

with only realized values (rather than expected values) on the right-hand side.
Next, we eliminate the realized continuation values from this expression, first by differ-

encing the equation across the two different crop choices in year t, ct and c′t:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
= π̄(ct, kt, ωt)− π̄(c′t, kt, ωt) + β

[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
+ β

[
V̄ (ct, ωt+1)− V̄ (c′t, ωt+1)

]
In words, the CCP term on the left-hand side equals the difference in values from choosing
crop c versus crop c′ in year t and then choosing crops optimally in all future years.

We then use Equation (A2) to substitute for the continuation values in year t + 1.
That equality holds for all crop choices, including choice rt+1 from the cropping sequences
described above:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
= π̄(ct, kt, ωt)− π̄(c′t, kt, ωt) + β

[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
+ β [v(rt+1, ct, ωt+1)− v(rt+1, c

′
t, ωt+1)]− β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
Because any crop choice is a renewal action in this setting1—including the choice of

crop rt+1 in year t + 1—the field state in year t + 2 will depend only on the choice of rt+1

in year t + 1 and not on the crop choice in year t. In that case, the continuation values in
year t+2 will be the same regardless of whether crop ct or crop c′t is chosen in year t, so the
difference in conditional values reduces to:

v(rt+1, ct, ωt+1)− v(rt+1, c
′
t, ωt+1) = π̄(rt+1, ct, ωt+1)− π̄(rt+1, c

′
t, ωt+1)

1. Kalouptsidi, Scott, and Souza-Rodrigues (2021) use the term “renewal action” to denote any choice ct
that yields a particular field state kt+1 in the following year regardless of states in years prior to year t. Since
we model state-dependence as having only one-year memory, all crop choices ct ∈ C are renewal actions.
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Then the above expression simplifies to:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
= π̄(ct, kt, ωt)− π̄(c′t, kt, ωt) + β

[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
+ β [π̄(rt+1, ct, ωt+1)− π̄(rt+1, c

′
t, ωt+1)]− β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
We next expand the profit terms, as in Equation (4) in the main text, which yields an

Euler equation. We rearrange the expression to get Equation (7) in the main text:

ln

[
p(ct, kt, ωt)

p(c′t, kt, ωt)

]
+ β ln

[
p(rt+1, ct, ωt+1)

p(rt+1, c′t, ωt+1)

]
= αG [G(ct, ωt)−G(c′t, ωt)]

+ α(ct, kt)− α(c′t, kt) + β [α(rt+1, ct)− α(rt+1, c
′
t)]

+ ξ(ct, kt, ωt)− ξ(c′t, kt, ωt) + β [ξ(rt+1, ct, ωt+1)− ξ(rt+1, c
′
t, ωt+1)]

+ β
[
eV (ct, ωt, ωt+1)− eV (c′t, ωt, ωt+1)

]
Each side of this expression is equivalent to the difference in values between the two sequences
of crop choices that we describe above: choosing ct or c′t in year t, followed by renewal action
rt+1, and then choosing optimally in all following years.

This equality holds for any choices of ct, c′t, and rt+1. To generate our estimating
equation, we set both c′t and rt+1 equal to the non-crop category—which we denote with
0—while ct represents one of the other three crop choices. Then our estimating equation is
a simple linear regression:

Yckt = αG∆Gct + ∆̃αck + ∆̃ξckt +∆eVct (A3)

where

Yckt = ln

[
p(ct, kt, ωt)

p(0, kt, ωt)

]
+ β ln

[
p(0, ct, ωt+1)

p(0, 0, ωt+1)

]
∆Gct = G(ct, ωt)−G(0, ωt)

∆̃αck = α(ct, kt)− α(0, kt) + β [α(0, ct)− α(0, 0)]

∆̃ξckt = ξ(ct, kt, ωt)− ξ(0, kt, ωt) + β [ξ(0, ct, ωt+1)− ξ(0, 0, ωt+1)]

∆eVct = β
[
eV (ct, ωt, ωt+1)− eV (0, ωt, ωt+1)

]
A.2 Estimation

Market construction We estimate the above regression at the market level, grouping
farmers who face a similar choice environment. We define a market according to three
criteria: electricity price, surface water availability, and geographic proximity. Because small
pumps and large pumps face different marginal electricity prices, we first partition parcels
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based on whether their groundwater pump is on a small- or large-pump tariff.2 To account
for the final two criteria, we further split parcels by water districts—thereby grouping farms
with comparable surface water allocations within contained geographic areas.3 For parcels
located outside of any water district (a.k.a., in “white areas”), we define county-level pseudo-
water districts; these units retain the small vs. large tariff split, while also grouping farms
with comparable surface water access (i.e., allocations of zero) in contained geographic areas.

Recovering profit intercept parameters Estimating Equation (A3) returns 12 ∆̃αmck

regression intercept terms for each market, which we use to recover the 16 profit intercepts
for each market, αm(ct, kt). To do this, we must make additional assumptions. First, we
normalize αm(0, 0) = 0, where both field state and crop choice are non-crop. Second, we
decompose αm(ct, kt) = Rm(ct)−Tm(ct, kt), where Rm(ct) is time-invariant net returns to crop
ct (excluding groundwater costs), and Tm(ct, kt) is the time-invariant cost of transitioning
from field state kt to crop ct. We assume Tm(0, ct−1) = 0.5 × Tm(ct, 0), such that switching
from crop c to fallow costs half as much as switching from fallow to crop c.4 Third, we
assume there is no transition cost to remain in the same crop: Tm(ct, ct−1) = 0.5

A.3 Calibrating the intensive-margin elasticity

In our main counterfactual simulations, we assume farmers adjust each crop’s groundwater
use in response to a counterfactual groundwater tax. Our reduced-form analysis shows that
farmers have a short-run intensive-margin elasticity of −0.679 (Column (2) of Table 3).
However, since this estimate comes from short-run variation in pumping costs, the long-run
within-crop elasticity will likely differ from this short-run elasticity.

We calibrate long-run within-crop adjustment using a series of long-difference regres-
sions of increasing length. We estimate first-difference analog of Equations (2)–(3) at the
parcel-year level:

∆ log (Qwater
it ) = γ ̂∆ log (Pwater

it ) + δit + ϵit (A4)

∆ log (Pwater
it ) = θ∆ log (P elecDefault

it ) + ψit + νit (A5)

2. For parcels containing both small and large pumps (multiple pumps and/or pumps that change capac-
ity), we assign the modal category based on observed groundwater use.

3. Appendix C.5 provides more information on our use of water districts. For some smaller water districts,
we observe too few fields to be confident in the construction of our market-level variables (especially after
having already split by small vs. large tariff categories). We consider a water district-tariff group to be too
small if it contains fewer than 30 (in-sample) parcels. In this case, we create a composite water district-tariff
group comprising all water districts in the county (still retaining the small vs. large tariff split).

4. Different coefficients relating Tm(0, ct−1) to Tm(ct, 0) yield nearly identical αm(ct, kt) parameters.
5. Any recurring costs, such as the cost of replanting an annual crop every year, are captured by Rm(ct).

Then, Tm(ct, c
′
t−1) for ct ̸= c′t−1 reflects the additional costs incurred when switching crops.
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where the ∆ operator denotes a within-parcel first difference over {1, 2, 3, 4} years. Increasing
the length of the first difference allows to understand the extent to which the intensive-margin
elasticity persists over longer time frames.

To ensure that we capture only within-crop adjustments—rather than the effect of crop
switching—we apply sample restrictions comparable to the “intensive-margin” restriction in
Column (2) of Table 3. That is, we restrict the sample of observations to parcels that do not
change crop type over the period of long-differencing. For example, for a four-year difference,
we only include parcel-years for which the modal crop choice satisfies ct = ct−1 = ct−2 =

ct−3 = ct−4.6 As a result, this restriction becomes increasingly strict for longer differences.

Figure A1: Persistence of intensive-margin elasticity over longer time scales
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Notes: We estimate the first-difference analog of the annual versions of Equations (2)–(3), as shown in Equations (A4)–(A5)
using 1-, 2-, 3-, and 4-year differences. Each regression applies the “intensive-margin” restriction as in Column (2) of Table 3,
which becomes increasingly restrictive for longer differences (e.g., for a 4-year difference, ct = ct−1 = ct−2 = ct−3 = ct−4).
This figure plots the ratio of each first-difference point estimate and its corresponding 1-year first-difference point estimate, to
show how intensive-margin demand response attenuates over multiple years of groundwater cost shocks. Our preferred fixed
effects are exactly analogous to the fixed effects used in Table 3; averaging these three ratios motivates our use of 35% IM as a
central scenario. More parsimonious fixed effects imply a more persistent intensive-margin response; these ratios motivate our
59% IM scenario. We do not report confidence intervals, as they are not identified for ratios of coefficients.

Our preferred fixed effects are analogous to the regressions in Table 3: parcel-by-
1[small/large pump switch] (to capture tariff category switches), groundwater-basin-by-year
(to capture trends in depth), and water-district-by-year (to capture varying surface water
availability). In alternate specifications, we remove the parcel-switch fixed effect or use only
a year fixed effect.

Figure A1 reports results of these regressions. To focus on how the intensive-margin
elasticity evolves over longer time horizons, we report our γ̂ estimates normalized by the
1-year difference effect. Using our preferred fixed effects, the average of the 2-, 3-, and 4-
year differences is 35% of the 1-year difference. Therefore, we use “35% IM” as our central
simulations. In a more parsimonious specification with only year fixed effects, the average of

6. As discussed in Appendix C.4, we use the modal crop choice because our intensive-margin restrictions
necessitate imposing discreteness in crop choices.
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the 2-, 3-, and 4-year differences is 59% of the 1-year difference. This informs our alternative
“59% IM” simulations.

A.4 Static model

Our static model of crop choice—which we estimate for comparison with the dynamic
model—follows from the dynamic model with two important changes. First, we remove
farmers’ forward-looking behavior by setting the discount rate to zero: β = 0. Second, we
remove field state dependence from all terms in the model. With these changes, our static
estimating equation is:

ln

[
pm(ct, ωmt)

pm(0, ωmt)

]
= αG∆Gmct +∆αmc +∆ξmct

where

∆Gmct = Gm(ct, ωmt)−Gm(0, ωmt)

∆αmc = αm(ct)− αm(0)

∆ξmct = ξm(ct, ωmt)− ξm(0, ωmt)

All terms in this static model are comparable to those in the dynamic and myopic models,
but with field state dependence removed. For example, the static term pm(c, ωmt) is an
unconditional choice probability that does not depend on field state, rather than a CCP.
Other static terms are defined similarly. As with the dynamic version, we estimate this
model by instrumenting for ∆Gmct with the product of plausibly exogenous quantity and
price measures.

A.5 Model results

Parameter estimates Table A1 reports the results of our dynamic model estimation. The
groundwater cost parameter αG is common to all markets. As expected, the estimated value
is negative, indicating that greater groundwater costs reduce profits. The profit intercept
parameters α(c, k) are market-specific, and we report the average values over all markets.
We find that remaining in the same crop type (c = k) yields weakly positive annual returns
net of groundwater cost, while switching to a different crop type yields a negative annual
return. These results are expected in this setting, in which switching crop type requires a
large upfront investment—such as planting or removing an entire orchard of trees—that pays
out over a longer time horizon.

(Semi-)elasticities Table A2 reports the land-use semi-elasticities and the groundwater
and electricity elasticities that result from our counterfactual simulations. These results are
the same as those depicted in Figure 3 in the main text.
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Table A1: Dynamic discrete choice parameter estimates

A. Groundwater cost parameter: αG

−0.012∗∗∗

(0.004)

B. Profit intercept parameters: α(c, k)

Field state (k)
Annual Fruit/nut Hay Non-crop

Crop choice (c)
Annual 1.64 −1.07 −0.07 −0.08

[1.10, 2.22] [−1.61, −0.50] [−0.61, 0.50] [−0.62, 0.49]

Fruit/nut −1.28 2.09 −0.35 −0.70
[−1.98, −0.55] [1.40, 2.83] [−1.04, 0.39] [−1.39, 0.04]

Hay −0.38 −0.59 1.92 −0.72
[−1.02, 0.30] [−1.23, 0.10] [1.27, 2.60] [−1.36, −0.04]

Non-crop† −0.86 −1.39 −1.32 0.00

Notes: Panel A displays our estimated groundwater cost parameter, αG, which we obtain from estimating Equation (9). The
standard error (in parentheses) is clustered at the market-year level. Panel B displays our average profit intercept parameters.
The parameters are recovered at the market level, and we average over all markets to generate this table. 95% confidence
intervals (in brackets) are constructed from the 2.5th and 97.5th percentile of the αG sampling distribution across 500 draws.
Because of our normalizations, comparing the profit intercept parameters to a null hypothesis of zero is not appropriate, so we
do not report significance on these estimates. Significance of αG: *** p < 0.01, ** p < 0.05, * p < 0.10.
† Because of our normalizations to recover all 16 α(c, k) terms, the intercept terms for the non-crop choice have no variation
across draws from the sampling distribution.

A.6 Robustness

Figure A2 plots robustness test for our long-run (semi-)elasticities, reporting results for a
variety of alternate model specifications. Each of these counterfactual simulations omits
the intensive-margin response (0% IM) to focus on the crop-switching margin. Thus, the
comparable “main” results in the top row reproduce our 0% IM results depicted in Figure 3.
(Semi-)elasticities of land use and groundwater and electricity use are robust to parcel sam-
ple selection (“drop high cost” and “all size”), market-level variable construction (“weighted
mean”), independent variable choice (“total cost”), estimation weighting (“weight by m-k”),
and drought assumptions (“low drought pr.” and “high drought pr.”).
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Table A2: Long-run elasticities with respect to groundwater pumping cost

(1) (2) (3) (4)
Static Dynamic

0% IM 35% IM 59% IM

Crop semi-elasticities
Annual 0.003 0.097∗∗∗ 0.070∗∗ 0.056∗∗∗

[−0.001, 0.006] [0.039, 0.153] [0.020, 0.116] [0.023,0.091]
Fruit/nut −0.007 −0.194∗∗∗ −0.135∗∗ −0.106∗∗∗

[−0.016, 0.002] [−0.314, −0.063] [−0.232, −0.031] [-0.177,-0.036]
Hay −0.002 −0.007∗∗∗ −0.006∗∗ −0.005∗∗

[−0.007, 0.000] [−0.013, −0.002] [−0.010, −0.000] [-0.009,-0.000]
Non-crop 0.006 0.104∗∗∗ 0.071∗∗ 0.055∗∗∗

[−0.001, 0.017] [0.032, 0.172] [0.018, 0.120] [0.018,0.088]

Elasticities
Groundwater −0.020 −0.225∗∗∗ −0.359∗∗∗ −0.463∗∗∗

[−0.072, 0.003] [−0.383, −0.070] [−0.471, −0.259] [-0.538,-0.391]
Electricity −0.026 −0.250∗∗∗ −0.369∗∗∗ −0.462∗∗∗

[−0.103, 0.004] [−0.393, −0.088] [−0.466, −0.259] [-0.524,-0.382]
Notes: This table reports the long-run (semi-)elasticities from simulating a 20% increase in groundwater pumping costs over a
20-year horizon in a steady state. In the static model (Column (1)), there is no state dependence and farmers are not forward
looking. In the dynamic models (Columns (2)–(4)), there is state dependence and farmers are forward looking. In Column (3),
farmers can only respond to groundwater cost changes by changing crops. In Columns (3)–(4), farmers also respond on the
margin by reducing water use conditional on crop choice, applying 35% (preferred), or 59% of our within-crop reduced-form
elasticity, per our long-difference estimates, respectively. The reported semi-elasticities and elasticities are the means over 500
draws for each model. The 95% confidence intervals (in brackets) are constructed from the 2.5th and 97.5th percentile over
draws. Significance: *** 99% of simulation draws have the same sign; ** 95% of draws, * 90% of draws.

8



Figure A2: Long-run elasticities: Robustness

Main
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Notes: This figure plots robustness checks on our long-run (semi-)elasticities of land use (left panel) and groundwater and
electricity use (right panel) with respect to groundwater cost. The top row reproduces the 0% IM results of Figure 3. In “drop
high cost,” we drop parcels with groundwater costs > $5, 000 per acre (rather than costs > $3, 000 per acre). In “all sizes,”
we include parcels of all sizes. In “weighted mean,” we aggregate data to the market level using the weighted means (rather
than weighted medians) of parcel data. In “total cost,” we use the total cost of groundwater pumping (rather than the total
variable cost of groundwater pumping) as our cost measure. In “weight by m-k,” we weight observations by market-field state.
In “low drought pr.” and “high drought pr.,” we assume the probability of a drought is 0.4 and 0.75, respectively. The left
panels show semi-elasticities for annual crops (circles), hay perennials (squares), fruit/nut perennials (triangles), and non-crop
(diamonds). The right panels show the electricity of demand for electricity (diamonds) and groundwater (circles). The reported
semi-elasticities and elasticities are the means over 500 draws for each model. The plotted 95% confidence intervals (horizontal
lines) show the 2.5th and 97.5th percentile over draws.
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B Reduced-form sensitivity analysis

B.1 Monthly demand regressions

Table B1 provides further evidence that our electricity-to-water conversions are not obscuring
unobserved pump efficiency upgrades in a way that meaningfully biases our groundwater
demand estimates: our point estimates are quite stable as we tighten the restriction for
observations within m months of an observed pump test (i.e., for which we parameterize
Equation (1) measured operating pump efficiency).

Table B1: Monthly demand sensitivity – months to nearest pump test

log(Qwater)

(1) (2) (3) (4) (5)

log (Pwater ($/AF)) −0.249∗∗∗ −0.260∗∗∗ −0.236∗∗ −0.233∗∗ −0.260∗

(0.094) (0.098) (0.105) (0.117) (0.134)

Pump test within m months, m = 60 48 36 24 12
Service point units 9,982 9,931 9,869 9,741 9,202
Months 148 148 148 136 124
Observations 791,910 712,177 605,892 472,875 276,958

First-stage estimates

log (P elecDefault ($/kWh)) 1.349∗∗∗ 1.366∗∗∗ 1.366∗∗∗ 1.408∗∗∗ 1.486∗∗∗

(0.029) (0.033) (0.037) (0.045) (0.060)

Kleibergen-Paap F -statistic 2095 1755 1374 973 609

Notes: This table conducts sensitivity analysis on Column (1) of Table 2, restricting the sample to SP-months within m months
of an observed pump test. Column (5) reproduces Column (2) of Table 2. Progressively restricting the sample in this way
does not meaningfully alter our point estimates. This assuages concerns that unobserved changes in pump efficiency (e.g.,
capital depreciation, efficiency upgrades) are confounding our electricity-to-groundwater conversions. Regressions are otherwise
identical to Column (1) of Table 2. All regressions include the following fixed effects: SP × month-of-year, SP × 1[large pump],
groundwater basin × year, water district × year, and month-of-sample. Standard errors (in parentheses) are two-way clustered
by service point and month-of-sample. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B2: Monthly demand sensitivity – time-varying confounders

log(Qwater)

(1) (2) (3) (4) (5)

log (Pwater ($/AF)) −0.314∗∗∗ −0.295∗∗∗ −0.291∗∗∗ −0.297∗∗∗ −0.293∗∗∗

(0.080) (0.080) (0.081) (0.081) (0.081)

Interact month FEs with Initial HP Initial OPE County Sub-basin Water district
Service point units 10,091 10,091 10,090 10,071 10,063
Months 148 148 148 148 148
Observations 953,469 953,469 953,338 951,115 950,346

First-stage estimates

log (P elecDefault ($/kWh)) 1.335∗∗∗ 1.319∗∗∗ 1.319∗∗∗ 1.320∗∗∗ 1.320∗∗∗

(0.024) (0.023) (0.024) (0.023) (0.024)

Kleibergen-Paap F -statistic 3118 3158 3130 3313 3134

Notes: This table conducts sensitivity analysis on Column (1) of Table 2, interacting month-of-sample fixed effects with the
following cross-sectional fixed effects: deciles of earliest observed nameplate horsepower (Column (1)); deciles of earliest observed
operating pump efficiency (Column (2)); county (Column (3)); groundwater sub-basin (Column (4)); and water district, or
county if not in a water district (Column (5)). Regressions are otherwise identical to Column (1) of Table 2. All regressions also
include the following fixed effects: SP × month-of-year, SP × 1[large pump], groundwater basin × year, and water district ×
year. Standard errors (in parentheses) are two-way clustered by service point and month-of-sample. Significance: *** p < 0.01,
** p < 0.05, * p < 0.10.

Table B3: Monthly demand sensitivity – adding time-varying controls

log(Qwater)

(1) (2) (3) (4) (5)

log (Pwater ($/AF)) −0.281∗∗∗ −0.281∗∗∗ −0.287∗∗∗ −0.307∗∗∗ −0.294∗∗∗

(0.080) (0.080) (0.080) (0.081) (0.080)

Control variables Precipitaton Precip &
temperature

Precip &
temp lags

GW depth
in basin

Dist to depth
measurement

Service point units 10,062 10,062 10,062 10,075 10,091
Months 144 144 143 148 148
Observations 923,116 923,116 919,660 941,973 953,469

First-stage estimates

log (P elecDefault ($/kWh)) 1.320∗∗∗ 1.320∗∗∗ 1.320∗∗∗ 1.318∗∗∗ 1.321∗∗∗

(0.024) (0.024) (0.024) (0.024) (0.024)

Kleibergen-Paap F -statistic 3090 3089 3078 3072 3079

Notes: This table conducts sensitivity analysis on Column (1) of Table 2, adding the following time-varying controls: precip-
itation (Column (1)); precipitation and temperature (Column (2)); contemporaneous and monthly lags of precipitation and
temperature (Column (3)); average depth in groundwater basin-month (Column (4)); and distance from SP to its nearest
groundwater measurement taken in month t (Column (5)). Precipitation is summed to the monthly level at each SP location;
we control for the mean, maximum, and minimum daily temperature at each SP location. Regressions are otherwise identical
to Column (1) of Table 2. All regressions also include the following fixed effects: SP × month-of-year, SP × 1[large pump],
groundwater basin × year, water district × year, and month-of-sample. Standard errors (in parentheses) are two-way clustered
by service point and month-of-sample. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B2 shows that our results are robust to controlling for time-varying confounders,
including pump characteristics (horsepower and operating pump efficiency), geography (fac-
tors correlated by county and groundwater sub-basin), and surface water institutions (cap-
tured by water district). Table B3 shows that our results are robust to controlling for weather
realizations (contemporaneous and lagged), groundwater depths, and distance to each SP’s
nearest contemporaneous groundwater measurement.

Table B4 reports sensitivity analysis on our method for converting from kWh to AF.
Our estimates are not sensitive to: using pump-specific drawdown predictions (rather than
fixing drawdown at measured levels that don’t vary with depth; Column (1)), using aver-
age groundwater depths by basin-month (rather than rasterized depth, which may contain
localized measurement error; Column (2)), removing pumps with questionable drawdown
measurements (Column (3)), removing SPs with multiple pumps tested (where we must av-
erage across pumps; Column (4)), and removing SP-months further than 8 miles from the
nearest groundwater measurement (Column (5)).

Table B4: Monthly demand sensitivity – conversion from kWh to AF

log(Qwater)

(1) (2) (3) (4) (5)

log (Pwater ($/AF)) −0.290∗∗∗ −0.299∗∗∗ −0.328∗∗∗ −0.280∗∗∗ −0.237∗∗∗

(0.081) (0.079) (0.092) (0.099) (0.088)

Predicted drawdown (instead of fixed) Yes
Mean depth (insted of rasterized) Yes
Drop suspect drawdown measurements Yes
Drop SPs with multiple pumps tested Yes
GW measurement within 8 miles Yes
Service point units 10,091 10,091 9,071 7,181 9,957
Months 148 148 148 148 148
Observations 953,469 953,448 822,096 656,286 444,470

First-stage estimates

log (P elecDefault ($/kWh)) 1.314∗∗∗ 1.330∗∗∗ 1.330∗∗∗ 1.274∗∗∗ 1.386∗∗∗

(0.024) (0.024) (0.025) (0.024) (0.028)

Kleibergen-Paap F -statistic 3100 3073 2761 2779 2413

Notes: This table conducts sensitivity analysis on Column (1) of Table 2, focusing on the construction of kWh/AF conversion
factors. Column (1) uses time-varying predictions of pump drawdown, rather than drawdown as reported at the time of pump
tests. Column (2) uses average groundwater depth by basin-month, rather than rasterized monthly depth at each SP location.
Column (3) removes pump tests with questionable drawdown measurements (i.e., extreme values, internal inconsistencies).
Column (4) removes SPs with multiple pumps appearing in the PGE’s database. Column (5) restricts the sample to SP-months
with a contemporaneous groundwater measurement within 8 miles (the median distance). Regressions are otherwise identical to
Column (1) of Table 2. All regressions include the following fixed effects: SP × month-of-year, SP × 1[large pump], groundwater
basin × year, water district × year, and month-of-sample. Standard errors (in parentheses) are two-way clustered by service
point and month-of-sample. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B5 tests for time-varying confounders related to the timing of PGE’s smart meter
rollout. It seems plausible that PGE might have prioritized replacing smart meters based
on: the age of customers’ accounts (proxied by SP start date in Column (1)), the cost of
accessing customers’ meters (proxied by an SP’s distance to the edge of its parcel in Column
(2)), customers’ expected draw from the grid (proxied by 2008 maximum monthly kWh in
Column (3)), or air conditioning demand among nearby households (proxied by climate zone
in Column (4)). However, our elasticity estimates are largely unchanged when we interact
these proxies with month-of-sample fixed effects.

Table B6 conducts sensitivity analysis on our instrumental variables estimation. Col-
umn (1) shows that our results are robust to lagging the default electricity price instrument,
which assuages concerns about anticipation of tariff changes or smart meter upgrades. Col-
umn (2) shows that our results are nearly identical if we instrument using the modal tariff
in each category (rather than the default tariff). Column (3) presents the uninstrumented
OLS which reveals a downward bias perhaps due to non-classical measurement error in our
kWh-to-AF conversions. Column (4) presents the uninstrumented OLS replacing Pwater

it with
P elec
it , which reveals that the main benefit of the default price instrument is to remove bias

from the kWh-to-AF conversion—not from a within-category tariff selection effect. Column
(5) presents the reduced-form OLS, for comparison.

Table B5: Monthly demand sensitivity – smart meter rollout

log(Qwater)

(1) (2) (3) (4)

log (Pwater ($/AF)) −0.299∗∗∗ −0.293∗∗∗ −0.182∗∗ −0.314∗∗∗

(0.080) (0.080) (0.080) (0.080)

Interact month FEs with SP start date Dist to parcel edge 2008 max kWh Climate zone
Service point units 10,037 10,091 6,828 10,090
Months 148 148 148 148
Observations 952,835 953,469 771,530 953,338

First-stage estimates

log (P elecDefault ($/kWh)) 1.323∗∗∗ 1.323∗∗∗ 1.323∗∗∗ 1.322∗∗∗

(0.024) (0.024) (0.025) (0.024)

Kleibergen-Paap F -statistic 3089 3086 2812 3148

Notes: This table conducts sensitivity analysis on Column (1) of Table 2, focusing on factors that might have been correlated
with PGE’s smart meter rollout. We interact month-of-sample fixed effects with the following cross-sectional fixed effects: the
earliest account open date at the SP (Column (1)); the log of distance from the SP to the edge of its assigned parcel, a proxy
for distance to road (Column (2)); the log of maximum monthly kWh consumed in 2008, the first year of our sample period
(Column (3)); and PGE-designated climate zone (Column (4)). Regressions are otherwise identical to Column (1) of Table
2. All regressions also include the following fixed effects: SP × month-of-year, SP × 1[large pump], groundwater basin ×
year, and water district × year. Standard errors (in parentheses) are two-way clustered by service point and month-of-sample.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B6: Monthly demand sensitivity – IV specification

log(Qwater)

(1) (2) (3) (4) (5)
2SLS 2SLS OLS OLS OLS

log (Pwater ($/AF)) −0.353∗∗∗ −0.278∗∗∗ −0.845∗∗∗

(0.103) (0.083) (0.028)

log (P elec ($/kWh)) −0.380∗∗∗

(0.054)

log (P elecDefault ($/kWh)) −0.388∗∗∗

(0.107)

Service point units 9,971 10,091 10,091 10,091 10,091
Months 136 148 148 148 148
Observations 856,716 953,469 953,469 953,469 953,469

First-stage estimates

log (P elecDefault ($/kWh), 6-mth lag) 0.917∗∗∗

(0.040)

log (P elecDefault ($/kWh), 12-mth lag) 0.030
(0.021)

log (P elecModal ($/kWh)) 0.604∗∗∗

(0.009)

Kleibergen-Paap F -statistic 380 4370

Notes: This table conducts sensitivity analysis on Column (1) of Table 2, focusing on factors related to our instrumental variables
specification. Column (1) lags the default tariff instrument by 6 and 12 months, in case default tariff changes happened to
coincide with factors affecting electricity or groundwater consumption. Column (2) uses an alternate instrument: the modal
tariff in each category, rather than the default tariff. Column (3) presents the uninstrumented OLS estimate corresponding to
our preferred 2SLS regression. Column (4) is also an OLS regression, but uses the log of mean electricity price as an intermediate
step between Column (3) (i.e. mean electricity price transformed from $/kWh into $/AF) and the reduced form presented in
Column (5) (i.e. default mean electricity price). Regressions are otherwise identical to Column (1) of Table 2. All regressions
include the following fixed effects: SP × month-of-year, SP × 1[large pump], groundwater basin × year, water district ×
year, and month-of-sample. Standard errors (in parentheses) are two-way clustered by service point and month-of-sample.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Finally, Table B7 presents additional electricity demand estimates. Column (1) reports
the uninstrumented OLS. Columns (2)–(3) expand the sample using hierarchical clustering
to predict which unmatched agricultural service points are likely to be groundwater pumps.
For Column (2), our clustering algorithm is based on the monthly time series of electricity
consumption at each service point. For Column (3), we use an alternative clustering al-
gorithm based on cross-sectional covariates including: summary statistics on monthly kWh
consumed, county, water district, distance to the edge of each SP’s assigned parcel polygon,
and proximity to a well in the DWR’s Well Completion Reports. In each case, we construct
clusters separately for each county, pooling matched and unmatched SPs. Then, we clas-
sify all unmatched SPs within a cluster as “predicted pumpers” if the share of the county’s
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Table B7: Monthly demand estimates: electricity consumption

(1) (2) (3)
log(Qelec) log(Qelec) log(Qelec)

OLS 2SLS 2SLS

log (P elec ($/kWh)) −0.375∗∗∗ −0.271∗∗∗ −0.233∗∗∗

(0.053) (0.051) (0.054)

Including predicted pumpers Yes (kWh time series) Yes (covariates)
Service point units 10,091 40,045 50,910
Months 148 148 148
Observations 953,469 3,876,641 4,638,030

First-stage estimates

log (P elecDefault ($/kWh)) 1.048∗∗∗ 1.042∗∗∗

(0.006) (0.006)

Kleibergen-Paap F -statistic 30200 31237

Notes: This table reports additional monthly demand estimates for electricity used to pump groundwater. Column (1) estimates
an uninstrumented OLS of log Qelec

it on endogenous P elec
it . Columns (2)–(3) expand the sample to include agricultural SPs

without observed APEP pump tests, but with a high likelihood of operating vertical groundwater pumps. We employ a
hierarchical clustering algorithm to predict latent pumpers using both SP-specific time series of monthly electricity consumption
(Column (2)) and cross-sectional covariates (Column (3)). Regressions are otherwise identical to Column (3) of Table 2. All
regressions include the following fixed effects: SP × month-of-year, SP × 1[large pump], groundwater basin × year, water
district × year, and month-of-sample. Standard errors (in parentheses) are two-way clustered by service point and month-of-
sample. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

matched SPs in that cluster is greater than share of the county’s total SPs in that cluster.
Both expanded samples yield similar monthly electricity demand elasticity estimates.

B.2 Annual demand regressions

Table B8 is analogous to Table B2, revealing that time-varying geographic confounders are
unlikely to be biasing our annual elasticity estimates. Table B9 is analogous to Table B3,
showing that our annual estimates are not sensitive to the inclusion of weather controls.

Table B10 explores our instrumental variables specification. Columns (1)–(2) show that
the model price instrument produces similar annual elasticity estimates (as in Column (2)
of Table B6). Columns (3)–(4) show that the uninstrumented OLS estimate is biased away
from zero (as in Column (3) of Table B6). Columns (5)–(6) reveal much larger reduced-form
annual estimates (in contrast with Column (5) of Table B6).

Table B11 presents annual demand elasticities for electricity. Columns (1)–(2) find
elasticity estimates that are similar to our preferred groundwater estimates (consistent with
the monthly electricity result in Column (3) of Table 2). Columns (3)–(6) show that our de-
mand estimates are similar if we expand our sample to include parcels containing unmatched
service points that we predict to be likely groundwater pumpers (as in Columns (2)–(3) of
Table B7).
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Table B8: Annual demand sensitivity – time-varying confounders

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.749∗∗∗ −0.682∗∗∗ −0.755∗∗∗ −0.659∗∗∗ −0.746∗∗∗ −0.672∗∗∗

(0.202) (0.224) (0.218) (0.231) (0.217) (0.232)

Interact year FEs with Initial HP Initial OPE County
Intensive margin Yes Yes Yes
Parcel units 6,388 6,287 6,388 6,287 6,388 6,287
County-years 367 334 367 334 367 334
Observations 54,220 41,445 54,220 41,445 54,220 41,445

First-stage estimates

log (P elecDefault ($/kWh)) 1.420∗∗∗ 1.392∗∗∗ 1.392∗∗∗ 1.374∗∗∗ 1.400∗∗∗ 1.365∗∗∗

(0.042) (0.044) (0.041) (0.043) (0.042) (0.044)

Kleibergen-Paap F -statistic 1159 688 1151 708 1125 652

Notes: This table conducts sensitivity analysis on Columns (1)–(2) of Table 3, interacting month-of-sample fixed effects with the following
cross-sectional fixed effects: earliest observed nameplate horsepower of pump (Columns (1)–(2)); earliest observed operating pump efficiency
(Columns (3)–(4)); and county (Columns (5)–(6)). Odd (even) columns are otherwise identical to Column (1) (Column (2)) of Table
3. All regressions also include the following fixed effects: parcel × 1[large pump], groundwater basin × year, and water district × year.
Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are
two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table B9: Annual demand sensitivity – adding time-varying controls

log(Qwater)

(1) (2) (3) (4) (5) (6)

log (Pwater ($/AF)) −0.765∗∗∗ −0.687∗∗∗ −0.758∗∗∗ −0.684∗∗∗ −0.899∗∗∗ −0.691∗∗∗

(0.218) (0.229) (0.219) (0.228) (0.201) (0.228)

Control variables Precipitaton Precip & temp Precip & temp lags
Intensive margin Yes Yes Yes
Parcel units 6,388 6,287 6,388 6,287 6,373 6,287
County-years 367 334 367 334 336 334
Observations 54,220 41,445 54,220 41,445 50,121 41,445

First-stage estimates

log (P elecDefault ($/kWh)) 1.409∗∗∗ 1.381∗∗∗ 1.381∗∗∗ 1.378∗∗∗ 1.388∗∗∗ 1.358∗∗∗

(0.042) (0.044) (0.042) (0.044) (0.044) (0.047)

Kleibergen-Paap F -statistic 1120 660 1123 655 988 654

Notes: This table conducts sensitivity analysis on Columns (1)–(2) of Table 3, adding the following time-varying controls: precipitation
(Columns (1)–(2)); precipitation and temperature (Columns (3)–(4)); and contemporaneous and yearly lags of precipitation and temperature
(Column (5)–(6)). Odd (even) columns are otherwise identical to Column (1) (Column (2)) of Table 3. All regressions include the following
fixed effects: parcel × 1[large pump], groundwater basin × year, and water district × year. Regressions are weighted by each parcel’s
“croppable” acreage (excluding forests, development, etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-
year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B10: Annual demand sensitivity – IV specification

log(Qwater)

(1) (2) (3) (4) (5) (6)
2SLS 2SLS OLS OLS OLS OLS

log (Pwater ($/AF)) −0.674∗∗∗ −0.584∗∗ −0.819∗∗∗ −0.808∗∗∗

(0.229) (0.232) (0.084) (0.099)
log (P elecDefault ($/kWh)) −1.074∗∗∗ −0.895∗∗∗

(0.314) (0.306)

Intensive margin Yes Yes Yes
Parcel units 6,388 6,287 6,388 6,287 6,388 6,287
County-years 367 334 367 334 367 334
Observations 54,220 41,445 54,220 41,445 54,220 41,445

First-stage estimates

log (Modal P elec ($/kWh)) 0.625∗∗∗ 0.616∗∗∗

(0.017) (0.018)

Kleibergen-Paap F -statistic 1326 828
Notes: This table conducts sensitivity analysis on Columns (1)–(2) of Table 3, focusing on our instrumental variables specification. Columns
(1)–(2) use an alternate instrument: the modal tariff in each category, rather than the default tariff. Columns (3)–(4) present the unin-
strumented OLS estimate. Columns (5)–(6) present the reduced form of our preferred specification. Odd (even) columns are otherwise
identical to Column (1) (Column (2)) of Table 3. All regressions include the following fixed effects: parcel × 1[large pump], groundwater
basin × year, and water district × year. Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development,
etc.). Standard errors (in parentheses) are two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table B11: Annual demand estimates: electricity consumption

log(Qelec)

(1) (2) (3) (4) (5) (6)

log (P elec ($/AF)) −0.719∗∗∗ −0.641∗∗∗ −0.752∗∗∗ −0.674∗∗∗ −0.688∗∗∗ −0.618∗∗∗

(0.222) (0.230) (0.106) (0.126) (0.115) (0.128)

Including predicted pumpers Yes (kWh time series) Yes (covariates)
Intensive margin Yes Yes Yes
Parcel units 6,388 6,287 32,133 31,776 32,850 32,284
County-years 367 334 384 352 378 346
Observations 54,220 41,445 283,744 219,688 280,449 212,465

First-stage estimates

log (P elecDefault ($/kWh)) 1.281∗∗∗ 1.235∗∗∗ 1.235∗∗∗ 1.077∗∗∗ 1.092∗∗∗ 1.075∗∗∗

(0.024) (0.030) (0.010) (0.011) (0.010) (0.012)

Kleibergen-Paap F -statistic 1509 1021 4881 4199 5241 4564
Notes: This table reports annual demand estimates for electricity used to pump groundwater. Columns (1)–(2) are analogous to Columns
(1)–(2) of Table 3, replacing quantity and price of groundwater with quantity and price of electricity. Columns (3)–(6) expand the sample to
include parcels containing agricultural SPs without observed APEP pump tests, but with a high likelihood of operating vertical groundwater
pumps. We employ a hierarchical clustering algorithm to predict latent pumpers using both SP-specific time series of monthly electricity
consumption (Columns (3)–(4)) and cross-sectional covariates (Columns (5)–(6)). Odd (even) columns are otherwise identical to Column
(1) (Column (2)) of Table 3. All regressions include the following fixed effects: parcel × 1[large pump], groundwater basin × year, and water
district × year). Regressions are weighted by each parcel’s “croppable” acreage (excluding forests, development, etc.). Standard errors (in
parentheses) are two-way clustered by parcel and county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Finally, Table B12 conducts sensitivity analysis on our parcel-year sample. In Columns
(1)–(2), we include the following outlier parcels that we omit from our main analysis (both
reduced-form and structural): parcels with less than 1 croppable acre (for which reported
acreages is prone to measurement error), parcels with greater than 5000 croppable acres
(all of which are unlikely to be irrigated by our observed groundwater pumps), and parcels
with monthly electricity bills exceeding $3000 per croppable acre (indicating either highly
abnormal groundwater use or measurement error in the denominator). Including these outlier
parcels produces similar results. Columns (3)–(4) remove our (preferred) croppable-acreage
weights, yielding attenuated elasticity estimates; this suggests that larger parcels tend to
be relatively more groundwater-cost-responsive than smaller parcels. Finally, Column (5)
uses a service-point-by-year panel, which produces an estimate similar to Column (3).7 This
suggests that our decision to aggregate up from SPs to parcels is not meaningfully altering
our elasticity estimates.

Table B12: Annual demand sensitivity – parcels and acreage weights

log(Qwater)

(1) (2) (3) (4) (5)

log (Pwater ($/AF)) −0.760∗∗∗ −0.677∗∗∗ −0.574∗∗∗ −0.439∗∗ −0.526∗∗∗

(0.218) (0.229) (0.158) (0.217) (0.134)

Include outlier parcels Yes Yes
Remove acreage weights Yes Yes Yes
SP-year panel Yes
Intensive margin Yes Yes
Parcel units 6,913 6,797 6,079 5,867
SP units 9,558
County-years 367 334 367 332 367
Observations 58,816 44,463 53,518 40,647 83,531

First-stage estimates

log (P elecDefault ($/kWh)) 1.410∗∗∗ 1.319∗∗∗ 1.319∗∗∗ 1.229∗∗∗ 1.327∗∗∗

(0.042) (0.051) (0.030) (0.039) (0.029)

Kleibergen-Paap F -statistic 1131 666 1841 1002 2113

Notes: Columns (1)–(2) include parcels with bills over $3000 per croppable acre and with croppable areas /∈ [1, 5000] acres, all
of which we drop from our preferred parcel-year specifications; these regressions are otherwise identical to Columns (1)–(2) of
Table 3. Columns (3)–(4) remove the regression weights by each parcel’s “croppable” acreage, but are otherwise identical to
Columns (1)–(2) of Table 3. Column (5) is analogous to Column (3) but estimates the annual groundwater elasticity at the SP-
level, rather than the (more aggregated) parcel level. All regressions include the following fixed effects: unit × 1[large pump],
groundwater basin × year, and water district × year. Standard errors (in parentheses) are two-way clustered by unit and
county-year. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

7. When the panel unit is the service point, it is not straightforward to isolate the intensive-margin (since
SPs don’t have modal crops per se) or weight by croppable acreage (since SPs don’t have areas per se).
Hence, the appropriate comparison here is between Column (5) and Column (3).
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C Data

C.1 PGE data

PGE monthly billing data We use confidential customer-level electricity datasets, which
PGE’s data management team prepared for us under a non-disclosure agreement. These data
comprise the universe of agricultural electricity consumers in PGE’s service territory, and
we observe each customer’s monthly bills at the service account level for 2008–2019. We
aggregate service accounts up to 112,032 unique service points (i.e. the physical location
of an electricity meter) and construct a “monthified” panel of electricity consumption (in
kWh) at the service point (SP) level.8 We observe several key covariates for each service
point: its latitude and longitude, its climate zone, its electricity tariff, and an indicator
for accounts with solar panels on net-energy metering (which we drop from our estimation
sample). Our data also include meter identifiers to link service point locations to physical
electricity meters. Figure C1 maps all agricultural service points in our dataset.

PGE’s Advanced Pumping Efficiency Program Under the same non-disclosure agree-
ment, we also obtained rich audit data on agricultural groundwater pumps. PGE collected
these data as part of its Advanced Pumping Efficiency Program (APEP), which subsidized
pump tests for agricultural consumers across PGE service territory. We observe the universe
of APEP-subsidized pump tests from 2011–2019: 33,747 unique tests at 24,642 unique pump
locations. For each test, the data report detailed measurements including: operating pump
efficiency, horsepower, standing water level, drawdown, lift (a.k.a. total dynamic head), flow
(in gallons per minute), and kWh/AF.9 We also observe pump make/model, water use (i.e.
irrigation), and the electricity meter identifier. The latter lets us match pump tests to
electricity service points, thereby isolating a sample of 15,732 service points for which agri-
cultural groundwater pumping is the confirmed end-use.10 We restrict our empirical analysis
to this 14% subset of agricultural service points (plotted in dark blue in Figure C1), in order
to avoid incorporating other agricultural electricity end uses.11 We drop all matched service

8. PGE’s monthly bill cycles are customer-specific, and most billing periods do not line up with calendar
months. We “monthify” billed kWh for each SP by splitting/weight-averaging multiple bills in a single
calendar month, in order to create a SP by month panel. This is standard practice in the economics
literature on electricity demand (e.g. Ito (2014)). Most service points have a single service account at each
point in time, but service accounts frequently turn over within a given service point.

9. Measured kWh/AF serves as an important cross-check for computing groundwater quantities. Whereas
the pump test data report kWh/AF at the time of each test, our electricity-to-water conversions account for
variation in groundwater depth over time.

10. Pumping is almost certainly the only end use at matched service points, as PGE typically installs a
dedicated meter for each groundwater pump.

11. This limits our sample by dropping the (many) agricultural groundwater pumps that did not receive
APEP pump tests. While we cannot precisely identify which unmatched agricultural service points are in
fact groundwater pumps, Tables B7 and B11 report sensitivity results where we expand the sample to include
the unmatched service points that we can classify as “predicted pumpers.”
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points where the pump test data report a non-agricultural end use (e.g., “municipal”) or
indicate a non-vertical pump (i.e., small horizontal booster pumps).

Figure C1: PGE agricultural customers

Notes: This figure maps the locations of all agricultural service points served by PGE, from 2008–2019. Dark blue dots indicate
the 15,732 service points that we match to an APEP pump test. Light blue dots indicate unmatched agricultural service points.
The light grey outline indicates PGE’s service territory.

PGE agricultural tariffs PGE offers 23 distinct agricultural tariffs, and our billing data
report the specific tariff associated with each monthly bill. Prices on each tariff are updated
multiple times per year, and historic prices are publicly available, along with information
on tariff-specific eligibility criteria.12 We use these data to construct a 2008–2019 panel of
hourly volumetric (marginal) electricity prices, which we collapse to the monthly level by
taking an unweighted average across hours. Importantly, unlike PGE’s residential electricity
prices, its agricultural tariffs are not tiered: a farm’s marginal price does not depend on its
consumption.

Variation in average volumetric prices arises from several features of PGE’s tariff struc-
ture. All 23 tariffs have higher marginal prices during summer months (May–October).
Time-varying tariffs have higher marginal prices on weekdays, during peak hours (12–6pm),
and on critical peak event days.13 Fixed charges (per kW) also play an important role in

12. See here: https://www.pge.com/tariffs/en/rate-information.html
13. Critical peak pricing offers farmers a slightly lower volumetric price throughout the year. In exchange,

PGE can raise volumetric prices substantially on 15 days throughout the summer (typically the hottest days
of the year). See Blonz (2022) for more details on critical peak pricing.
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Figure C2: Average marginal electricity prices, by category
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Notes: The thick blue line in each panel plots the time series of average marginal monthly electricity price for the default
tariff in each of PGE’s four tariff categories. (These are identical to the four series in the left panel of Figure 2.) For the two
conventional-meter categories, the default tariff is the sole option. For the two smart-meter categories, customers may choose
from a menu of additional tariffs, whose marginal price time series are plotted in thin grey. See surrounding text for further
details.

offsetting marginal prices (per kWh): rates with higher marginal prices tend to have lower
fixed charges, and vice versa. PGE adjusts tariffs’ volumetric prices differentially over time.

22 of PGE’s 23 agricultural tariffs are divided into four mutually exclusive categories,
based on pump size (“small” pumps < 35 horsepower, and “large” pumps ≥ 35 horsepower)
and electricity meter type (conventional analog meters, and digital smart meters).14 The
small-conventional and large-conventional categories comprise a single tariff. The small-
smart and large-smart categories comprise 8 and 12 tariffs respectively; we define the simplest
(i.e., least time-varying) tariff as the default in each of these categories, which serves as our
instrument. Figure C2 plots the time series of average monthly marginal prices for these 22

14. To be precise, the 35 horsepower cutoff applies to pumps with a single motor. For the few pumps with
multiple motors, PGE defines a pump as “large” if the multiple motors sum to at least 15 horsepower of
load. Conventional meters record electricity consumption using an analog dial, whereas smart meters can
digitally store the full time profile of consumption.
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Figure C3: Histogram of pump horsepower

0

200

400

600

800

C
o

u
n

t 
o

f 
S

P
s
 

0 35 100 200 300

Average measured horsepower for SP

Notes: This is a histogram of measured horsepower from APEP pump tests, averaged for each PGE service point in our
estimation sample. This reveals no evidence of bunching at the 35 hp cutoff that defines PGE’s small- vs. large-pump tariff
categories. Bunching would be consistent with farmers’ optimizing against tariff categories when making pump investments.

tariffs by category. Figure C3 reveals no evidence of bunching at this 35 horsepower cutoff,
which assuages concerns about tariff-induced selection in pump size.

The remaining (23rd) tariff comprises a fifth category: farmers who have recently transi-
tioned from internal combustion engines to electricity. We omit this 1.7% subset of matched
pumps from our analysis entirely, for two reasons: (i) they likely represent an idiosyncratic
group of pumps that is less likely to be comparable to pumps in the other four categories,
and (ii) we do not observe groundwater consumption prior to switching to electricity, and
we worry about selection in the timing of these switches. Our results are not sensitive to
this decision to exclude this fifth category.

For our reduced-form analysis, we take unweighted averages over all sample months (or
years) to construct the average marginal electricity price ($/kWh) for each tariff. For our
structural analysis we construct the average total variable costs for each tariff by subtracting
off fixed charges from each tariff (i.e., non-trivial charges assessed per day or per billing
period, which are independent of farmers’ level of consumption).

C.2 Groundwater data

We use publicly available groundwater data from California’s Department of Water Re-
sources (DWR) collected under the California Statewide Groundwater Elevation Monitoring
(CASGEM) Program.15 These data report depth below the surface at 16,852 unique moni-
toring stations during our 2008–2019 sample period, with an average of 33 measurements at
each location at different points in time. We rasterize all measurements from each sample
month, using inverse distance weighting to interpolate a gridded two-dimensional surface

15. These data are available from: https://water.ca.gov/Programs/Groundwater-Management/
Groundwater-Elevation-Monitoring--CASGEM
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of average depth at each point in space.16 Using these monthly rasters and service point
geocoordinates, we construct a service point-month panel of groundwater depths. We also
store the distance from each service point to its nearest measurment site in each month; this
facilitates a robustness check where we remove observations with a high degree of spatial
interpolation in groundwater depths.

We assign each service point to a groundwater basin and sub-basin, using publicly avail-
able shapefiles from the DWR.17 Groundwater (sub-)basins are broadly defined by strati-
graphic barriers through which water does not travel horizontally. California has 425 basins
and 517 sub-basins (only 6% of basins contain more than one sub-basin); our main estima-
tion sample includes farms from 54 basins and 104 sub-basins. Our reduced-form analysis
controls for annual changes in depth that impact all farms within the same basin.

Finally, we link parcels to well-level observations in the DWR’s Well Completion Re-
ports.18 Since these data contain a high degree of measurement error, we only use them as
an input for classifying “predicted pumpers” in Tables B7 and B11.

C.3 Constructing groundwater quantities and prices

Energy is the sole variable input to groundwater production, and virtually all agricultural
groundwater pumps in California are powered by electricity. Holding pump characteristics
and groundwater depths fixed, the relationship between the quantity of groundwater ex-
tracted (measured in acre-feet, or AF) the the quantity of electricity (in kWh) consumed is
governed by physics:

kWh
AF

= kW ÷ AF
hour

=
[Lift (feet)]× [Flow (gallon/minute)]

[Operating pump efficiency (%)]× 5310
÷ AF

hour
(C1)

The power (kW) needed to pump 1 acre-foot is directly proportional to the vertical distance
the water must travel to the surface (i.e. lift) and the speed at which the water travels (i.e.
flow). It is inversely proportional to the rate at which the pump converts electric energy into
the movement of water (i.e. operating pump efficiency, or OPE). We can simplify Equation
(C1) by converting from gallons to acre-feet, arriving at Equation (1) in the main text.

To parameterize Equation (1) for each matched service point-month, we use OPE as
reported in the PGE pump test data. We extrapolate each service point’s first pump test
backwards, extrapolate its last pump test forwards, and interpolate between multiple pump
tests using a triangular kernel in time.

We can likewise parameterize lift using observed pump test measurements. However,
populating lift for service point-months without an observed pump test is more complicated,
since lift is (approximately) the sum of the standing water level (i.e., the baseline groundwater
depth in the absence of pumping), drawdown (i.e., how much pump i impacts its own depth),

16. Before rasterizing, we drop depth measurements that are flagged as having questionable accuracy.
17. See here: https://water.ca.gov/Programs/Groundwater-Management/Bulletin-118
18. These data are available at: https://data.cnra.ca.gov/dataset/well-completion-reports
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and other pump-specific factors (e.g., discharge pressure, gauge corrections, height of the
pump above the surface).19 Our preferred approach models drawdown as a function of the
standing water level and location fixed effects (to account for properties of the stubstrata);
then we combine these pump-specific drawdown predictions with (i) our service point-month
panel of groundwater depths (i.e. observed variation in the standing water level; described
above), and (ii) fixed pump characteristics, in order to populate lift for each service point-
month. As with OPE, we extrapolate beyond the first/last pump tests and interpolate
between pump tests (for all inputs of lift except standing water level). Table B4 presents
sensitivity analysis on how we construct lift.

C.4 Constructing crop choice at the parcel level

Our data on cropped acreage are from the U.S. Department of Agriculture’s (USDA) Crop-
land Data Layer (CDL).20 This product provides annual information on what crop is being
grown at every 30-by-30 meter pixel in the United States from 1997 to 2019. California was
added to the CDL in 2007. The CDL is generated using satellite imagery in conjunction
with a machine learning algorithm, and its land classifications are ground-truthed against
the USDA’s Farm Service Agency’s farm surveys. The CDL reports 97 distinct crops were
grown in California during our sample period. We classify these 97 crops into three broad
categories: annual crops, fruit and nut perennial crops, and hay perennial crops. The major
annual crops in our sample are winter wheat, cotton, tomatoes, corn, and rice. The major
fruit and nut perennial crops are almonds, grapes, walnuts, pistachios, and oranges. The
hay perennials category is dominated by alfalfa. Two additional categories are non-crop
(which the CDL reports as “fallow/idle cropland”), and not croppable (i.e., non-crop land
uses including forest, shrubland, and development).

Using parcel shapefiles obtained from California county tax assessors’ offices, we cookie-
cutter each annual CDL image to construct parcel polygons. This yields a parcel-year panel
of the shares of land cover by category (e.g., the fraction of acres in parcel f that were
crop category c in year t). For parcels that are spatially merged to our sample of matched
service points, these fractions serve as outcome variables in our reduced-form analysis (i.e.,
Columns (3)–(6) of Table 3). They also enter our structural analysis as F c

ft in Equation
(8). However, for our intensive-margin regressions (Column (2) of Table 3), we restrict the
sample such that the parcel’s modal crop choice is the same in adjacent years. Finally, we
use year-on-year transitions at the pixel level to calculate conditional choice probabilities.21

In all cases, we remove “not croppable” acreage from the denominator of each parcel-year.

19. Drawdown depends on rate of extraction (i.e. flow) and the physical properties of the substrata. Greater
flow increases drawdown, as water levels fall with faster extraction. More transmissive (or porous) rock
formations have lower drawdown, because water levels are able to horizontally reequilibrate more quickly.

20. https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
21. We use all pixels contained within parcels in market m that merge to matched service points, dropping

not croppable pixels. Calculating CCPs at the pixel level (as opposed to using parcel-specific modes) helps
to increase coverage across all possible switches within a market.
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C.5 Defining markets using surface water districts

Following Hagerty (2022), we spatially merge parcels to water districts. Shapefiles for Califor-
nia’s water districts come from the California DWR, the California Atlas, and the California
Environmental Health Tracking Program.22 Water districts are administrative entities that
govern farmers’ annual allocations of surface water.23 Individual water districts typically
offer their constituent farmers a common per-acre allocation at substantially lower marginal
price than farmers’ marginal cost of groundwater pumping.

Figure C4: Water districts and counties used to construct markets

Notes: This figure maps the number of parcels with matched service points by water district and (for parcels not in a water
district) by county. We use water districts (plotted with thick grey borders) and counties-less-water-districts to construct
markets in our dynamic discrete choice analysis. Note that our market definitions further subdivide these polygons by small-
vs. large-pump tariffs, and then aggregate water districts with fewer than 30 parcels up to the county level (preserving the
small- vs. large-pump split).

Since groundwater and surface water are obvious substitutes, this cost advantage for
surface water is key: we can assume that farmers exhaust their (inframarginal) surface
water allocations before pumping groundwater, rendering any positive observed groundwa-
ter pumping the marginal source of irrigation.24 In our reduced-form analysis, we non-
parametrically control for annual shocks to surface water allocations at the water district

22. We thank Nick Hagerty for providing these shapefiles, and for his help in understanding and processing
these surface water data.

23. As Hagerty (2022) describes, the term “water district” refers to multiple types of organizations that
provide/sell water to irrigators within a defined area, including: irrigation districts, county water agencies,
water conservation and flood control districts, reclamation districts, and mutual water companies.

24. A third source of water for irrigation is the open market. However, Hagerty (2023) suggests that
purchased water is almost always more expensive than the groundwater costs for farmers in our dataset.
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level. This helps to isolate changes in pumping behavior driven by variation in pumping cost
shocks, rather than by variation in the availability of groundwater substitutes.

For our structural analysis, we use water districts to define “markets.” This grouping
combines farmers who are geographically proximate and likely to have similar conditional
value functions for a given field state and crop choice. It also absorbs heterogeneous surface
water allocations and annual shocks to these allocations, which occur at the water district
level. For the 40% of matched parcels that are not in a water district (i.e., not receiving
surface water allocations), we use counties to define “markets.” Figure C4 maps water dis-
tricts (with thick grey borders) and counties, where shading indicates the number of parcels
with matched service points in each polygon. These polygons do not directly correspond to
the markets used in our structural analysis, since (i) we further subdivide parcels by small
vs. large pump categories, and (ii) we then aggregate water-district-by-pump-size units with
fewer than 30 in-sample parcels up to the county level. Appendix A.2 provides further details
on how we construct markets.

C.6 Weather data

Weather is a key input into agricultural production, which directly impacts groundwater
consumption. We obtained daily temperature and precipitation rasters from the PRISM
climate group, a standard source in the agriculture economics literature (see, e.g., Schlenker
and Roberts (2009) and Burke and Emerick (2016)).25 Using gridded data with a 4km-
by-4km resolution, we extract daily maximum temperature, minimum temperature, and
precipitation at each SP location.

C.7 SGMA data

To quantify the reductions in groundwater pumping that will be required under SGMA, we
collect data from the Groundwater Sustainability Plans (GSPs) that Groundwater Sustain-
ability Agencies (GSAs) submitted to the California Department of Water Resources. All
GSAs in the 90 high- and medium-priority basins were required to submit GSPs by January
31, 2022 (California Department of Water Resources (2024)). As of the time of writing, there
were 120 available GSPs.26 We downloaded all available GSPs and extracted two pieces of
information from each: (i) annual average groundwater pumping; and (ii) “sustainable yield,”
or “the maximum amount of water calculated over a base period representative of long-term
conditions in the basin and including any temporary surplus that can be withdrawn annually
from a groundwater supply without causing an undesirable result” (California Department

25. These data are available at https://prism.oregonstate.edu/.
26. GSPs are available from the Department of Water Resources: https://sgma.water.ca.gov/portal/gsp/all
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Figure C5: GSP sustainability targets under SGMA

Notes: This figure maps the Groundwater Sustainability Agencies (GSAs) within California’s medium- and high-priority basins,
which were required to submit Groundwater Sustainability Plans (GSPs) to the Department of Water Resources. The shading
reflects the percentage reduction in groundwater pumping that will be required to reach sustainability according to each GSP.
See surrounding text for details.

of Water Resources (2017)).27 We were able to populate these two numbers for 111 out of
the 120 available GSPs.28

Our measure of interest is the percent reduction in groundwater pumping that will be
needed to meet each GSP’s SGMA target, which we define as:

current pumping − sustainable yield
current pumping

× 100

Figure C5 plots this statistic for all (available) GSAs. 63 GSPs report overdraft conditions,
or sustainable yield that is below current pumping levels; 57 GSPs report current pumping
levels at or below sustainable yield, thereby already achieving sustainability.29 Bringing the

27. GSPs are detail documents, frequently over 1,000 pages long. Where possible, we draw these numbers
from the executive summary. If these numbers are not in the executive summary, we extract these numbers
from the GSP’s water budget section.

28. Of the 90 basins where GSPs were required, 71 basins’ GSPs were fully approved as of January 2024.
13 basins’ GSPs were deemed incomplete, and 6 basins’ GSPs were deemed inadequate. We include all
available GSPs—whether approved or not—in our GSP data, as these are the best available representation
of groundwater pumping reductions required under SGMA. We expect that, if anything, the final approved
GSPs will be more stringent than the proposals, making our summary statistics underestimates of the
ultimate regulatory climate.

29. It is possible that the GSPs understate the true magnitude of overdraft. Bruno, Jessoe, and Hanemann
(Forthcoming) compares reported overdraft to the results from running the C2VSim hydrology model, and
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average overdrafted GSP into sustainability under this definition will require reductions in
pumping of 20.7% (weighting all GSPs equally) or 19.2% (weighting by current pumping).30
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finds they are broadly similar (average reported overdraft: 0.085 AF/acre; average modeled overdraft: 0.094
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30. These averages exclude GSPs for which (current pumping) ≤ (sustainable yield).
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