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Abstract

We find that several recently proposed, consumption-based models of stock
returns, when evaluated using an optimal set of managed portfolios and the asso-
ciated model-implied conditional moment restrictions, fail to capture key features
of risk premiums in equity markets. To arrive at these conclusions we address
two methodological issues that are central to assessing the goodness-of-fit of asset
pricing models in which the stochastic discount factor (SDF ) is a conditionally
affine function of a set of priced risk factors. First, we show that there is an
optimal GMM estimator for this class of SDF s. That is, there is a choice of in-
struments that leads to the most efficient estimator within a class that subsumes
virtually all of the GMM estimators used to date in assessing the fit of condition-
ally affine factor models. Second, for the (often relevant) case where a researcher
is proposing a generalized SDF relative to some null model, we show that there
is an optimal choice of managed portfolios to use in testing the null against the
proposed alternative. The form of the optimal choice of test portfolios is derived
directly from the (locally) most powerful Wald and Lagrange-multiplier tests of
the null against the alternative specification of the SDF .
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There is a large and growing literature that explores the goodness-of-fit of dynamic

asset pricing models in which the stochastic discount factor (SDF) takes the condi-

tionally affine form mt+1(θ0) = φ0
t (θ0) + φf ′

t (θ0)ft+1, where f is the vector of observed

“priced” risk factors, the factor weights (φ0
t , φ

f ′
t ) are in the modeler’s information set

Jt, and θ0 is an unknown vector of parameters. SDF’s of this form are implicit in

conditional versions of the classical CAPM and its multifactor extensions (as posited,

for example, in Fama and French (1996), Jagannathan and Wang (1996), and explored

empirically in Hodrick and Zhang (2001)). They also arise from linearized consumption-

based asset pricing models in which mt+1 is a representative agent’s marginal rate of

substitution (e.g., Lettau and Ludvigson (2001b), and Santos and Veronesi (2006)).

To evaluate the fits of their candidate SDFs, researchers typically posit an R-vector

of “test-asset” returns rt+1, construct GMM estimators θT of θ0, and then examine

whether the test asset payoffs are correctly priced by the candidate SDF; that is,

whether T−1
∑T

t=1 (mt+1(θT )rt+1 − ı) is close to zero, where ı is an R-vector of ones.

Based on these assessments, several candidate SDF s have been found to adequately

describe the expected excess returns on common stocks. This lack of discrimination

between models, some with very different economic underpinnings, is why Daniel and

Titman (2006) and Lewellen, Nagel, and Shanken (2008), among others, have ques-

tioned the statistical power of extant tests.

A key premise of this paper is that considerable latitude remains for enhanced

model discrimination by more efficiently exploiting the economic content of the dynamic

pricing relation1

E[mt+1(θ0)rt+1|Jt] = ı. (1)

1Under value additivity and additional, relatively weak, regularity conditions, Hansen and Richard
(1987) show that there is a unique pricing kernel mt+1 that prices all of the payoffs in a given payoff
space according to E [mt+1ri,t+1|At] = 1, where At is agents’ information set. Conditioning down to
the econometrician’s information set Jt gives this pricing relation.
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Any model satisfying (1) must not only fit the cross-section of average returns, but also

the potentially more informative and demanding implied restrictions on the conditional

moments of (mt+1, rt+1). We explore the fit of (1) by examining whether mt+1(θ0),

evaluated at a GMM estimator θT of θ0, reliably prices managed portfolio payoffs of

the form Btrt+1, where Bt ∈ Jt is a state-dependent matrix of portfolio weights.

Heuristically, assessments of whether a candidate SDF accurately prices the payoffs

Btrt+1 will be more reliable the more precise are the estimates of θ0. Yet in practice

instrument selection for GMM estimation has not been tied to the specific formulation

of a SDF , other than to include lagged values of returns, consumption growth, and

other variables in Jt that enter mt+1. In this paper we draw upon the work of Hansen

(1985) and Chamberlain (1987) to show that there is an optimal choice of instruments

in the sense that the resulting GMM estimator has the smallest asymptotic covari-

ance matrix among all admissible GMM estimators based on the conditional moment

restrictions (1). Importantly, the optimal instruments are not lagged values of returns

or of the variables comprising the SDF . Rather, we will show that they are nonlinear

functions of the conditioning information Jt that are related to the first and second

moments of products of returns and factors, rt+1f
′
t+1, as suggested by the restrictions

(1) on the conditional distribution of mt+1(θ0)rt+1.

Equipped with the efficient GMM estimator θ∗T , we proceed to construct chi-square

goodness-of-fit tests based on the implication of (1) that a candidate SDF should price

any pre-specified M-vector of managed payoffs Btrt+1:

E [mt+1(θ0)Btrt+1 − Btı] = 0. (2)

This approach enhances the GMM-based inference strategies used by Hodrick and
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Zhang (2001), Lettau and Ludvigson (2001b), and Roussanov (2009), among many

others, by using the asymptotically efficient estimator θ∗T of θ0.

Specializing further, we formalize the connection between maximal efficiency of the

GMM estimator and maximal power of goodness-of-fit tests for the situation where a

researcher is proposing a generalized SDF

mG
t+1(θ0) = φ0(zt; β0, γ0) + φf ′

(zt; β0, γ0)ft+1, (3)

where zt ∈ Jt, ft+1 is a vector of risk factors, and the null specification mN
t+1(β0)

is the nested special case with γ0 = 0; mN
t+1(β0) = mG

t+1(β0, 0). Examples include

the extended ICAPMs examined by Lettau and Ludvigson (2001b) (zt = CAYt) and

Santos and Veronesi (2006) (zt = the ratio of labor income to total income) where

mN
t+1 is the pricing kernel induced by constant relative risk averse preferences. Also

included is the conditional CAPM of Jagannathan and Wang (1996) (zt = the spread

on high-yield bonds) where mN
t+1 is the SDF induced by a classical CAPM in which

expected returns are affine functions of their associated unconditional betas. Similarly,

we subsume explorations of the economic significance of expanding the set of risk factors

that are priced. This includes extensions of the conditional CAPM [e.g., the inclusion

of returns to human capital in Jagannathan and Wang (1996)] or of the three-factor

Fama and French (1992) model [e.g., the inclusion of momentum (Carhart (1997)) or

liquidity (Pastor and Stambaugh (2003)) factors], as well as a linearized version of

the model in Lustig and Nieuwerburgh (2006) with preferences defined over aggregate

consumption and housing services.

We show that the Wald and Lagrange-multiplier (LM) tests of the null γ0 = 0 based

on the optimal GMM estimator θ∗0 are the (locally) most powerful chi-square tests
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against the alternative hypothesis that the pricing kernel is mG
t+1. Moreover, these op-

timal tests can be reinterpreted as tests of the null hypothesis E[B∗
t (m

N
t+1(β0)rt+1−ı)] =

0, for suitably chosen B∗
t ∈ Jt. In this manner we derive an optimal set of managed

portfolios B∗
t that maximize the power of our proposed chi-square tests of mN

t+1 against

the alternative mG
t+1. The portfolio weights B∗

t take an economically intuitive form:

letting ht+1(θ0) = (mG
t+1(θ0)rt+1 − ı) denote the population pricing errors for the test

asset returns rt+1, B∗
t is proportional to the component of E[∂ht+1(θ0)/∂γ|Jt]– the ex-

pected sensitivity of pricing errors to changes in the parameters governing the extended

mG
t+1– that is conditionally orthogonal to its counterpart for the parameters β of the

null specification, E[∂ht+1(θ0)/∂β|Jt]. Maximal power is achieved using the optimal

portfolio weights B∗
t and evaluating mt+1 at the efficient GMM estimator θ∗T .

The remainder of this paper is organized as follows. Section I reviews some of the

key properties of conditional affine pricing models that will be needed in subsequent

discussions. In Section II we outline the standard inference strategy of evaluating

dynamic asset pricing models based on the pricing of managed portfolios as in (2).

Then we construct optimal GMM estimators for conditionally affine SDF s. The

characterization of the optimal choice of managed-portfolio weights B∗
t for maximizing

the power of tests of mN
t+1 against the alternative mG

t+1 is developed in Section III.

We then turn to empirical implementations of our proposed methods in Sections IV

and V. Two different constructions of the optimal instruments and portfolio weights are

explored. One is a non-parametric estimation strategy conditioning on the source zt of

the state-dependence of the SDF weights φf (zt, θ0). The other is a semi-nonparametric

strategy based with conditioning on a polynomial function of zt, consumption growth,

and rt. The results suggest that there are substantial gains in efficiency from using the

optimal GMM estimator over other standard GMM estimators that have been used in
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previous studies. Additionally none of the models examined pass standard diagnostic

chi-square tests when the test assets are portfolios sorted by firm size and book-to-

market. These findings are explored in more depth by examining the model-implied

pricing errors and time series of coefficients of relative risk aversion. While these

model seemingly do quite well in fitting the cross-section of average returns of size

and book-to-market portfolios when estimation and testing is based on unconditional

moment restrictions, they fail to match variation in conditional moments of returns.

Our methodology allows us to transparently show that the small average pricing errors

hide enormous time-variation in conditional pricing errors.

I Conditional Factor Models

A now standard approach to testing the cross-sectional implications of (1) is to assume

that the pricing kernel has the conditionally affine structure (3), often with the factor

weights φ̃′
t = (φ0

t , φ
f ′
t ) ∈ Jt also being affine functions of an underlying vector of

conditioning variables zt. Letting f̃ ′
t = (1, f ′

t) and “conditioning down” to the modeler’s

information set Jt leads to the following conditional “beta” representation of returns,2

E[ri
t+1|Jt] − rf

t = βJ ′
i,t λJ

t , (4)

rf
t = 1/E [mt+1(θ0)|Jt] , (5)

2This follows from the observation that

E[ri
t+1|Jt] − µ0J

t =
−Cov[ri

t+1, mt+1 | Jt]

E[mt+1 | Jt]
,

for a given ri
t in the set of R test asset returns rt. Substituting (3) and rearranging gives (4). This

construction does not require the assumption that ft ∈ Jt. However, if ft is not in Jt, then the
presumption would typically be that Jt is a subset of an econometrician’s information set. This is
because having observations on ft is generally required for the econometric implementation of (4)-(5).
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where βJ
i,t = Cov (ft+1, f

′
t+1|Jt)

−1Cov (ft+1, r
i
t+1|Jt) and λJ

t = −rf
t Cov (ft+1, f̃

′
t+1|Jt)φ̃t.

Both βJ
i,t and λJ

t are in general state-dependent, and λJ
t depends on the factor weights

φt when not all of the factors are returns or excess returns on traded portfolios. There-

fore, many have followed Cochrane (1996) and imposed special structure on the pricing

kernel that leads to a convenient unconditional factor model for returns.

Specifically, supposing that φ̃t is an affine function of zt, mt+1 can be expressed as

mt+1(θ0) = θ′f#
t+1. (6)

The K × 1 vector of risk factors f#
t+1 is built up from zt and ft+1 and products of the

elements of these vectors. Thus the pricing kernel can be thought of as arising from

a K-factor model with constant factor weights (with factors that are dated both at

dates t and t + 1) and where K is larger (potentially much larger) than the number of

factors in the underlying conditional model, F .

Furthermore, substituting (6) into E[ht+1(θ0)] = 0 gives the moment equations

E[θ′f#
t+1r

i
t+1] = 1, i = 1, . . . , R. (7)

By the same reasoning leading to (4), but with J = ∅, there exists a scalar µ0 and

constant K × 1 vectors β#
i and λ# such that

E[ri
t+1] − µ0 = β#′

i λ#, i = 1, . . . , R, (8)

where β#
i = Cov( f#

t , f#′
t )−1Cov( f#

t , ri
t), and λ# = −µ0Cov( f#

t+1, mt+1). Expression

(8) imposes (relatively) easily testable restrictions on the cross-section of expected

excess returns on the R test assets.
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Tests based on the unconditional moment restriction (8) are omitting two poten-

tially important sources of information about the validity of the underlying conditional

asset pricing models. First the conditional moment restriction (1) leads to the expres-

sion (4) for conditional expected excess returns, with potentially state-dependent factor

beta’s and market prices of risk. That is, potentially informative restrictions across the

conditional first and second moments of the returns and risk factors are being omit-

ted from assessments of goodness-of-fit. Second, implicit in (1) are the links between

rf
t and the conditional mean of mt+1(θ0)

3 (see (5)) and between λJ
t , the conditional

second moments of ft+1, and the factor weights φt that determine the pricing kernel.

When ft+1 is a vector of returns or excess returns on traded portfolios, then the latter

restrictions imply a direct link between λJ
t and the excess returns on these portfolios.

A key premise of our analysis is that examination of the conditional pricing relations

(4) and (5) jointly is potentially more revealing about the strengths and weaknesses

of SDF s as descriptions of history, and about the features of SDF s that are needed

to better match the historical, conditional distribution of returns. Examination of the

joint restriction (4)-(5) is equivalent to examination of the conditional moment restric-

tion (1). Thus, optimal tests based on (1) will be (asymptotically) at least as powerful

as those based on (4), because the former incorporates more of the economic content of

the conditional pricing model. Moreover, (1) embodies substantially more information

than does the orthogonality of mt+1 and excess returns, E[mt+1(θ0)(rt+1− ırf
t )|Jt] = 0.

The latter expression implicitly relaxes the constraint (5) on the conditional mean of

the pricing kernel and, hence, the scale of the pricing kernel cannot be identified.

3More generally, the links are between the return on a zero-beta portfolio and the conditional mean
of mt+1.
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II Efficient GMM Estimation of Affine SDF s

Model assessment has frequently focused on whether a candidate SDF mt+1(θ0) accu-

rately prices the portfolio payoffs Btrt+1– that is, whether H0 : E[Btht+1(θ0)] = 0 is

satisfied– for a pre-specified set of managed portfolio weights Bt ∈ Jt. This null hy-

pothesis cannot be examined directly, because θ0 (and hence Btht+1(θ0)) is unknown.

Standard practice is to first construct a GMM estimator θT of θ0, and then use the

sample mean of {Btht+1(θT )} to construct a chi-square test of H0. Owing to the

first-stage estimation of θ0, this inference strategy involves the joint hypothesis that

Btrt+1 is accurately priced by mt+1(θ0) and that the moment conditions underlying

the construction of the GMM estimator of θ0 are satisfied. Accordingly, we begin our

discussion of the estimation of θ0 by briefly reviewing the large-samples properties of

chi-square tests constructed in this manner.

Suppose that a GMM estimator of the K-dimensional vector of unknown parame-

ters θ0 governing the SDF is constructed from the moment condition4

E[Atht+1(θ0)] = 0, (9)

for some K ×R matrix At with entries in Jt. Since (9) constitutes K equations in the

K unknowns θ0, we can define the GMM estimator θA
T of θ0, indexed by the modeler’s

choice of instrument process {At}, as the value of θ that solves

1

T

T∑

t=1

At(mt+1(θ
A
T )rt+1 − ı) =

1

T

T∑

t=1

Atht+1(θ
A
T ) = 0. (10)

4Virtually all of the GMM estimators of factor models that have been implemented in the literature
imply first-order conditions that are special cases of this moment condition. This includes Hansen
(1982)’s fixed-instrument GMM estimator. Therefore, estimation based on the optimal choice of
At determined subsequently will lead to estimators that are at least as efficient, and generally more
efficient, than those employed in the extant literature.
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Under regularity, the asymptotic covariance matrix of θA
T is (Hansen (1982))

ΩA
0 = E

[
At

∂ht+1(θ0)
∂θ

]−1

ΣA
0 E
[

∂ht+1(θ0)′

∂θ
A′

t

]−1

, (11)

where5

ΣA

0 = E[Atht+1(θ0)ht+1(θ0)
′A′

t]. (12)

With the GMM estimator in hand, assessment of whether a candidate SDF ac-

curately prices the payoffs Btrt+1 typically involves the computation of a chi-square

statistic based on the sample pricing errors

1

T

T∑

t=1

Bt(mt+1(θ
A
T )rt+1 − ı) =

1

T

T∑

t=1

Btht+1(θ
A
T ). (13)

In Appendix A we show that

1√
T

T∑

t=1

Btht+1(θ
A
T )

D→ N(0, ΓA
0 ), ΓA

0 = E[CA
t ΣtC

A′
t ], (14)

where
D→ denotes convergence in distribution, Σt = E[ht+1(θ0)ht+1(θ0)

′|Jt], and

CA
t = Bt − E

[
Bt

∂ht+1(θ0)

∂θ

]
E

[
At

∂ht+1(θ0)

∂θ

]−1

At. (15)

The form of CA
t reflects the fact that pre-estimation of θ0 using the instruments At

5This form for ΣA follows from the fact that Atht+1(θ0) is a martingale difference sequence (see
Hansen and Singleton (1982)).
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affects the asymptotic distribution of the sample mean (13). It follows that

τT (B, A) ≡
(

1√
T

T∑

t=1

ht+1(θ
A
T )′B′

t

)

(ΓA
T )−1

(
1√
T

T∑

t=1

Btht+1(θ
A
T )

)

(16)

a
=

(
1√
T

∑

t

ht+1(θ0)
′CA′

t

)

(ΓA
T )−1

(
1√
T

∑

t

CA
t ht+1(θ0)

)

, (17)

where
a
= means “asymptotically equivalent to.” By standard arguments τT (B, A)

D→

χ2(M), where the degrees of freedom M is determined by the row dimension of the

test matrix Bt.

The joint nature of the null hypothesis that is effectively being tested with the

statistic τ(B, A) is immediately apparent from (17). For τ(B, A) to have an asymptotic

chi-square distribution, it must be the case that

H0 : E

[(

Bt − E

[
Bt

∂ht+1(θ0)

∂θ

]
E

[
At

∂ht+1(θ0)

∂θ

]−1

At

)

ht+1(θ0)

]

= 0. (18)

The first part of this joint null is accurate pricing: E[Btht+1(θ0)] = 0. The second

piece, E[Atht+1(θ0)] = 0, ensures that θA
T is a consistent estimator of θ0. The sample

counterpart of the left-hand side of (18) is (13), because θA
T satisfies the first-order

conditions (10). We subsequently exploit the dependence of the power function of this

chi-square test on the choice of (At, Bt) to derive optimal choices of these matrices.
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II.A Optimal GMM Estimation of Conditional Factor Models

If we index each estimator θA
T by its associated instrument matrix At, then we can

define the admissible class of GMM estimators as6

A =

{
At ∈ Jt, such that E

[
At

∂ht+1(θ0)

∂θ

]
has full rank

}
. (19)

Researchers have considerable latitude in selecting the sequence of matrices {At} to

construct a consistent estimator of θ0. Elements of At are typically built up from linear

combinations of lagged returns, consumption growth rates, or other macroeconomic

constructs underlying the pricing kernel. We seek the choice of At ∈ A that gives

rise to the asymptotically most efficient estimator of θ0. In so doing, we ensure that

our estimator is at least as efficient as any GMM estimator based on a given set of

instruments wt of any dimension L and the associated L×R orthogonality conditions

E[ht+1(θ0) ⊗ wt] = 0. This is because the sample moment conditions for any such

“fixed-instrument” GMM estimator (Hansen and Singleton (1982)) can be written in

the form of (10) for an appropriate choice of At ∈ A.7

The most efficient GMM estimator is the one that produces the smallest ΩA
0 by

choice of {At} ∈ A. Fortunately, the solution to this minimization problem has been

characterized (for our case of errors that follow a martingale difference sequence) by

Hansen (1985), Chamberlain (1987), and Hansen, Heaton, and Ogaki (1988). Specifi-

6The rank condition in the definition of A ensures that the model is econometrically identified. It
is the counterpart to the rank condition in the classical simultaneous equations models.

7Hansen (1982)’s fixed-instrument GMM estimator has one minimize the quadratic form
GT (θ)′WT GT (θ), where GT (θ) = T−1

∑
t ht+1(θ) ⊗ wt and WT is a LR × LR dimensional distance

matrix. The first-order conditions to this minimization problem set K linear combinations of the sam-
ple moments GT (θT ) to zero. Straightforward rearrangement of these equations gives an expression
of the form (10) with At depending on the choices of instruments wt and distance matrix W .
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cally, the optimal choice is

A∗
t = Ψθ′

t Σ−1
t , where Ψθ

t ≡ E

[
∂ht+1(θ0)

∂θ

∣∣∣Jt

]
, (20)

and the associated asymptotic covariance matrix is

Ω∗
0 =

(
E
[
Ψθ′

t Σ−1
t Ψθ

t

])−1
. (21)

The first term in the definition of A∗, Ψθ′
t , captures the sensitivity of ht+1(θ0) to changes

in the parameters. Since, in general, ∂ht+1(θ0)/∂θ /∈ Jt, the role of the conditional

expectation is to project these partial derivatives onto the econometrician’s information

set (thereby giving admissible instruments).8 The post-multiplication by Σ−1
t serves to

adjust for conditional heteroskedasticity, in a manner exactly analogous to the scaling

of both regressors and errors in the implementation of GLS estimators.

Though at first glance the structure of A∗
t may appear to be intractable,9 for models

with conditionally affine pricing kernels of the form (3), the building blocks of A∗
t take

tractable forms. Specifically, letting φ̃(zt, θ0)
′ = (φ0′(zt, θ0), φ

f ′(zt, θ0)) and f̃ ′
t+1 =

(1, f ′
t+1), a typical element of the first term in (20) takes the form

E

[
∂hi,t+1(θ0)

∂θ0j

∣∣Jt

]
=

∂φ̃(zt, θ0)
′

∂θ0j

E
[
f̃t+1ri,t+1

∣∣Jt

]
. (22)

8This step is exactly analogous to the projection of “right-hand-side” regressors onto the prede-
termined variables in 2SLS and 3SLS estimation. In linear models, these regressors comprise the
partial derivatives of the equation error with respect to θ0.

9In general, ∂ht+1(θ0)/∂θ is nonlinear and its conditional expectation is unknown. The resulting
intractability of the optimal GMM estimator no doubt underlies the absence of its application in
financial economics. Hansen and Singleton (1996) derive and implement the optimal GMM estimator
for a class of consumption-based pricing models with serially correlated, homoskedastic errors. The
estimation problem here is fundamentally different in that we have serially uncorrelated, conditionally
heteroskedastic errors.
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The functional form of φ̃(zt, θ0) is known from the specification of the pricing kernel and,

hence, so are its partial derivatives. Therefore computation of (22) involves computing

the conditional moments of cross-products of asset returns ri,t+1 and the elements of

f̃t+1. When the factors themselves are excess returns, we are computing conditional

first and second moments of returns. Otherwise we are computing the conditional first

moment of returns, risk factors, and their cross-products.

Similarly,

E
[
hi,t+1(θ0)hj,t+1(θ0)

′∣∣Jt

]
= φ̃(zt, θ0)

′E
[
ri,t+1rj,t+1f̃t+1f̃

′
t+1|Jt

]
φ̃(zt, θ0)

− φ̃(zt, θ0)
′E
[
f̃t+1ri,t+1|Jt

]
− φ̃(zt, θ0)

′E
[
f̃t+1rj,t+1|Jt

]
+ 1.

(23)

The first term on the right-hand side of (23) requires the computation of conditional

second moments of returns and cross fourth moments of returns and factors (conditional

means of terms like ri,t+1rj,t+1fk,t+1fℓ,t+1). Once again, any nonlinearity inherent in the

specification of the factor weights φ̃ does not add complexity to the computation of

the optimal instruments.

The tractability of implementing the optimal GMM estimator for conditionally

affine pricing models warrants special emphasis. There is substantial evidence that

fixed-instrument GMM estimators based on the orthogonality conditions E[ht+1(θ0)⊗

wt] = 0 exhibit asymptotic bias as the number of moment conditions grows.10 Intu-

itively, the sources of this bias are two-fold: (i) the need to pre-estimate the optimal

distance matrix for two-step GMM estimation, and (ii) the fact that the implied ma-

trix At(θ
#
T ) of instruments, evaluated at the first-stage estimator θ#

T , may be correlated

with the pricing errors ht+1(θ
A
T ) evaluated at the second-stage GMM estimator (see,

10The potential for large biases is discussed theoretically in Newey and Smith (2004) and simulation
evidence is provided by Altonji and Segal (1996), Hansen, Heaton, and Yaron (1996), and Imbens and
Spady (2005), among others.
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e.g., Newey and Smith (2004)).

Our optimal GMM estimator avoids these sources of bias, because there is no first-

stage estimation of a (potentially large) distance matrix. Moreover, once we have

estimated the conditional moments of the data underlying the components of A∗, we

proceed to find the θ∗T that solves the sample moment equations (10) with At = A∗
t .

That is, we implement what is effectively a continuously-updated GMM estimator

(Hansen, Heaton, and Yaron (1996)). It follows that, by construction, A∗
t (θ

∗
T ) is or-

thogonal to ht+1(θ
∗
T ), thereby removing a key source of bias in GMM estimation.

The dependence of A∗ on conditional moments does raise the practical question of

whether, in deriving the large-sample distribution of θ∗T , it is presumed that (a) the

components of A∗
t (see (20)) are correctly specified, or (b) they are approximated with

a scheme that becomes increasingly accurate as the sample size increases. The first

case arises when a researcher adopts parametric models of Ψθ
t and Σt. In this case, the

asymptotic covariance matrix of θ∗T is (21).

The second case arises when either non-parametric or semi-non-parametric methods

are used to estimate conditional moments. Many of these methods have the property

that the quality of the approximations to the true functional forms of Ψθ
t and Σt

improve with sample size. (That is, one employs increasingly flexible specifications

of the approximating functions as T increases.) However these approximations often

do not converge at a sufficiently fast rate to ensure that (1/
√

T )
∑T

t=1 Ã∗T
t ht+1(θ0)

converges in distribution to a normal random variable, where we have used the notation

Ã∗T
t to denote the approximation of A∗

t used for a sample size of T . In our subsequent

illustrations we use both non-parametric and (what we think of as) semi-non-parametric

specifications of Ψθ
t and Σt and, for our sample size, neither may give completely

accurate representations of A∗
t . With this possibility in mind, we report two sets
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of standard errors: those based on a consistent estimator (21), presuming that our

specification Ã∗T
t is equal to A∗

t ; and the counterpart based on (11) which treats Ã∗T
t

as a generic instrument matrix. The standard errors computed by the latter method

are robust to any approximation error inherent in using Ã∗T
t in place of A∗

t .

Evaluating τ(B, A) in (16) at the optimal GMM estimator θ∗T gives

τT (B, A∗) =

(
1√
T

T∑

t=1

ht+1(θ
∗
T )′B′

t

)
(
ΓA∗

T

)−1

(
1√
T

T∑

t=1

Btht+1(θ
∗
T )

)

, (24)

where ΓA∗

T is a consistent estimator of ΓA∗

0 = E[CA∗

t Σ−1
t CA∗′]. The robust version of

our chi-square statistic evaluates (16) directly at Ã∗T
t .

II.B The Wald Test with Maximal Power

Consider again the case where the goal is an evaluation of the improvement in fit of

mG
t+1(β0, γ0), as given by (3), relative to the null specification mN

t+1(β0) obtained as the

special case with γ0 = 0. Suppose that θ0 is estimated by GMM by solving the sample

moment equations (10), for some sequence of K × R instrument matrices {At} with

At ∈ Jt. Under regularity, the asymptotic covariance matrix of θA
T is given by (11).

Letting ΩA
γγ denote the lower-diagonal G × G block of ΩA

0 , where G is the dimension

of γ0, it follows under H0 : γ0 = 0 that

ςW
T (A) ≡ T γ′

T

(
ΩA

γγ

)−1
γT

D→ χ2(G). (25)

The power of the Wald test based on ςW
T (A) depends on the choice of instrument

matrix A, consistent with our motivating heuristic that precision in estimation of θ0

affects the power of tests of fit. In order to explore this dependence we focus on the local
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alternative H1T : mG
t+1(β0, γ = γL

T ), for which the parameter sequence γL
T converges to

the null of γ0 = 0 at the rate
√

T : γL
T = δ/

√
T , for some nonzero G × 1 vector δ of

proportionality constants.11 Under this local alternative,12
√

T
(
γA

T − γ0

) D→N
(
δ, ΩA

γγ

)
.

It follows that the asymptotic distribution of ςW
T (A) is that of a non-central chi-square

distribution with G degrees of freedom and non-centrality parameter

NC(A) = δ′
(
ΩA

γγ

)−1
δ. (26)

The power of a chi-square test against a specific alternative is governed by the

magnitude of the non-centrality parameter: the larger the value of NC(A), the more

powerful is the test. An implication of (11) is that NC(A) depends on the choice

of instrument matrix A through the asymptotic covariance matrix of γA
T . The more

econometrically efficient is the estimator γA
T of γ0, the smaller is this covariance matrix

and the higher is the power of the associated test based on ςW
T (A). Thus, we are led

immediately to the conclusion that GMM estimation using the optimal instruments

A∗
t gives the asymptotically (locally) most powerful Wald test of the null specification

mN
t+1 against the alternative specification mG

t+1.

III Portfolio Selection for Maximal (Local) Power

Though the construction of the Wald statistic ςW
T (A∗) might seem far removed from

the discussion in the literature about how to best construct test portfolios in order to

have power against alternative formulations of the pricing kernel, there is in fact an

11Both the form of the pricing kernel mG
t+1(β0, γ

L
T ) and the density underlying the expectation

E[Atht+1(β0, γ
L
T )] will in general depend on γL

T .
12This form of the asymptotic distribution of γA

T under local alternatives, as well as the characteri-
zation of the non-centrality parameter in (26), follow from results in Newey and West (1987).
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intimate connection to this issue. Indeed, tests based on ςW
t (A∗) can be reinterpreted

as tests based on an optimal set of test portfolios.

Specifically, using the superscript G to indicate constructs evaluated at the un-

constrained θ0 governing mG
t+1, the Wald statistic ςW

T (A∗) can be expressed in the

asymptotically equivalent form (see Appendix B)

ςW
T (A∗)

a
=

(
1√
T

T∑

t=1

ht+1(θ0)
′ΣG−1

t HG
t

)

Ω∗
γγ

(
1√
T

T∑

t=1

HG ′
t ΣG−1

t ht+1(θ0)

)

, (27)

where

Ψγ
t ≡ E

[
∂ht+1(β0, γ0)

∂γ

∣∣Jt

]
, Ψβ

t ≡ E

[
∂ht+1(β0, γ0)

∂β

∣∣Jt

]
,

Kβγ ≡ E
[
Ψβ′

t Σ−1
t Ψγ

t

]
, and Ht ≡ Ψγ

t − Ψβ
t

(
Kββ

)−1 Kβγ . Asymptotic equivalence holds

not only under H0 but under local alternatives as well.

An immediate implication of (27) is that the (locally) most powerful Wald test of

H0 : γ0 = 0 (against the alternative γ0 6= 0) can be viewed as a test of

E
[
HG ′

t ΣG−1
t ht+1(θ0)

]
= 0; (28)

that is, the Wald test evaluates whether the managed portfolio returns HG ′
t ΣG−1

t rt+1 are

priced by mG
t+1. Factoring Σ−1

t as D
−1/2′
t D

−1/2
t , the component D−1/2HG

t of the portfolio

weights represents the part of D
−1/2
t Ψγ

t that is orthogonal to D
−1/2
t Ψβ

t . Thus, it is as if

E[D−1/2Ψβ′
t ΣG−1

t ht+1(θ0)] = 0 captures the economic content of the null specification

mN
t+1, and the Wald test uses the part of D

−1/2
t Ψγ

t that is orthogonal to this null

information to evaluate whether mG
t+1 adds incrementally to pricing performance.

As an illustration of this optimality result, consider an extended consumption-based
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pricing kernel in which ct denotes the logarithm of consumption and

mG
t+1(θ0) = (β1 + γ1zt) + (β2 + γ2zt) ∆ct+1. (29)

The model in Lettau and Ludvigson (2001b) is the special case with zt equal to CAY ,

and Santos and Veronesi (2006) examined a model in which zt was equal to the ratio

of labor income to total income. These extensions add no explanatory power to the

(linearized) consumption-based model with constant relative risk aversion if (γ1, γ2) =

0. For this setup,

E

[
∂ht+1

∂β1
(θ0)

∣∣Jt

]
= E [rt+1 | Jt] , E

[
∂ht+1

∂β2
(θ0)

∣∣Jt

]
= E [∆ct+1rt+1 | Jt] , (30)

E

[
∂ht+1

∂γ1

(θ0)
∣∣Jt

]
= E[rt+1zt | Jt], E

[
∂ht+1

∂γ2

(θ0)
∣∣Jt

]
= E [∆ct+1rt+1zt | Jt] ,(31)

where rt+1 is the vector of test assets used to estimate and evaluate the fit of the

pricing model. Thus the optimal dynamic trading strategies are constructed using the

components of the E[rt+1zt | Jt] and E[∆ct+1rt+1zt | Jt] that are orthogonal (in a linear

projection sense) to the information contained in E[rt+1 | Jt] and E[∆ct+1rt+1 | Jt].
13

Our construction of optimal test portfolios differs from strategies typically em-

ployed in testing unconditional factor models based on the vector of pseudo-factors

(zt, ∆ct+1, ∆ct+1zt) (see Section I) in several important respects. The construction of

portfolio weights Ht is explicitly linked to the contribution of new (pseudo) factors zt

and ∆ct+1zt to the reduction in the model’s pricing errors. In the sense made precise by

the form of Ht only the new information in these factors over and above what is already

captured by the extant factor ∆ct+1 is examined. Equally importantly, it is not the

13More precisely, we are projecting the scaled versions of these constructs on each other, where
scaling is by the square root of Σ−1

t , as discussed above.
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projection of the factors themselves onto Jt that is relevant for portfolio construction,

but rather the return-augmented projections E[rt+1zt | Jt] and E[∆ct+1rt+1zt | Jt] are

used. Among other considerations, this observation leads us to examine the conditional

second moment E[∆ct+1rt+1 | Jt] when constructing Ht. It is these interaction effects

that tie Ht to the model’s pricing errors and lead to the dynamic test portfolios that

maximize power against the proposed alternative model with (γ1, γ2) 6= 0.

As a second illustration, suppose that a researcher is interested in evaluating the

incremental contribution of a new risk factor f to the pricing of the test assets with

returns rt+1. A very simple version of this scenario has

mt+1(θ0) = β1 + β2∆ct+1 + γ1ft+1. (32)

For this example, the relevant expressions related to β0 are identical to (30) and

E

[
∂ht+1

∂γ1
(θ0)

∣∣Jt

]
= E[rt+1ft+1 | Jt]. (33)

Thus, the optimal dynamic test portfolio is constructed by examining the component

of E[rt+1ft+1 | Jt] that is orthogonal to E[rt+1zt | Jt] and E[∆ct+1rt+1zt | Jt]. Again

this construction calls for an exploration of the conditional second-moment properties

of the returns and risk factors (both ∆ct+1 and the new factor ft+1).

III.A Optimal Test Portfolios as Lagrange Multipliers

An alternative approach to deriving the optimal test portfolios starts with constrained

estimates using mt+1 = mN
t+1, and then inquires whether adding additional risk factors

or conditioning information in the factor weights improves pricing. This question can
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be addressed with the LM test.

In Appendix C we show that the Lagrange multiplier for the constraints γT = 0

can be expressed as

λT =
1

T

∑

t

Ψγ′
t ΣN−1

t hN
t+1(βT )

a
=

1

T

∑

t

HN ′
t ΣN−1

t hN
t+1(β0), (34)

where HN
t is the matrix Ht evaluated at the constrained (β0, γ00). Therefore, the

asymptotic distribution of λT is normal with mean zero and covariance matrix E[HN ′
t ΣN−1

t HN
t ],

from which it follows that

ςLM
T (A∗) = Tλ′

T

(
1

T

∑

t

HN ′
t (βN

T )ΣN−1
t (βN

T )HN
t (βN

T )

)−1

λT
D→ χ2(G). (35)

Summarizing our results,

ςW
T (A∗) is asymptotically equivalent to τ(HG ′

t (θ0)Σ
G−1
t (θ0), A

∗)

ςLM
T (A∗) is asymptotically equivalent to τ(HN ′

t (β0)Σ
N−1
t (β0), A

∗).

Both tests effectively assess whether the managed portfolio returns H′
tΣ

−1
t rt+1 are cor-

rectly priced by mt+1. The difference is that the (locally) most powerful, managed

portfolio weights HG ′
t ΣG−1

t underlying the Wald test are evaluated at θ0, whereas the

weights HN ′
t ΣN−1

t used to construct the LM statistic are evaluated at γ0 = 0. It follows

immediately that the Wald and LM statistics have the same asymptotic distribution

under H0 and local alternatives.
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III.B Wald and LM Tests for “Completely” Affine SDF s

For the special case in which the factor weights φ0(zt, θ0) and φf(zt, θ0) are affine

functions of zt,
14 and thus mG

t+1 can be expressed as a higher dimensional factor model

with constant coefficients as in (6), the sample optimal Wald and LM tests take a

particularly revealing form that further highlights the structure of the optimal portfolio

weights. Since these representations hold exactly for the sample statistics, as contrasted

with results for asymptotically equivalent expansions, they are useful for interpreting

the subsequent empirical examples.

Assume that the SDF under the alternative can be expressed as

mG
t+1(θ0) = β ′

0f
#N
t+1 + γ′

0f
#G
t+1, (36)

and mN
t+1(β0) is again the special case of γ0 = 0. With state-dependent weights on

the actual risk factors ft+1, the pseudo-factors f#N and f#G are composed of com-

ponents of ft+1 and the conditioning variables zt determining the factor weights, and

their cross-products. Let (Σ̂G
t , hG

t+1(θ
G
T ), θGT ) and (Σ̂N

t , hN
t+1(β

N
T ), βN

T ) be the estimated

conditional pricing error second moment matrix, realized pricing errors, and optimal

GMM estimates when estimation is done under the alternative (G) and with the null

γ0 = 0 (N ) imposed.

Solving for the sample moment condition defining the optimal GMM estimate θGT
14We stress again that all of the derivations and results up to this point do not require that these

factor weights be affine functions of zt; they can be any continuously differential function of zt.
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for the G-subvector γG
T gives15

γG
T = [0, IG]

(
1

T

T∑

t=1

Ψ̂θ′
t Σ̂G−1

t rt+1f
#′
t+1

)−1

1

T

T∑

t=1

Ψ̂θ′
t Σ̂G−1

t ıR

= Ω̂G
γγ

1

T

T∑

t=1

ĤG
t (θGT )′Σ̂G−1

t ıR,

where ĤG
t (θGT ) ≡ Ψ̂γ′

t − K̂γβ
T (K̂ββ

T )−1Ψ̂β′
t and it is now understood that

K̂γβ
T (θGT ) ≡ 1

T

T∑

t=1

[
Ψ̂γ′

t Σ̂G−1
t rt+1f

#N ′
t+1

]
, (37)

the robust, sample version of E[Ψγ′
t ΣG−1

t Ψβ
t ], and similarly for K̂ββ

T (θGT ). Note that, for

this completely affine setting, the matrices Ψ̂γ
t and Ψ̂β

t are the same whether they are

evaluated under the null or the alternative. Substitution into (25) gives

ςW
T = T

(
1

T

T∑

t=1

ĤG
t Σ̂G−1

t ıR

)′(
1

T

T∑

t=1

ĤG
t Σ̂G−1

t ĤG ′
t

)−1(
1

T

T∑

t=1

ĤG
t Σ̂G−1

t ıR

)
. (38)

Now, as shown in Appendix D, for a completely affine SDF ,

1

T

T∑

t=1

ĤG
t Σ̂G−1

t ıR =
1

T

T∑

t=1

ĤG
t Σ̂G−1

t hN
t+1

(
βN

T

)
. (39)

Thus, we can interpret the sample Wald statistic as checking whether the SDF under

H0 prices the managed portfolios BWald
t = ĤG

t Σ̂G−1
t evaluated at θGT . Recall from

15That is, we solve (10), after substitution of the relevant special case of A∗ in (20), for γG
T .
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Section III.A that the sample moment entering the LM statistic ςLM
T is16

1

T

∑

t

Ψγ′
t Σ̂N−1

t hN
t+1(βT ) =

1

T

T∑

t=1

ĤN
t Σ̂N−1

t hN
t+1

(
βN

T

)
. (40)

This expression is identical to (39), except that the managed portfolio weights BLM
t =

ĤN
t Σ̂N−1

t are evaluated under the null at βN
T . Similarly the matrices that define the

quadratic forms ςW
T and ςLM

T are identical, except again they are evaluated at θGT and

βN
T , respectively. Thus, to the extent that there are conflicts between these tests in

evaluating the goodness-of-fit of an SDF , it is a consequence of the use of different

estimates of the parameters to define the sample weights of the managed portfolios or

the distance matrices in the quadratic forms. Both tests are constructed with identical

pricing errors, namely those under H0.

IV Implementation: Methods and Data

In our empirical analysis, we consider several linearized consumption-based SDF s that

have been proposed in the recent literature. The factor weights of each of these pricing

kernels are affine functions of a (scalar) conditioning variable zt,

mG
t+1 (θ0) = (β1 + γ1zt) + (β2 + γ2zt)∆ct+1. (41)

We consider three choices of zt: the consumption-wealth ratio of Lettau and Ludvigson

(2001a) (cayt), the corporate bond spread as in Jagannathan and Wang (1996) (deft),

16The following equality is an immediate implication of the first-order conditions for the optimal
GMM estimator βN

T and the definition of ĤN
t .
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or the labor income-consumption ratio of Santos and Veronesi (2006) (yct).
17

Our sample period runs from 1952:2 to 2006:4, and we construct a quarterly log

consumption growth series for this period from nondurables and services consumption,

seasonally adjusted, per capita, and in 2000 chained dollars, as reported by the Bureau

of Economic Analysis. We obtain a series of cayt from Martin Lettau’s website. The

deft series is the spread in yields between Baa- and Aaa-rated bonds, obtained from

the Federal Reserve Bank of St. Louis. Finally, following Santos and Veronesi (2006),

we calculate yct using labor income defined as the labor income component of cayt and

with data from the Bureau of Economic Analysis.

The “primitive” returns that enter the construction of the portfolios with maximal

power can be those on individual common stocks or portfolios of these stocks. While

in principle it seems desirable to work with relatively disaggregated portfolios so that

the nature of the SDF is central to determining the weights on the traded securities,

computational considerations may lead one to partially aggregate assets into test port-

folios and then to apply the optimal weights BWald
t or BLM

t to the latter portfolios. To

illustrate our methods we follow the latter approach and use the three-month Trea-

sury Bill and common stock portfolios sorted by firm size and book-to-market equity

as test assets. More specifically, we choose the small-value, small-growth, large-value,

and large-growth portfolios from the six portfolios of Fama and French (1993) as our

equity test portfolios. Restricting the set of equity portfolios to these four allows us to

keep the number of assets low (small R), but still capture most of the cross-sectional

variation in returns related to the “size” and “value” effects. Including a larger number

of size and book-to-market portfolios would not add much additional return variation,

17Jagannathan and Wang (1996) and Santos and Veronesi (2006) use these conditioning variables in
β-style representations of excess returns, while we use them as conditioning variables in a consumption-
based pricing kernel.
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due to the strong commonality in the returns of these portfolios (Fama and French

(1993); Lewellen, Nagel, and Shanken (2008)). By construction of BWald
t and BLM

t ,

we are asking candidate SDF s to explain not only the cross-section of unconditional

moments of returns, but also their conditional moments.

We compound monthly stock portfolio returns to obtain quarterly returns from

1952:2 to 2006:4 (in tests that use lagged returns as instruments we also use returns

from quarter 1952:1 as instruments). Nominal returns are deflated by the quarterly

CPI inflation rate to obtain ex-post real returns. To distinguish how well the candidate

models do in fitting the return on T-Bills and the return premia of stocks over and

above T-Bill returns, we use real returns in excess of real T-Bill returns for the four

equity portfolios (i.e., payoffs with a price of zero), and the gross real return for T-Bills

(i.e., a payoff with price of one).

IV.A Estimation of Conditional Moments

Implementation of the optimal estimator requires estimates of the conditional moments

given by (22) and (23)

E

[
∂ht+1 (θ0)

′

∂θ0

∣∣∣Jt

]
=

∂φ̃ (zt, θ0)
′

∂θ0
E

[(
r′t+1

∆ct+1r′t+1

)∣∣∣Jt

]′
, (42)

and

Var [ht+1 (θ0) |Jt] = φ̃ (zt, θ0)
′ Var

[(
rt+1

∆ct+1rt+1

)
|Jt

]
φ̃ (zt, θ0) , (43)

where ∂φ̃ (zt, θ0)
′ /∂θ0 = (I2 ⊗ z̃t) for the affine pricing kernels (41) that we consider

here. In our empirical implementation, we work with Var [ht+1 (θ0) |Jt] instead of the

uncentered E
[
ht+1 (θ0) ht+1 (θ0)

′ |Jt

]
. Both are equivalent under the null hypothesis,

but the centered Var [ht+1 (θ0) |Jt] should be better behaved under misspecification.
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To estimate the moments given in (42) and (43), we need estimates of the conditional

moments E[(r′t+1, ∆ct+1r
′
t+1)

′|Jt] and Var[(r′t+1, ∆ct+1r
′
t+1)

′|Jt]. We use nonparametric

local polynomial regression estimators of these moments, as well as semi-nonparametric

estimators.

Nonparametric estimators converge asymptotically, under regularity and as the

flexibility of the approximating conditional densities increases with sample size, to the

true moments conditional on Jt. The downside is that computational considerations

typically dictate that non-parametric estimation must focus on a small number of con-

ditioning variables. In our implementation we restrict ourselves to just one conditioning

variable. For each of the three pricing kernels, we condition moments on zt, i.e., the

conditioning variable cayt, deft, or yct that appears in the pricing kernel. The depen-

dence of the SDF weights on zt means that, if these models are correctly specified,

conditional moments of returns and consumption are likely to vary with zt.

To estimate g (zt) ≡ E[(r′t+1, ∆ct+1r
′
t+1)

′|zt], we run local linear regressions of the

elements of yt+1 ≡
(
r′t+1, ∆ct+1r

′
t+1

)′
on zt. Local linear regression has several desirable

properties, including better behavior at the boundaries of the state space compared

with fitting a local constant (Fan (1992)). To obtain the estimates ĝ (zi) of the con-

ditional mean function, a linear regression is estimated locally, with weighted least

squares based on the nearest neighbors of zi (in terms of the distance |zj − zi|). The

weights are determined by the kernel function, the distance |zj − zi|, and the bandwidth

b. The fitted value at zi yields the conditional moment estimate ĝ (zi).

We use the Epanechnikov kernel function,

K (u) =
3

4

(
1 − u2

)
I (|u| ≤ 1) ,
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where u ≡ |zj − zi| /b. The bandwidth b determines the weighting of the neighborhood

observations around each point zi, and hence the smoothness of the estimated func-

tion. We allow a different optimal bandwidth b∗k for the estimation of each element

of g (zi). To determine b∗k, we use automatic bandwidth selection by leave-one-out

cross-validation, i.e.,

b∗k = arg min
bk

1

T

T∑

i=1

(yik − ĝk,−i (zi))
2 ,

where ĝk,−i (zi) denotes the local linear regression estimate of the k-th element of g (zi)

with bandwidth bk that is obtained when observation i is not included in the estima-

tion.18 As T → ∞, and more and more observations exist in the neighborhood of zi,

the optimal bandwidth shrinks, and the nonparametric regression estimates converge

to the true conditional moments.

To estimate Ω (zt) ≡ Var[(r′t+1, ∆ct+1r
′
t+1)

′|zt] we calculate the residuals yt+1 −

ĝ (zt) from the “first step” nonparametric regressions, and we use all elements of the

cross-product matrix of these residuals as the dependent variables for“second step”

nonparametric regressions. We make two modifications compared with the “first stage”

methodology to ensure that our estimated matrices Ω̂ (zt) are positive semi-definite: We

fit a local constant instead of a local linear regression and we use a common bandwidth

for all elements of Ω̂ (zt). Fitting a local constant with a common bandwidth for all

elements of Ω̂ (zt) is equivalent to estimating a sample covariance matrix in the usual

18The presence of autocorrelation does not necessarily mean that leave-one-out cross-validation
will produce a suboptimal bandwidth. Autocorrelation implies dependence among neighboring ob-
servations in the time domain. Whether leave-one-out cross-validation results in under-smoothed or
over-smoothed estimates depends on the dependence of observations that are neighbors in the state
domain. High correlation of residuals of neighbors in time space does not necessarily translate into
high correlation of residuals of neighbors in the state domain, unless zt is very persistent and the
sample short (Hart (1994); Yao and Tong (1998)).

28



way (albeit with weighted observations, and only those in a neighborhood of zt), which

ensures positive semi-definiteness. Similar to the first-step estimation of g (zt), we also

use an Epanechnikov kernel for Ω (zt). The common optimal bandwidth is chosen

according to a likelihood-type criterion as

b∗Ω = arg min
bΩ

1

T

T∑

i=1

[
{yi − ĝ (zi)}′ Ω̂−i (zt)

−1 {yi − ĝ (zi)} + log
(∣∣∣Ω̂−i (zt)

∣∣∣
)]

,

where Ω̂−i (zt) denotes the estimate of Ω̂−i (zt) obtained with observation i omitted.

Figure 1 plots the nonparametric estimates of E [rt+1|zt] (a subvector of g (zt)),

where zt is set to cayt, deft, and yct in the top, middle, and bottom graphs, respectively.

The left-hand graphs depict the fitted conditional expected excess returns of the four

stock portfolios, and the right-hand graphs show the fitted conditional expected gross

return on the T-Bill. The relationships between cayt and yct and the stock portfolio

returns and the T-Bill return reveal some non-linearities. For deft, only the conditional

expectation of the T-Bill exhibits substantial non-linearity. In this case, the estimated

optimal bandwidths for the stock portfolio returns are sufficiently high so that the local

linear regression essentially turns into a globally linear regression. Looking across the

results for all three conditioning variables, it is apparent that in each case the estimated

conditional mean functions are quite similar for all four equity portfolio returns.

Figure 2 plots the nonparametric estimates of E [∆ct+1rt+1|zt] (a subvector of g (zt)).

In this case there are pronounced non-linearities for all three conditioning variables.19

While there are some cross-sectional differences in the relationships between returns

and the predictors, most of the variation in the fitted conditional cross-products is

19The conditional moment plots reveal some outliers for the lowest value of cay in Figure 1 and the
highest value of def in Figure 2. Our subsequent estimation results are not sensitive to these outliers.
Removal of these observations yiels virtually unchanged results.
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Figure 1: Fitted conditional first moments: conditional expected returns
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Figure 2: Fitted conditional second moments: conditional expected cross-product of
return and log consumption growth
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again common to the four stock portfolios.

Overall, the non-parametric regressions pick up considerable time-variation in con-

ditional moments related to cayt, deft, and yct. This suggests that conditional moment

restrictions constructed with these estimated conditional moments are likely to present

a more serious challenge to the asset-pricing models than the restriction that the un-

conditional means of the pricing errors are zero.

Our nonparametric estimates for Ω (zt), in contrast, do not pick up much time-

variation. The bandwidth for Ω (zt) chosen by the optimal bandwidth selection algo-

rithm is essentially infinity for zt = cay and zt = yc, and it is a still high 0.66 for def .

This means that the estimated Ω (zt) is the constant unconditional sample covariance

for cay and yc, and it does not have much time-variation for def . Not surprisingly

then, our subsequent asset-pricing results are virtually identical if one estimates Ω (zt)

with the time-constant unconditional sample covariance matrix. The power of our op-

timal instruments estimator therefore derives mainly from important time-variation in

g (zt), i.e., from predictability of returns and cross-products of returns and consumption

growth, not from the higher moments captured by Ω (zt).

As an alternative to the fully nonparametric estimates of conditional moments

we employ a semi-nonparametric estimator. For this construction we assume that

E [rt+1|Jt] and E [rt+1∆ct+1|Jt] have the functional forms of linear projections onto

xt ≡ (rt, ∆ct, zt, z
2
t , 1/zt).

20 We use the sample covariance matrix of these residuals to

construct Var[(r′t+1, ∆ct+1r
′
t+1)

′|Jt]. Thus, we assume that this conditional covariance

matrix is constant. This assumption is motivated by the lack of evidence of time-

variation in Ω (zt) in the non-parametric case discussed above, as well as a paucity

20The inclusion of this polynomial approximation to nonlinear dependence of the conditional means
on zt is motivated in part by the analysis in Ait-Sahalia (1996). This functional form is able to capture
the linear, parabolic, and “S on its side” patterns evidenced in the non-parametric estimates of the
conditional means displayed in Figures 1 and 2.
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of evidence for significant conditional heteroskedasticity in quarterly returns and con-

sumption growth.21

While this semi-nonparametric method is potentially less flexible in adapting to

highly non-linear functional forms than the fully non-parametric method, it allows us

to condition on a broader set of instruments that includes (rt, ∆ct). To reduce the

possibility of overfitting the conditional moments E [rt+1|Jt] and E [rt+1∆ct+1|Jt], we

use the Akaike Information Criterion (AIC) to select regressors. We calculate the AIC

for all specifications that use any possible combination of (1, rt, ∆ct, zt, z
2
t , 1/zt) and,

for each element of the conditional mean vector, we choose the specification with the

minimum AIC. The resulting estimates of E [rt+1|Jt] and E [rt+1∆ct+1|Jt] look very

similar to those obtained with the nonparametric method; in particular, they capture

well the linear, parabolic, and “S on its side” patterns displayed in Figures 1 and 2.

We emphasize again that, for valid inference, it is not necessary to assume that

these non-parametric and semi-non-parametric estimators Ã∗T
t perfectly match the

population counterpart A∗
t . In cases where one is concerned about the accuracy of

these approximations in small samples, the statistic τT (B, Ã∗T ) based on (16) should

be used in place of the statistic τT (B, A∗) given by (24).

21We experimented with time-varying conditional covariance matrix from a dynamic conditional
correlation (DCC) model (Engle (2002)), but the evidence for GARCH effects and time-varying is
weak. Moreover, allowing for a time-varying conditional covariance matrix has only negligible effects
on our asset-pricing results. Accordingly, we proceed with the simpler specification outlined above.
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IV.B Estimators and Test Statistics

We present results for four different estimators: One (denoted “unconditional”) is based

on the R unconditional moment restrictions,

E [mt+1 (θ0) rt+1 − pt] = 0, (44)

where the components of pt are 1 for the case of returns and 0 for the case of excess

returns. The second (denoted “fixed IV”) is based on the LR moment restrictions,

E [(mt+1 (θ0) rt+1 − pt) ⊗ wt] = 0, (45)

where wt = (1, r′t, ∆ct, zt)
′ is an L×1 vector, and zt equals cayt, deft, or yct, depending

on the asset-pricing model. Our third estimator (denoted “optimal IV – NP” is our

optimal GMM estimator, based on the K moment restrictions

E [A∗
t (mt+1 (θ0) rt+1 − pt)] = 0, (46)

and nonparametrically estimated conditional moments. Finally, we let “optimal IV

– SNP” denote the optimal GMM estimator based on conditional moments from the

semi-nonparametric model.

In the cases of the unconditional and fixed IV estimators, we iterate on the associ-

ated distance matrices until convergence. In the case of the optimal GMM estimators,

we solve K equations in the K unknowns θT with both A∗
t and mt+1 depending on θT

and, thus, this calculation is analogous to the continuously-updated GMM estimator.

For each of the choices of GMM estimator θA
T we present three test statistics for

model evaluation: τT (I), for the null hypothesis that the means of the “pricing errors”
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Table I: Test Statistics

Test statistic Uncond. Fixed IV Opt. IV

τT (I) ht+1 mt+1

(
θGT
)
rt+1 − pt

(
mt+1

(
θGT
)
rt+1 − pt

)
⊗ wt mt+1

(
θGT
)
rt+1 − pt

Bt IR ILR IR

DF R − K LR − K R

τT (BWald) ht+1 mt+1

(
θNT
)
rt+1 − pt

(
mt+1

(
θNT
)
rt+1 − pt

)
⊗ wt mt+1

(
θNT
)
rt+1 − pt

Bt ĤGΣ̂G−1 ĤGΣ̂G−1 ĤG
t Σ̂G−1

t

DF G G G

τT (BLM ) ht+1 mt+1

(
θNT
)
rt+1 − pt

(
mt+1

(
θNT
)
rt+1 − pt

)
⊗ wt mt+1

(
θNT
)
rt+1 − pt

Bt ĤN Σ̂N−1 ĤN Σ̂N−1 ĤN
t Σ̂N−1

t

DF G G G

(44) or (45) are zero; and the Wald and LM statistics, τT (BWald) and τT (BLM), for

the joint test that the SDF parameters γ1 = 0 and γ2 = 0. All three of these statistics

are variants of our general specification test based on a test matrix Bt,

τT (B, A) =

(
1√
T

T∑

t=1

ht+1(θ
A
T )′B′

t

)
(ΓA

T )−1

(
1√
T

T∑

t=1

Btht+1(θ
A
T )

)
. (47)

Table I summarizes the ingredients that enter into the calculation of the test statis-

tics. Their construction differs depending on the estimator (unconditional, fixed IV, or

optimal IV). For the unconditional and fixed IV estimators τT (I) represents Hansen’s

J-test statistic. The statistics τT (BWald) and τT (BLM) are calculated with uncondi-

tional moments for the unconditional and fixed IV estimators, and with conditional

moments for the optimal IV estimator.

Finally, the estimators of the asymptotic variances of our estimators and the weighted
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pricing error measures involve terms like

E

[
ΨtΣ

−1
t

∂ht+1 (θ0)

∂θ

]
(48)

or

E
[
ΨtΣ

−1
t ht+1 (θ0)ht+1 (θ0)

′ Σ−1
t Ψ′

t

]
, (49)

that both reduce to E[ΨtΣ
−1
t E[∂ht+1(θ0)

∂θ
|Jt]] = E[ΨtΣ

−1
t Ψ′

t] under the assumption that

conditional moments are correctly specified. For example, the constructs Ω∗
0 and H∗

t

have this assumption built in. In our empirical analysis, we report standard errors and

test statistics based on this assumption of correctly specified conditional moments, but

we also report standard errors and tests statistics that are robust to misspecification

of conditional moments. To compute the robust statistics we work with the realized

values of ∂ht+1 (θ0) /∂θ and ht+1 (θ0)ht+1 (θ0)
′ in (48) and (49), without replacing them

with estimates of their conditional expectations.

V Implementation: Results

As a basis for comparing models with time-varying SDF factor weights, we start by

estimating the constant-weight consumption CAPM , which is obtained by setting

γ1 = 0 and γ2 = 0 in the pricing kernel (41). We focus on the conditioning variable

zt = cayt as the estimators conditioned on deft or yct give very similar results.

In the case of estimation based on unconditional moment restrictions, the estimated

coefficient on consumption growth lies within the economically admissible region (Ta-

ble II), but its magnitude is implausibly large in absolute value, 365. On the other

hand, when estimation is based both on the cross-section of mean pricing errors and
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Table II: Consumption CAPM, moments conditioned on cay. Test asset returns are the
excess returns on the four size and B/M portfolios and the gross return on the T-Bill

const. ∆ct+1 τ(I)
Uncond. 2.95 -365.35 9.30

(0.74) (135.26) [0.03]
Fixed IV 1.00 -0.11 215.12

(0.00) (0.15) [0.00]
Opt. IV – NP 0.99 0.51 76.99

(0.00) (0.27) [0.00]
(0.00 ) (0.38 ) [0.00 ]

Opt. IV – SNP 1.00 0.12 113.41
(0.00) (0.19) [0.00]
(0.00 ) (0.12 ) [0.00 ]

Notes : Standard errors are in parentheses, p-values are in brackets. Standard errors
and p-values are robust to misspecification of conditional moments, except those shown
in italics, which assume correctly specified conditional moments. Conditional moments
for uncond., fixed IV, and opt. IV-NP are estimated non-parametrically; for opt. IV-
SNP they are based on the semi-nonparametric model.

the models’ restrictions on the conditional distributions of returns, the implied con-

sumption risk premium is almost zero. This pattern is very similar to previous results

from estimating consumption-based Euler equations with CRRA preferences. Gross-

man and Shiller (1981) find an unreasonably high relative risk aversion coefficient based

on unconditional moment restrictions, while Hansen and Singleton (1982) work with

conditional moment restrictions and obtain an estimate of the relative risk aversion

coefficient that is much closer to zero. Again, consistent with this prior literature, the

test statistics constructed with all three estimators suggest that CRRA preferences fail

to describe the real returns on common stocks and Treasury bills.

The results with time-varying SDF factor weights are displayed in Tables III, IV,

and V for conditioning variables cay, def , and yc, respectively. A common feature

of the results for all three conditioning variables is that the standard errors of the

SDF parameters are notably larger for the case of the unconditional estimator than
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Table III: Pricing kernel estimates with moments conditioned on cay

const. cayt ∆ct+1 cayt × ∆ct+1 τ(I) τ(BWald) τ(BLM )
Uncond. -3.24 -40.83 626.99 -70564.09 0.09 0.59 7.90

(8.84) (206.91) (1437.79) (99269.77) [0.77] [0.74] [0.02]
Fixed IV 1.00 -0.64 -0.47 105.42 143.91 21.37 51.05

(0.00) (0.16) (0.30) (35.02) [0.00] [0.00] [0.00]
Opt. IV – NP 0.99 0.03 0.45 -13.54 63.50 1.93 1.59

(0.03) (0.80) (4.44) (110.77) [0.00] [0.38] [0.45]
(0.03 ) (0.78 ) (4.91 ) (94.18 ) [0.00 ] [0.56 ] [0.42 ]

Opt. IV – SNP 1.00 -0.06 -0.09 -2.81 89.29 5.19 4.65
(0.00) (0.06) (0.27) (9.13) [0.00] [0.07] [0.10]
(0.00 ) (0.04 ) (0.14 ) (7.21 ) [0.00 ] [0.00 ] [0.00 ]

Notes : Test assets returns are the excess returns on the four size and B/M portfolios
and the gross return on the T-Bill. Standard errors are in parentheses, p-values are
in brackets. Standard errors and p-values are robust to misspecification of conditional
moments, except those shown in italics, which assume correctly specified conditional
moments. Conditional moments for uncond., fixed IV, and opt. IV-NP are estimated
non-parametrically; for opt. IV-SNP they are based on the semi-nonparametric model.

for either the Fixed IV or Optimal IV estimators. This is reflected in the relatively

small magnitudes of τT (BWald) and τT (BLM) and the lack of evidence against the null

hypothesis that (γ1, γ2) = 0, regardless of the choice of conditioning variable zt, with

the exception of τT (BLM) for cay, which has a p-value of 0.02. Based on this evidence

from the unconditional estimator, one would reasonably be led to conclude that one

cannot have much statistical confidence that the three enhanced consumption-based

models improve pricing over and above the simpler model with CRRA preferences.

Substantially different estimates, with correspondingly smaller estimated standard

errors, are obtained when conditioning information is used to construct the Fixed

IV and Optimal GMM estimators. For the Lettau and Ludvigson (2001b) model in

Table III with zt = cay, the τT (BWald) and τT (BLM) statistics provide some evidence to

reject the null that the extension of the basic model with CRRA preferences does not

help in pricing stocks and T-Bills for Fixed IV, and, less so, for optimal IV - SNP, but

38



not for optimal IV - NP. There is more support for the rejection of the null hypothesis

that (γ1, γ2) = 0 for both the model with zt = def and zt = yc in Tables IV and V,

particularly in the case of the Optimal IV - NP estimator.

However this evidence that conditioning the SDF on def or yc helps in pricing the

test assets must be interpreted with caution, because of the evidence from the overall

goodness-of-fit statistic τT (I). For all three models, when conditioning information

is incorporated in estimation, this statistic is large relative to its degrees of freedom,

indicating failure of these models at conventional significance levels. Only in the case

of zt = cay and estimation based on unconditional moments does the evidence suggest

that the pricing model adequately describes expected returns. In this case it appears

to be a relative lack of power when estimation is based on unconditional moment

restrictions, and not the actual success of the Lettau and Ludvigson (2001b) model,

that explains their findings and ours.

The Wald and LM tests provide a complementary perspective in circumstances

where power of overall goodness-of-fit tests may be an issue. For these tests may

point to non-rejection of the simpler null model. This is what we find for the Lettau

and Ludvigson (2001b) model with unconditional moment restrictions: The overall

goodness-of-fit statistic τT (I) does not reject the extended model, while at the same

time the Wald test does not indicate that the extension of the model beyond the basic

CRRA model helps in pricing the test assets.

Looking across the three models, the point estimates of the parameters based on

the optimal IV - NP and optimal IV - SNP estimators are quite close to each other,

and the fixed IV estimates are also much closer to the optimal IV estimates than the

unconditional ones. The same is largely true of the estimated standard errors. The

optimal GMM estimators, particularly those based on the SNP method, often produce
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Table IV: Pricing kernel estimates with moments conditioned on def

const. deft ∆ct+1 deft × ∆ct+1 τ(I) τ(BWald) τ(BLM )
Uncond. 4.50 -274.15 -71.89 -11214.69 6.49 2.62 1.70

(3.06) (343.00) (381.84) (39098.00) [0.01] [0.27] [0.43]
Fixed IV 1.05 -5.33 -9.80 945.10 124.17 2.51 38.79

(0.04) (4.05) (7.25) (671.89) [0.00] [0.29] [0.00]
Opt. IV – NP 1.01 -0.93 -1.72 71.87 51.40 18.37 11.74

(0.00) (0.31) (0.72) (36.15) [0.00] [0.00] [0.00]
(0.01 ) (0.39 ) (1.06 ) (59.48 ) [0.00 ] [0.00 ] [0.00 ]

Opt. IV – SNP 1.01 -1.00 -1.30 117.04 52.16 10.33 9.68
(0.00) (0.38) (0.58) (59.16) [0.00] [0.01] [0.01]
(0.00 ) (0.22 ) (0.40 ) (38.10 ) [0.00 ] [0.00 ] [0.00 ]

Notes : Test assets returns are the excess returns on the four size and B/M portfolios
and the gross return on the T-Bill. Standard errors are in parentheses, p-values are
in brackets. Standard errors and p-values are robust to misspecification of conditional
moments, except those shown in italics, which assume correctly specified conditional
moments. Conditional moments for uncond., fixed IV, and opt. IV-NP are estimated
non-parametrically; for opt. IV-SNP they are based on the semi-nonparametric model.

considerably smaller standard errors than the fixed IV estimators, despite the fact that

the latter incorporates conditioning information through the use of the instruments wt.

This finding supports our premise that the incorporation of conditioning information in

a manner that allows researchers to achieve the asymptotic efficiency bounds improves

the reliability of estimation.

Comparing the optimal GMM estimators based on the nonparametric and semi-

nonparametric methods, the similarity of the point estimates (relative to the uncondi-

tional estimates) is encouraging as there is some robustness to the precise specification

of the model of the conditional moments. In addition, it is apparent that the SNP

method often produces lower standard errors than the NP method. This could be an

indication that the conditioning E[(r′t+1, ∆ct+1r
′
t+1)

′|Jt] on the history of past returns

and consumption growth in addition to zt leads to some additional efficiency gains.

It is also noteworthy that the difference between the robust standard errors and
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Table V: Pricing kernel estimates with moments conditioned on yc

const. yct ∆ct+1 yct × ∆ct+1 τ(I) τ(BWald) τ(BLM )
Uncond. -5.70 9.33 -140.41 -214.90 9.63 0.13 0.14

(32.49) (35.51) (4454.77) (4922.26) [0.00] [0.93] [0.93]
Fixed IV 0.79 0.24 34.16 -38.31 128.69 7.43 44.72

(0.09) (0.09) (15.23) (16.62) [0.00] [0.02] [0.00]
Opt. IV – NP 0.71 0.32 54.94 -60.65 56.99 7.82 17.22

(0.11) (0.13) (20.13) (22.36) [0.00] [0.02] [0.00]
(0.16 ) (0.18 ) (29.37 ) (32.48 ) [0.00 ] [0.02 ] [0.00 ]

Opt. IV – SNP 0.99 0.01 -1.36 1.52 94.29 2.00 2.03
(0.05) (0.06) (8.59) (9.45) [0.00] [0.37] [0.36]
(0.02 ) (0.02 ) (3.78 ) (4.13 ) [0.00 ] [0.12 ] [0.12 ]

Notes : Test asset returns are the excess returns on the four size and B/M portfolios
and the gross return on the T-Bill. Standard errors are in parentheses, p-values are
in brackets. Standard errors and p-values are robust to misspecification of conditional
moments, except those shown in italics, which assume correctly specified conditional
moments. Conditional moments for uncond., fixed IV, and opt. IV-NP are estimated
non-parametrically; for opt. IV-SNP they are based on the semi-nonparametric model.

test statistics and those that assume correctly specified conditional moments is, in

most cases, quite small, particularly relative to the differences that are evident across

the unconditional, fixed IV, and optimal IV estimators. This suggests that our methods

of empirically approximating the conditional moments work reasonably well.

V.A Conditional Pricing Errors

The main motivation for moving from simple constant-weight pricing kernels to models

where these weights are time-varying is to obtain a more flexible asset-pricing model

that is in better accordance with the data, in the cross-section of unconditional mo-

ments, but also the time-series of conditional moments. So far the literature has focused

mostly on examining the cross-section of average pricing errors, but Daniel and Titman

(2006) and Lewellen, Nagel, and Shanken (2008) argue that this is not an informative

criterion to judge these models. Examination of their conditional pricing errors is a nat-
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ural alternative. Since our method involves explicit estimation of conditional moments,

it provides a straightforward way to inspect the conditional pricing errors implied by

the estimated pricing kernels.

Figure 3 presents our nonparametric estimates of the conditional pricing errors of

the five ”primitive” assets for each one of the unconditional, fixed IV, and optimal IV -

NP estimators. For the stock portfolio we look at what is perhaps the most interesting

dimension: the spread between high and low B/M stocks. The plots on the left-hand

side show the conditional pricing errors of a zero-investment portfolio that takes a

long position in the two high B/M portfolios (each with weight one-half) and a short

position in the two low B/M portfolios (each with weight one-half). The plots on the

right-hand side show the conditional pricing error of the T-Bill.

The two plots in the top row illustrate that the pricing kernel estimated with

unconditional moment restrictions and zt = cay fails dramatically in matching time-

variation in conditional moments. Conditional pricing errors for the high-low B/M

portfolio vary between −0.1 and 0.4. Those for the T-Bill vary between −8 and 15

(the most extreme peaks extend beyond the range shown in the figures). Given that the

T-Bill payoff has a constant price of 1.0, the magnitudes of this conditional mispricing

is enormous. These conditional pricing errors are much larger in magnitude than those

that one would get by naively setting the pricing kernel to a constant, say 0.99. Similar

patterns are evident, albeit less extreme, for zt = def in the middle row. With zt = yc

in the bottom row, the magnitudes of the conditional pricing errors are relatively

smaller, but still large in absolute terms, ranging from −0.05 to 0.15 for the high-low

B/M portfolio, and from −1.5 to 1.5 for the T-Bill.

Employing conditional moment restrictions should help alleviate this mismatch be-

tween model-implied and actual variation in conditional moments. And indeed, the
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Figure 3: Conditional pricing errors of pricing kernel with time-varying weights: Stock
portfolios (left) and T-Bill (right) with nonparametric estimates of moments condi-
tioned on cay (top row), def (middle row), and yc (bottom row)

43



1950 1975 2000
−0.1

−0.05

0

0.05

0.1
Cond. pricing errors: High minus low B/M, cay

1950 1975 2000
−0.01

−0.005

0

0.005

0.01

0.015

0.02
Cond. pricing errors: T−Bill, cay

1950 1975 2000
−0.1

−0.05

0

0.05

0.1
Cond. pricing errors: High minus low B/M, def

1950 1975 2000
−0.01

−0.005

0

0.005

0.01

0.015

0.02
Cond. pricing errors: T−Bill, def

1950 1975 2000
−0.1

−0.05

0

0.05

0.1
Cond. pricing errors: High minus low B/M, yc

 

 

DCC
nonparametric

1950 1975 2000
−0.01

−0.005

0

0.005

0.01

0.015

0.02
Cond. pricing errors: T−Bill, yc

Figure 4: Conditional pricing errors of pricing kernel with time-varying weights: Stock
portfolios (left) and T-Bill (right) with semi-nonparametric estimates of moments con-
ditioned on cay (top row), def (middle row), and yc (bottom row)

44



fixed IV and optimal IV estimates produce conditional pricing errors that are more

than one order of magnitude smaller than those based on unconditional estimates for

the stock portfolios, and several orders of magnitude smaller for the T-Bill. The IV

estimators force the model to pay attention to conditional moments in estimation, and

so enforce consistency between the model implied conditional moments and those in

the data.

Figure 4 shows the corresponding optimal IV estimates of conditional pricing errors

for the semi-nonparametric model. For the sake of comparision, we also include the

non-parametric optimal IV estimates from Figure 3. It is important to note, however,

that the scale of the axes is completely different from the scale in Figure 3, as the

optimal IV conditional pricing errors are of much smaller magnitude than obtained from

the unconditional estimator. Both optimal IV methods produce conditional pricing

errors that are positively correlated with each other, but the ones from the semi-

nonparametric method exhibit more higher-frequency variation. But any differences

that exist between the two methods are small relative to the differences that exist

between the estimates based on unconditional moment restrictions and the optimal IV

ones.

The message from Figures 3 and 4 is also underscored by Table VI, which sum-

marizes the time-series standard deviation of conditional pricing errors, and the cross-

sectional standard deviation of unconditional pricing errors. As Panel A shows, the

unconditional estimates with zt = cay imply an enormous standard deviation of con-

ditional pricing errors, particularly for the T-Bill. When conditioning information is

introduced in estimation, variation in the conditional pricing errors shrinks, while the

cross-sectional standard deviation of unconditional pricing errors increases. Evidently,

at the unconditional moment restriction estimates the model achieves a relatively good
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Table VI: Pricing error variance

Panel A: ∆ct+1 scaled by cayt, moments conditioned on cayt

Time-series S.D. of conditional pricing errors Cross-sectional S.D of
SmGrw SmVal BigGrw BigVal TBill uncond. pricing errors

Uncond. 0.20 0.21 0.17 0.18 5.54 0.02
Fixed IV 0.03 0.04 0.03 0.03 0.00 0.05
Opt. IV – NP 0.03 0.04 0.03 0.03 0.00 0.05
Opt. IV – SNP 0.04 0.04 0.03 0.04 0.00 0.05

Panel B: ∆ct+1 scaled by def t, moments conditioned on def t

Time-series S.D. of conditional pricing errors Cross-sectional S.D of
SmGrw SmVal BigGrw BigVal TBill uncond. pricing errors

Uncond. 0.12 0.11 0.08 0.07 1.38 0.02
Fixed IV 0.02 0.04 0.02 0.03 0.01 0.05
Opt. IV – NP 0.02 0.04 0.02 0.03 0.00 0.05
Opt. IV – SNP 0.03 0.04 0.03 0.03 0.00 0.05

Panel C: ∆ct+1 scaled by yct, moments conditioned on yct

Time-series S.D. of conditional pricing errors Cross-sectional S.D of
SmGrw SmVal BigGrw BigVal TBill uncond. pricing errors

Uncond. 0.03 0.02 0.04 0.02 0.38 0.02
Fixed IV 0.02 0.04 0.03 0.03 0.00 0.05
Opt. IV – NP 0.02 0.04 0.03 0.03 0.00 0.05
Opt. IV – SNP 0.03 0.04 0.03 0.04 0.00 0.05

Notes : Test asset returns are the excess returns on the four size and B/M portfolios
and the gross return on the T-Bill. Conditional moments for uncond., fixed IV, and
opt. IV-NP are estimated non-parametrically; for opt. IV-SNP they are based on the
semi-nonparametric model.

fit in the cross-section, as in Lettau and Ludvigson (2001b), but at the price of pro-

ducing wild swings in conditional pricing errors. Similar patterns, albeit somewhat less

dramatic, exist in Panels B and C for zt = def and zt = yc.

Given that the motivation for models with time-varying pricing kernel weights is to

match conditional moments of returns and factors, this inability to even approximately

price the test assets conditionally is an important failure of the model. This pattern

is consistent with the finding in Lewellen and Nagel (2006) that the pricing kernels

estimated with unconditional moment restrictions and size- and book-to-market sorted

equity portfolio returns imply excessive variation in conditional factor risk premia.
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A key difference between the way the real returns on the T-bill and the stock

portfolios enter our pricing relations is that the former enters as a gross return while

the latter enter as excess returns. The model-implied price of a gross return is more

sensitive to misspecification in the conditional mean of the pricing kernel than the

model-implied price of an excess return, because

E [ht+1|zt] = E [mt+1|zt]E [rt+1|zt] + Cov [mt+1, rt+1|zt] − 1.

Misspecification of E [mt+1|zt] has a much bigger effect on E [ht+1|zt] when rt+1 is 1 plus

a return than when it is an excess return. This observation no doubt partially explains

the finding that the T-Bill features the biggest differences in conditional pricing errors

between the unconditional and the IV estimates. However it is not the T-bill per se

that challenges these pricing kernels. We obtain similar results if we replace the gross

return on the T-Bill with, for example, the gross return on a value-weighted stock

market index. Rather, it is the fact that inclusion of a gross return (as contrasted with

working exclusively with excess returns) goes a long ways towards fixing the conditional

mean of the SDF .

V.B Time-variation of Estimated SDF Weights

An alternative way of evaluating the economic properties of these models is to examine

the implied estimates of the time-varying pricing kernel weights, φ0
t = β1 + γ1zt and

φf
t = β2 + γ2zt. We focus our discussion on φf

t . Figure 5 plots the estimates of φf
t with

zt equal to cay, def , or yc.

The coefficient φf
t has a close connection to the coefficient of relative risk aversion.

Consider a constant-relative risk aversion pricing kernel, mt+1 = δt exp (−γt∆ct+1),
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with time-varying relative risk aversion γt and time-discount factor δt. Linearizing

mt+1 around ∆ct+1 = 0, we get mt+1 ≈ δt − δtγt∆ct+1 or, in our notation, φf
t = −δtγt.

For δt close to one we get φf
t ≈ −γt, which means that we can interpret the plots

in Figure 5 as plots of the (negative of the) estimated implied relative risk aversion

coefficient. Clearly, φf
t should then always be negative to make economic sense.

As an example of a SDF specification that produces strongly time-varying risk

premia, the Campbell and Cochrane (1999) pricing kernel, linearized in a similar way,

implies that the weight φf
t should equal −γ [1 + λ (st)], where λ (st) is the (state-

dependent) sensitivity of habit to consumption (see Campbell and Cochrane’s Eq. (5)).

Note that λ (st) is always strictly positive in their specification, hence φf
t should always

be negative (at least if we ignore the approximation error in the linearization). Judging

from Campbell and Cochrane’s Figure 1, λ (st) is in the range of [0, 50]. Setting γ = 2,

as in their calibrations, we get magnitudes for φf
t ∈ [−100, 0].

Focusing first on the estimates based on unconditional moment restrictions (the

top graph in Figure 5), the estimates of φf
t for the model with zt = cayt wander far

outside the region of economic plausibility. Most of the time the estimates are greater

than zero, implying negative relative risk aversion, and they vary far more than the

range [−100, 0] suggested by the Campbell-Cochrane model (see, also, the calculations

in Section 5 of Lewellen and Nagel (2006)). Consistent with our earlier analysis of

conditional pricing errors, this shows that the model achieves its relatively good fit in

the cross-section by making risk premia counter-factually volatile. When zt = deft or

zt = yct, the estimates of φf
t are much less volatile, always negative, but still outside

the [−100, 0] interval, with values around −150 for zt = deft and −300 for zt = yct.

Using the Fixed IV estimator, as shown in the middle graph, reduces the volatility

of φf
t for zt = cay by several orders of magnitude, but the estimated φf

t are still
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Figure 5: Time-series of estimated SDF weights from with unconditional (top row),
fixed IV (middle row), and optimal IV estimators (bottom row)
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Figure 6: Time-series of optimal IV estimates of SDF weight with conditional moments
estimated from semi-nonparametric model

often positive. The corresponding estimates for the model with zt = yc are also much

closer to zero, but are now also sometimes positive. The most volatile φf
t is obtained

with zt = def . The statistical significance of these patterns is weak, however, as the

coefficients on deft and deft×∆ct+1 are estimated with relatively high standard errors

(Table IV).

Finally, using the Optimal IV-NP estimator, the estimated φf
t are now very close to

zero for all three choices of zt. A similar result is shown by Figure 6, which compares

the SDF weight on consumption growth implied by the semi-nonparametric optimal

IV estimates with the nonparametric ones. In terms of economic magnitudes, the

differences between the two methods are small. With both methods, the estimated φf
t

are close to zero. In addition, the SDF mt+1 = φ0
t + φf

t ∆ct+1 implied by the Optimal

IV estimates (not shown) is always positive, ranging between 0.95 and 1.05, while the

SDF implied by the estimates from unconditional moment restrictions frequently take
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large negative values.

VI Concluding Remarks

We explore the use of conditional moment restrictions in estimation and evaluation

of asset pricing models in which the SDF is a conditionally affine function of a set of

risk factors. We make two methodological advances. First, we develop and implement

an optimal GMM estimator for this class of models. We thus provide some guidance

in choosing from the large array of possible instruments when setting up GMM es-

timators. Second, we show that there is an optimal choice of managed portfolios to

use in testing a generalized specification of an SDF against a more parsimonious null

model. The application of these methods to several consumption-based models in the

literature produces several interesting results, including (i) considerable efficiency can

be gained by employing the optimal GMM estimator, and (ii) using conditional mo-

ment restrictions and optimal GMM leads to very different conclusions regarding the

fit of several consumption-based models. While these model appear to do quite well in

fitting the cross-section of average returns of size and book-to-market portfolios in tests

based on unconditional moment restrictions, they fail to match variation in conditional

moments of returns. Our methodology allows us to transparently show that the small

average pricing errors hide enormous time-variation in conditional pricing errors.
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Appendices

A The Asymptotic Distribution of τT (B, A)

A standard, coordinate by coordinate, mean-value expansion of the sample moment

conditions (10) gives

√
T
(
θA

T − θ0

)
= −

[
1

T

∑

t

At
∂ht+1(θ

Am
T )

∂θ

]−1
1√
T

∑

t

Atht+1(θ0), (50)

where θAm
T is a collection of vectors, one for each coordinate of Atht+1, that lie between

θA
T and θ0, almost surely. Similarly, a mean-value expansion of the sample mean of

Btht+1(θ
A
T ) gives

1√
T

∑

t

Btht+1(θ
A
T ) =

1√
T

∑

t

Btht+1(θ0)+
1

T

∑

t

Bt
∂ht+1(θ

Bm
T )

∂θ
×
√

T
(
θA

T − θ0

)
, (51)

with θBm
T interpreted similarly. Substitution of (50) into (51) leads to

1√
T

∑

t

Btht+1(θ
A
T ) =

1√
T

∑

t

CA
t ht+1(θ0) + op (1) , (52)

where CA
t is given by (15). The limiting distribution in (14) follows immediately under

the regularity conditions in Hansen (1982) using the fact that ht+1(θ0) follows a martin-

gale difference sequence with conditional covariance matrix E[ht+1(θ0)ht+1(θ0)
′] = Σt.
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B Intermediate Steps in Section III

To express the Wald statistic ςW
T (A∗) as in (27) we proceed as follows. From the

intermediate steps in deriving the asymptotic distribution of θA
T we can express (θ∗T −θ0)

as
√

T (θ∗T − θ0)
a
= −

(
E
[
Ψθ′

t ΣG−1
t Ψθ

t

])−1 1√
T

T∑

t=1

Ψθ′
t ΣG−1

t ht+1(θ0). (53)

Noting that
√

T (γ∗
T−γ0) = [0, IG]

√
T (θ∗T−θ0), and using the partitioned matrix formula

for inverting Ω∗
0, we obtain

√
T (γ∗

T − γ0)
a
= −Ω∗

γγ

1√
T

T∑

1

HG ′
t ΣG−1

t ht+1(θ0). (54)

The random vector 1√
T

∑T
t=1 HG ′

t ΣG−1
t ht+1(θ0) converges in distribution to a normal

random vector with mean zero and covariance matrix

(
Ω∗

γγ

)−1
= Kγγ −Kγβ

(
Kββ

)−1 Kβγ , (55)

where the last equality follows from the partitioned matrix inversion formula applied

to Ω∗
0. Therefore, the asymptotic distribution of ςW

T (A∗) in (27) is χ2(G).

C Derivation the Lagrange Multiplier

The relevant Lagrange multipliers come from solving the GMM estimation problem

subject to the constraint that γ0 = 0. More precisely, the moment conditions associated

53



with the optimal GMM estimator of θ0 for the unconstrained mG
t+1 are

E








Ψβ′

t

Ψγ′
t



Σ−1
t ht+1(θ0, γ0)



 = 0. (56)

Under the constraint that γ0 = 0, (56) gives more moment equations (K) than unknown

parameters (K − G = dimβ0). Therefore, the LM statistic for testing H0 : γ0 = 0 is

obtained by minimizing a quadratic form in the sample version of the moments (56) for

joint estimation of β0 and γ0, subject to the constraint that γT = 0 (see Eichenbaum,

Hansen, and Singleton (1988)). Letting hN
t+1(β) = ht+1(β, 0), the pricing errors under

the constraint that γ = 0, the optimal distance matrix in this quadratic form is a

consistent estimator of

W0 = E








Ψβ′

t ΣN−1
t hN

t+1

Ψγ′
t ΣN−1

t hN
t+1




(

hN ′
t+1Σ

N−1
t Ψβ

t , hN ′
t+1Σ

N−1Ψγ
t

)


 .

The first-order conditions to this minimization problem are

(
1

T

∑

t

Pt+1

)

W−1
T

1

T

∑

t




Ψβ′

t

Ψγ′
t



ΣN−1
t ht+1(θT , 0) =




0

λT



, (57)

where λT is the G × 1 vector of Lagrange multipliers associated with the constraint

that γT = 0; it is understood that ΣN
t , Ψγ

t , and Ψθ
t have been replaced by consistent

estimators of these constructs; and the matrix P is given by

Pt+1 =




∂ht+1(βT ,0)′

∂β
ΣN−1

t Ψβ
t

∂ht+1(βT ,0)′

∂β
ΣN−1

t Ψγ
t

∂ht+1(βT ,0)′

∂γ
ΣN−1

t Ψβ
t

∂ht+1(βT ,0)′

∂γ
ΣN−1

t Ψγ
t



. (58)
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The first K − G rows of the lead matrix T−1
∑

t Pt+1 in (57) are the same as the first

K − G rows of WT . Therefore, the first K − G first-order conditions in (57) are

1

T

∑

t

Ψβ′
t ΣN−1

t hN
t+1(β

N
T ) = 0. (59)

These are the sample first-order conditions for the optimal GMM estimator of the

parameters of the SDF under the null hypothesis γ0 = 0; that is, they are the first-

order conditions when estimation proceeds with the constrained SDF mN
t+1.

22 We let βN
T

denote this optimal GMM estimator obtained when the SDF is taken to be mN
t+1(β0).

The Lagrange multiplier is obtained by solving the first-order conditions (57) for

λT . Partitioning the weighting matrix W0 conformably with the K − G and G blocks

of moment conditions in (56), letting W ij
0 denote the ijth block of W−1

0 , and

F LM
0 = E

[
Ψγ′

t Σ−1Ψθ
t

]
W 12

0 + E
[
Ψγ′

t Σ−1
t B′

t

]
W 22

0 , (60)

λT can be expressed as

λT = F LM
T

1

T

∑

t

Ψγ′
t Σ−1

t hN
t+1(β

N
T ), (61)

where F LM
T is a consistent estimator of F LM

0 . Using the formula for the partitioned

inverse of the matrix W0 it can be verified that F LM
0 = I and, therefore, this expression

for λT simplifies to (34).

22This derivation addresses an important question that was left implicit up to this point. In previous
sections we first constructed the optimal GMM estimator θ∗T of the parameters governing mt+1(θ0),
and then proceeded to construct tests based on managed portfolio weights Bt and the moment con-
ditions E[Btht+1(θ0)] = 0. Readers may wonder whether we would have obtained even more efficient
estimators than θ∗T by using the moment conditions E[A∗

t ht+1(θ0)] = 0 and E[Btht+1(θ0)] = 0 simul-
taneously to estimate θ0. By analogous derivations to those above we see that the answer is no. For
otherwise A∗ would not have been the optimal set of instruments to begin with.
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D An Alternative Representation of the Wald Statis-

tic for Completely Affine SDF s

We want to prove that 1
T

∑T
t=1 ĤG

t Σ̂G−1
t ıR = 1

T

∑T
t=1 ĤG

t Σ̂G−1
t hN

t+1

(
βN

T

)
for completely

affine SDF s.

We have ıR − hN
t+1

(
βN

T

)
= rt+1f

#N ′
t+1 βN

T and so

1

T

T∑

t=1

[
ĤG

t Σ̂G−1
t

{
ıR − hN

t+1

(
βN

T

)}]

=
1

T

T∑

t=1

[(
Ψ̂γ′

t − K̂γβ
T

(
K̂ββ

T

)−1

Ψ̂β′
t

)
Σ̂G−1

t rt+1f
#N ′
t+1 βN

T

]

=
1

T

T∑

t=1

[
Ψ̂γ′

t Σ̂G−1
t rt+1f

#N ′
t+1 βN

T − K̂γβ
T

(
K̂ββ

T

)−1

Ψ̂β′
t Σ̂G−1

t rt+1f
#N ′
t+1 βN

T

]

= K̂γβ
T βN

T − K̂γβ
T

(
K̂ββ

T

)−1 (
K̂ββ

T

)
βN

T = 0,

where we are relying on the robust formulation of K̂γβ
T as discussed in Section III.B.
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