James Archsmith, Alissa Kendall, and David Rapson “From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles” (Revised September 2015) (Revised version published in Research in Transportation Economics, 63(3): 397-421, 2015) | WP-263R
Abstract:
U.S. programs subsidize electric vehicles (EVs) in part to reduce greenhouse gas (GHG) emissions. We model a suite of life cycle GHG emissions considerations to estimate the GHG abatement potential from switching from an internal combustion engine vehicle (ICE) to an EV in the continental U.S. The GHG intensity of EVs hinges on the electricity and ambient temperature when charged and operated. Both have high spatial and temporal heterogeneity, yet are typically modeled inadequately or overlooked entirely. We calculate marginal emissions, including renewables, for electricity by region and test forecasted grid composition to estimate future performance. Location and timing of charging are important GHG determinants, but temperature effects on EV performance can be equally important. On average, EVs slightly reduce GHGs relative to ICEs, but there are many regions where EVs provide a decisive benefit and others where EVs are significantly worse. The forecasted grid shifts from coal towards renewables, improving EV performance; the GHG benefit per EV in western states is roughly $425 today and $2400 in 2040.